iScience, Volume 26

Supplemental information

A fingerprint of 2-[¹⁸F]FDG radiometabolites – How

tissue-specific metabolism beyond 2-[¹⁸F]FDG-6-P could affect tracer

accumulation

Eva-Maria Patronas, Theresa Balber, Anne Miller, Barbara Katharina Geist, Antje Michligk, Chrysoula Vraka, Maximilian Krisch, Nataliya Rohr-Udilova, Arvand Haschemi, Helmut Viernstein, Marcus Hacker, and Markus Mitterhauser

Supplemental information

Time (min)	% A (0.6 M sodium dihydrogen phosphate buffer with 3 % methanol)	% B (3 % methanol in water)
0 - 12	5	95
13	10	90
14 - 18	15	85
19 - 32	50	50
34 - 35	5	95

Table S1. Gradient profile of the HPLC runs, related to Figure 1.

Gene	H6PD	G6PD
Unweighted_meta-Z_of_all_cancers	-3.028058243	5.104754536
Adrenocortical_cancer	-0.224	-1.307
Bladder_cancer	-1.095	1.584
Brain_cancer_Astrocytoma	2.315	1.174
Brain_cancer_Glioblastoma	-0.836	0.638
Brain_cancer_Glioma	1.687	2.104
Brain_cancer_Medulloblastoma	0	0
Brain_cancer_Meningioma	-0.92	0.81
Brain_cancer_Neuroblastoma	-4.873	7.427
Breast_cancer	-5.307	4.185
Colon_cancer	-0.265	-0.594
Gastric_cancer	-0.638	1.069
Germ_cell_tumors	0.531	-1.269
Head_and_neck_cancer	0.27	0.841
Head_and_neck_cancer_Hypopharyngeal_cancer	-0.123	0
Head_and_neck_cancer_Oesophageal_cancer	-0.548	0
Head_and_neck_cancer_Oral_SCC	0.848	0.205
Hematopoietic_cancer_AML	-1.654	1.814
Hematopoietic cancer B ALL	-0.273	0.442
Hematopoietic cancer Burkitt lymphoma	0.668	-0.29
Hematopoietic cancer CLL	0.072	1.544
Hematopoietic cancer DLBCL	0.477	0.603
Hematopoietic cancer FL	-2.66	1.595
Hematopoietic cancer Mantle cell lymphoma	0.771	2.301
Hematopoietic cancer Multiple myeloma	-0.103	2.832
Kidney cancer	-0.209	0
Liver cancer	-1.438	-0.824
Liver cancer Primary	-0.049	-0.255
Lung cancer ADENO	-0.861	2.156
Lung cancer LCC	-0.319	0.343
Lung cancer SCC	-1.922	1.712
Lung cancer SCLC	0.258	0
Melanoma	1.114	0.319
Melanoma Metastasis	1.127	1.193
Mesothelioma	-0.479	0
Ovarian cancer	-0.992	-1.996
Pancreatic cancer	-1.207	0.693
Prostate cancer	-1.005	-0.014
Sarcoma Ewing sarcoma	-0.375	0.446
Sarcoma Osteosarcoma	-0.674	0.397
	higher expression is as	sociated with longer
	survival	
	higher expression is as	sociated with
	shorter survival	-

Source: PRECOG database Stanford 2021

Table S2. Relationship between G6PD/H6PD gene expression and survival across different cancer types, related to Figure 5.

Figure S1. Western blots of preliminary tests with SMARTpool ON-TARGETplus siRNAs to find the optimal concentration for G6PD/H6PD knockdown in HT29 cells, related to Figure 7.

Figure S2. Representative western blots that exclude compensatory overexpression of the respective other enzyme after knockdown with siRNA (samples from different experiments), related to Figure

7.

Figure S3. Attempts for *in vivo* knockdown of G6PD/H6PD were not successful, related to Figure 7. (A) Western blot analysis determining the most effective siRNAs within the tested pool. (B) Postmortem IVIS[®] images showing successful siRNA injection and good distribution in HT29 tumor, and (C) summary of western blot analyses of G6PD/H6PD knockdown (n = 3 each, NTsi = non-targeting siRNA, AB 1 = proteintech antibody, AB 2 = abcam antibody). Bar graph data are represented as mean ± SD.