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Appendix A: methods

Here we provide extra details of our methods.

Variational approximation to Bernoulli likelihood

Our method for binary functional principal components analysis uses a variational approx-

imation to the Bernoulli likelihood given in Equation (6) of our manuscript. Recall that

for subject i measured at time j observation Yi(tij) ∼ Bernoulli(µi(tij)) where µi(tij) is

defined in Equation (3). For convenience we rearrange the usual formulation of the Bernoulli

distribution to get the probability density function given in Equation (4) by

P{Yi(tij)|ci} = µi(tij)
Yi(tij){1− µi(t)}1−Yi(tij)

= g−1{Ai(tij)}Yi(tij)
[
1− g−1{Ai(tij)}

]1−Yi(tij)
= g−1 [{2Yi(tij)− 1}Ai(tij)]

where Ai(tij) = Θφ(tij) (αΘ + ΨΘci). Equality holds in the last step because observations

are limited to {0, 1} and when g is the logit function g−1(−z) = 1− g−1(z).

We use the variational approximation for logistic regression outlined by Jaakkola and

Jordan (1997) and extended to binary PCA by Tipping and Bishop (1999), with additional

basis expansion Θφ(tij) embedded in Ai(tij) to allow for a functional data framework. This

approximation is a lower bound on P{Yi(tij)|ci}, given by
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P{Yi(tij)|ci} = g−1 [{2Yi(tij)− 1}Ai(tij)]

> g−1{ξi(tij)} exp

[
{2Yi(tij)− 1}Ai(tij)− ξi(tij)

2
+ λ {ξi(tij)}

{
Ai(tij)

2 − ξi(tij)2
} ]

= P̃{Yi(tij)|ci, ξi(tij)},

where λ(z) = 0.5−g−1(z)
2z

and ξi(tij) is the variational parameter. Equality of the original distri-

bution P{Yi(tij)|ci} and the variational distribution is attained when P̃{Yi(tij)|ci, ξi(tij)} is

maximized with respect to ξi(tij), and the value of ξi(tij) at the maximum is {2Yi(tij)− 1}Ai(tij).

Updating αΘ and ΨΘ for binary FPCA

We obtain parameter updates for binary FPCA by maximizing the variational likelihood

given in Equation (7) of our manuscript. In Section (3.1.3) we obtain updates for αΘ and

ΨΘ by reparameterizing Equation (7) such that Φ = (ΨT
Θ,αΘ)T . This reparameterization

leads to the variational log-likelihood below:

l̃(Y , c) ∝
Di∑
j=1

I∑
i=1

log P̃

{
Yi(tij)|ci, ξi(tij)

}
−
∑
i

cTi ci

∝
∑
i

[{
Yi(ti)−

1

2

}T
Ai(ti)−

1

2
ξi(ti)1Di×1 + ATi (ti)diag [λ {ξi(ti)}]Ai(ti)

]
∝

∑
i

{
Yi(ti)−

1

2

}T {
Θφ(ti)⊗ sTi

}
vec(Φ)

+
∑
i

vec(Φ)T (Θφ

{
ti)

T ⊗ si
}
diag [λ {ξi(ti)}]

{
Θφ(ti)⊗ sTi

}
vec(Φ).

Maximizing with respect to Φ gives estimates Φ̂.

Optimization constraints for the warping step

Section (3.3) refers to optimization constraints for the R function constrOptim() imple-

mented in the warping step of our algorithm. We constrain inverse warping function to

be monotonic with fixed endpoints, and these constraints are enforced through βi, the
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warping function B-spline coefficients for each subject. To ensure that estimated inverse

warping functions ĥ−1
i span the same domain as chronological time t∗i , we fix the outer

coefficients βi,1 and βi,Kh . Thus in practice we estimate the Kh − 2 inner spline coefficients

βi,inner = (βi,2, ..., βi,Kh−1)T .

To enforce monotonicity of the warping functions we must ensure β1 < β2 < ... < βKh−1.

Using the notation from the constrOptim() function, we define a matrix ui and a vector ci

such that

ui× βi,inner − ci > 0. (A.1)

This leads to a ui matrix of dimension (Kh− 1)× (Kh− 2) and a size (Kh− 1) vector, ci,

that take the forms:

ui =

1 0 0 ... 0

−1 1 0 ... 0

0 −1 1 0

0 0 −1 1 0

0 −1 1

0 0 −1




and

ci =



0

0

...

0

−1
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such that

1 0 0 ... 0

−1 1 0 ... 0

0 −1 1 0

0 0 −1 1 0

0 −1 1

0 0 −1







βi,2

βi,3

...

βi,Kh−1


−



0

0

...

0

−1


>



0

...

0

0

0


.

Analytic gradient for exponential family registration

For the general exponential family case, this gradient is

dl(Yi(t
∗
i ),βi)

dβi
=

1

ϕ

Di∑
j=1

{(
Yi(t

∗
ij)− b′ [g {µi(tij)}]

)
×Θh(t

∗
ij)

TΘ′φ{Θh(t
∗
ij)βi} (αΘ + ΨΘci)

}
,

(A.2)

where Θ′φ(ti) is a Di × Kh matrix of first derivatives of the B-spline basis functions used

to reconstruct ti, and b′
[
g {µi(tij)}

]
= µi(tij) = g−1

[
Θφ{Θh(t

∗
ij)βi}(αΘ +ψΘci)

]
. For the

Bernoulli loss function ϕ = 1 and g−1(z) = 1
1+e−z

, so the gradient becomes

dl{Yi(t∗i ),βi}
dβi

=

Di∑
j=1

[(
Yi(t

∗
ij)−

1

1 + e−Θφ{Θh(t∗ij)βi}(αΘ+ψΘci)

)
×Θh(t

∗
ij)

TΘ′φ{Θh(t
∗
ij)βi} (αΘ + ΨΘci)

]
.

(A.3)
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Appendix B: simulations and analysis

Here we provide extra results from simulations and analysis of BLSA data.

Functional principal components for BLSA data

Figure (Web.App.1) shows the effects of the estimated principal component basis functions

for the BLSA data after the registration process. The first principal component is a vertical

shift around the population mean, α(t), indicating a higher or lower probability of being

active. More interesting is the second principal component, which shows that some subjects

have higher probability of activity earlier in the day, while others have higher probability of

activity later in the day.

[Figure 1 about here.]

Optimizing parameters

As a sensitivity analysis we evaluate our method as a function of parameters Kφ and Kh.

We evaluated all combinations of Kφ ∈ {5, 10, 15}, Kh ∈ {3, 4, 5, 6} and grid length D ∈

{50, 100, 200} using the same simulation setup and performance metrics as in Section (4).

Mean integrated squared errors are given in Figure (Web.App.2) and computation times

across these simulation scenarios are given in Figure (Web.App.3).

[Figure 2 about here.]

[Figure 3 about here.]

Both MISE and computation time increase linearly with Kh. Mean integrated squared

errors decrease slightly with increasing Kφ, and computation time slightly increases with

increasing Kφ.
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Sensitivity of BFPCA

Below we compare our binary functional principal components algorithm with that from Hall

et al. (2008). Mean integrated squared errors are based on deviations from the population

level mean.

[Figure 4 about here.]

Analysis of weekdays for BLSA

In our primary analysis we averaged across visits for subjects. Here we separate visits by

day of the week and look at day-specific effects. Figure (Web.App.5) shows unregistered and

registered binary and smooth curves for each day of the week. Our algorithm consistently

identifies similar patterns across days of the week. Alignment may be slightly better on week

days than weekends, which suggests an area for future exploration.

[Figure 5 about here.]

References

Hall, P., Müller, H.-G., and Yao, F. (2008). Modelling sparse generalized longitudinal

observations with latent gaussian processes. Journal of the Royal Statistical Society:

Series B 70, 703–723.

Jaakkola, T. S. and Jordan, M. I. (1997). A variational approach to bayesian logistic

regression models and their extensions. In Proceedings of the Sixth International

Workshop on Artificial Intelligence and Statistics.

Tipping, M. E. and Bishop, C. (1999). Probabilistic principal component analysis. Journal

of the Royal Statistical Society: Series B 61, 611–622.



Supp. Materials for: Registration for exponential family functional data 7

Figure Web.App.1. Estimated binary FPCA basis functions after registration process,

illustrated by plotting g−1

{
α(t)± ψk(t)

}
for basis functions k ∈ {1, 2}.
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Figure Web.App.2. Parameter sensitivity across values of Kφ and Kh for registr method.
Shown are mean integrated squared error (MISE) summaries across 10 datasets for each
parameter scenario. Columns represent distinct values of Kφ and rows distinct grid lengths
D.
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Figure Web.App.3. Parameter sensitivity across values of Kφ and Kh for registr method.
Shown are boxplots of computation time (in seconds) across 10 datasets for each parameter
scenario. Columns represent distinct values of Kφ and rows distinct grid lengths D.
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Figure Web.App.4. This figure shows mean integrated squared errors (top row) and
median computation times (bottom row) for hall (in red) and registr (in green) methods
across varying sample sizes and grid lengths. The columns, from left to right, show sample
sizes 50, 100, and 200, respectively. Within each panel we compare grid lengths of 100, 200,
and 400. Mean integrated squared errors are based on deviations from the population level
mean.
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Figure Web.App.5. Analysis results for each day of the week.
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