Supplementary material

Bioplastic (poly-3-hydroxybutyrate) producing *Massilia endophytica* sp. nov., isolated from *Cannabis sativa* L. 'Cheungsam'

Doeun Jeon^{1,2}, Lingmin Jiang¹, Ki-Hyun Kim¹, Yuxin Peng¹, Donghyun Cho¹, Rae-Dong Jeong², Cha Young Kim¹, Jae Cheol Jeong¹, and Jiyoung Lee^{1,3*}

¹Korean Collection for Type Cultures (KCTC), Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Republic of Korea

²Department of Applied Biology, Chonnam National University, Gwangju 61186, Republic of Korea

³ Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), Yuseong, Daejeon 34113, Republic of Korea

* Correspondence: Jiyoung Lee, jiyoung1@kribb.re.kr

Fig. S1. Genome map of the DM-R-R2A-13^T generated using CGView. Distinctive features illustrated from out to inner rings. Ring 1 and ring 2 depict forward and reverse Cluster Orthologous Group (COG) annotation, respectively. Ring 3 illustrates the G+C % content plot, while ring 4 depicts the GC skew. The COG categories are: A, RNA processing and modification; B, chromatin structure and dynamics; C, energy production and conversion; D, cell cycle control, cell division, chromosome partitioning; E, amino acid transport and metabolism; F, nucleotide transport and metabolism; G, carbohydrate transport and metabolism; H, coenzyme transport and metabolism; I, lipid transport and metabolism; J, translation, ribosomal structure and biogenesis; K, transcription; L, replication, recombination and repair; M, cell wall/membrane/envelope biogenesis; N, cell motility; O, posttranslational modification, protein turnover, chaperones; P, inorganic ion transport and metabolism; Q, secondary metabolites biosynthesis, transport and catabolism; R, general function prediction only; S, function unknown; T, signal transduction mechanisms; U, intracellular trafficking, secretion, and vesicular transport; V, defense mechanisms.

Fig. S2. COG classification of strain DM-R-R2A-13^T genome. Of the 4,569 transcripts

identified using the eggNOG database, 3,170 were categorized into 25 COG clusters.

Fig. S3. Scanning electron microscopy (SEM) image of DM-R-R2A-13^T grown in R2A medium at 30°C. Scale bar, 1 μm.

Fig. S4. Two-dimensional thin-layer chromatography of polar lipids of strain DM-R-R2A-13^T. (A) Total lipids were detected by spraying with phosphomolybdic acid. (B) Phospholipids (PL) were detected by spraying with molybdenum blue. (C) Aminolipids (AL) were detected by spraying with ninhydrin. Diphosphatidylglycerol (DPG), phosphatidylethanolamine (PE), phosphatidylglycerol (PG), one unidentified PL, and four unidentified AL were observed.

M. endophytica DM-R-R2A-13 LTKGLANMLADMQKGHISLSDEKAFEVGRNLATTEGQVVYENELFQLLQYKPLTENVK R. necator H16 LRAGVRNMMEDLTRGKISQTDESAFEVGRNVAVTEGAVVFENEYFQLLQYKPLTDKVH B. megaterium MPSEYKSSARRFKRAYEIMTAEAEPEVGLTPKEVIWKKNKAKLYRYTPVKDNLH A. vinosum DSM180 LTQEMLDYSRKLGQGMENLLNAEAIDTGVSPKQAVYSEDKLVLYRYDRPEGAPEAQ : : : : : :	219 2 3 6 69 66
M. endophytica DM-R-R2A-13 QRPLLMVPPCINKYYILDLQPENSLVRYAVEQGNTVFLISWRNPNQTLAKTSWDDYVDDG R. necator H16 ARPLLMVPPCINKYYILDLQPESSLVRHVVEQGHTVFLVSWRNPDASMAGSTWDDYIEHA B. megaterium KTPILLVYALINKPYILDLTPGNSLVEYLLNRGFDVYLLDWGTPGLEDSNMKLDDYIVDY A. vinosum DSM180 PVPLLIVYALVNRPYMTDIQEDRSTIKGLLATGQDVYLIDWGYPDQADR ALTLDDYINGY	279 296 129 126
M. endophytica DM-R-R2A-13 VVNATNTCKATTKEEKLNV GFCVGGT LSTALAVMAARGEQPAASVTLLTTFLDFSDTG R. necator H16 ATRATEVARDTSQQDKTNV GFCVGGT VSTALAVLAARGEHPAASVTLLTTFLDFADTG B. megaterium TPKAAKKVLRTSKSPDLSV GYCMGGT MTSTFAALNEDLPTKNLTFMTSPFDFSDTG A. vinosum DSM180 TDRCVDYLREAHGVDKVNL GTCQGGA FSLMYSALHPDK-VRNLVTMVTPVDFKTPD *	339 356 186 182
M. endophytica DM-R-R2A-13 -VLNVFVDEPQVMLREQTLAAGGLMPGRDLASTFSSLRPNDLVWNYVQSNYLKGN R. necator H16 -ILDVFVDEGHVQL REATLGGGAGAPCALLRGLELANTFSFLRPNDLVWNYVVDNYLKGN B. megaterium -LYGAFLDDRYFNLDKAVDTFGNIPPEMIDFGNKMLKPITNFYGPYVTLVDRSE A. vinosum DSM180 NLLSAWVQNVDIDLAVDTMGNIPGELLNWTFLSLKPFSLTGQKYVNMVDLLD : . ::: : . *	393 415 239 234
M. endophytica DM-R-R2A-13 EPPPFDLLYWNSDSTNLPGPMFCWYLRNTYLENKLKDPGRLKVAGEAVDLSKIDAP R. necator H16 TPVPFDLLFWNGDATNLPGPWYCWYLRHTYLQNELKVPGKLTVCGVPVDLASIDVP B. megaterium NQRFVESWKLMQKWVADGIPFAGEAYRQWIRDFYQQNKLI-NGELEVRGRKVDLKNIKAN A. vinosum DSM180 DPDKVKNFLRMEKWIFDSPDQAGETFRQFIKDFYQNNGFL-NGGVVLGQQEVDLKDITCP : * ::::: * :: * :: * *** .*	449 471 298 293

Fig. S5. Alignment of the PHA synthase (PhaC) from *M. endophytica* DM-R-R2A-13^T with those from the following strains: *R. eutropha* H16 (QCC00456.1), *B. megaterium megaterium* ATCC 14581 (QSF29105.1), and *A. vinosum* DSM 180 (ADC61033.1). The lipase box-like region is in red box. "*" " means that the amino acids in that column are identical in all sequences in the alignment. ":" means that conserved substitutions have been observed. "." means that semi-conserved substitutions are observed.

Fig. S6. NMR spectra of PHB extracted from DM-R-R2A-13^T (A) ¹H NMR spectrum has peaks at 1.26–1.28 ppm (-CH₃), 2.45–2.62 ppm (-CH₂), and 5.24–5.28 ppm (-CH). (B) ¹³C NMR spectrum has peaks at 169.15, 67.61, 40.79, and 19.76 ppm, corresponding to the carbon atom of C=O, -CH, -CH₂, and -CH₃, respectively.

Table S1. Comparative analysis of PHA synthase in strain DM-R-R2A-13^T and other bacterial proteins. The protein sequences were obtained from the National Center for Biotechnology Information (NCBI), and the percentage identity was calculated using Cluster Omega multiple sequence alignments (Clustal v.2.1).

Organism	PhaC		PhaR	
	GeneBank no.	Identity (%)	GeneBank no.	Identity (%)
R. eutropha H16ª	QCC00456.1	60.88	QCC00459.1	72.53
<i>B. megaterium</i> ATCC 14581 ^b	QSF29105.1	27.81	QSF29103.1	18.80
A. vinosum DSM 180°	ADC61033.1	25.00	ADC61036.1	44.90

^a *R. eutropha* (=*Raltonia eutropha*, =*Cupriavidus necator*)

^b B. megaterium (=Bacillus megaterium, =Priestia megaterium)

^c A. vinosum (=*Allochromatium vinosum*)