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Supplementary Information

S.1) List of supported lipid classes in LipidSpace

BMP, CAR, CDPDAG, Cer, CerP, CerPE, CL, DG, DGDG, DLCL, DMPE, EPC, FA, FAHFA, FOH, Gal-
Gal-Glc-Cer, Gal-GalNAc-NeuAc-Gal-Glc-Cer, Gal-GalNAc-NeuAc-NeuAc-Gal-Glc-Cer, Gal-GalNAc-
NeuAc-NeuAc-NeuAc-Gal-Glc-Cer, Gal2GalNAcGlcNeuAc2Cer, Gal2GalNAcGlcNeuAc3Cer, 
Gal2GalNAcGlcNeuAc4Cer, Gal2GalNAcGlcNeuAc5Cer, Gal2GalNAcGlcNeuAcCer, Gal2GlcCer, 
GalCer, GalGalNAcGlcNeuAc2Cer, GalGalNAcGlcNeuAc3Cer, GalGalNAcGlcNeuAcCer, 
GalGlcNeuAc2Cer, GalGlcNeuAc3Cer, GalGlcNeuAcCer, GalNAc-NeuAc-Gal-Glc-Cer, GalNAc-
NeuAc-NeuAc-Gal-Glc-Cer, GalNAc-NeuAc-NeuAc-NeuAc-Gal-Glc-Cer, GalNeuAcCer, GD1a, GD1b, 
GlcCer, GT1a, GT1b, GT1c, Hex2Cer, Hex3Cer, HexCer, IPC, LacCer, LCL, LHexCer, LIPC, LPA, 
LPA-O, LPA-P, LPC, LPC-O, LPC-P, LPE, LPE-O, LPE-P, LPG, LPG-O, LPG-P, LPI, LPI-O, LPI-P, 
LPIM1, LPIM2, LPIM3, LPIM4, LPIM5, LPIM6, LPS, LPS-O, LPS-P, LSM, M(IP)2C, MG, MGDG, 
MIPC, MMPE, NeuAc-Gal-Cer, NeuAc-Gal-GalNAc-NeuAc-NeuAc-NeuAc-Gal-Glc-Cer, NeuAc-Gal-
Glc-Cer, NeuAc-NeuAc-Gal-GalNAc-NeuAc-NeuAc-NeuAc-Gal-Glc-Cer, NeuAc-NeuAc-Gal-Glc-Cer, 
NeuAc-NeuAc-NeuAc-Gal-Glc-Cer, PA, PA-O, PA-P, PAT16, PAT18, PC, PC-O, PC-P, PE, PE-O, PE-
P, PEt, PG, PG-O, PG-P, PI, PI-O, PI-P, PIM1, PIM2, PIM3, PIM4, PIM5, PIM6, PIP, PIP2, PIP3, PS, 
PS-O, PS-P, SE 27:1, SHexCer, SM, SPB, SPBP, SQDG, ST 27:1;O, ST 27:2;O, ST 28:1;O, ST 
28:2;O, ST 28:3;O, ST 29:1;O, ST 29:2;O, ST 30:2;O, TG

S.2) Quality control measures and approaches

Benford’s law: According to number theory, the first digits of a set of numbers do not occur with equal
probability when the numbers are spanning several orders of magnitude. A set of numbers violating
this property (Benford’s law [1]), might indicate lipid quantities of low order of magnitude or a poorly
performed data imputation for missing values.

Principal  component  analysis  for  blank  assessment: Blanks  might  indicate  a  good technical  data
acquisition  when  measured  equally  distributed  throughout  the  complete  sample  measurement
process. Blanks should contain a similar analyte composition and thus be quite similar. Blanks that do
not cluster well together in a PCA may indicate issues in the sample acquisition process.

Coefficient  of  variation  /  Relative  standard  deviation:  With  respect  to  a  selected  nominal  study
variable, CV histograms of the lipids within the respective groups are plotted. CV values exceeding 25-
30 % may indicate insufficient measurement of samples or individual lipids.

Comparison of  structural  similarity of  samples on either qualitative level or  quantitative level: The
hierarchical  dendrogram  supports  quality  control  in  numerous  ways.  For  instance,  lipidomics
identification results from two different laboratories can be quickly assessed for equality based on
shared  lipid  presence.  When  turning  off  quantitative  data  from  the  dendrogram,  one  can  see  if
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samples measured from different laboratories distribute randomly or if they form two separate clusters.
If the latter is the case, the laboratories may have used different methods leading to identification of
non-concordant  lipid  sets.                                
When working with model  organisms, reference lipidome tables can be sourced from literature to
compare the performance of one’s own control measurements to the reference on a quantitative level.
The  formation  of  well  separated  clusters  for  both  the  reference  samples  and  own  control
measurements (even with applied quantity normalization) may again hint at issues stemming from the
pre-analytical or sample acquisition process.

Adjustable p-value distribution: When a nominal study variable is chosen with at least two categories,
a p-value distribution plot is available. The type of test is adjustable (Student’s t-Test, Welch’s t-Test,
Kolmogorov-Smirnov  Test,  or  ANOVA for  comparison  of  more  than  two  categories).  An  equal
distribution of p-values might indicate that either no regulation exists between these categories or that
a preceding experiment between these categories (e.g., knockout vs. wildtype) did not succeed.

Adjustable volcano plot for nominal study variables with two categories: An enhancement of the p-
value distribution is a volcano plot. Lipid quantities are being compared between both samples where
their logarithmic ratio (fold change) is reported on the x-axis and their (negative logarithmic) p-value on
the yaxis, often resulting in a volcano-shaped scatter plot. Again, points not exceeding any predefined
limits might indicate absence of regulation between both categories or that an preceding experiment to
these categories (e.g., knockout vs. wildtype) did not succeed.
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Supplementary Figures

Figure S1: The graphical user interface of LipidSpace.  Several visualization modules are available via the
landing page with its interactive tutorials (top left), the structural lipid space models with either a global model
over  all  lipidomes  or  individually  for  each  lipidome  (top  right),  an  interactive  dendrogram  visualizing  the
hierarchical relation between all lipidomes (bottom left), and a module providing several statistics and figures for
download (bottom right).

Figure S2: Maximum common subgraph between PS 12:1(6E)/18:1(9Z) and PC 16:0/16:2(4E,9Z). The MCS
shares atoms and bonds (grey) and has unique structures for the first lipid (red) and the second lipid (blue). The
similarity (Jaccard index) is the ratio between the shared number of elements (intersection) and all elements
(union) ranging from 0 to 1. The distance between both lipids is defined as 1 – the similarity and also ranges
from 0 to 1. In this example, 83 elements (atoms and bonds) are shared by 109 common elements resulting in a
distance value of 0.238 without unit.
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Figure S3: Visualization of an exemplary lipidomics space analysis.  In total,  eleven samples (six human
and five mouse samples) were analyzed in this experiment resulting in eleven structural lipid space models (tiles
2 - 12) and a comprehensive global lipid space model (tile 1, top left).

Figure S4: Visual representation of study variable values in the dendrogram. When selecting nominal study
variables (left) in LipidSpace, the branches show a pie chart of lipidome distributions associated to the values in
the respective subtree. Having selected a numerical study variable (right), the best separation value is computed
between two connected sub-branches and the pie charts show the distribution of lipidomes having a higher or
lower value. For example, here the study variable ‘cholesterol (pmol/mg protein)’ (right) is shown. The top level
can be separated at the value 84993.3. The color green indicates a value less than 84993.3. For each horizontal
branch, a new separation value is computed as explained in Figure S5.
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Figure S5: Determination of optimal value for separation of two numerical sets. (left) Both sets are sorted
and their  cumulative density  function is  computed,  while  the highest  cumulative difference determines their
optimal separation value. (right) A histogram illustrates the distribution of both sets. For this example, the sets
were extracted from a dataset from a study on human plasma published by Saw et al. [ 2]. The study variable is
the concentration of cholesterol (mmol/l) for 359 human samples.

Figure  S6:  Probability  distribution  of  two  arbitrary  carbon  chains  having  x  double  bond  position
matches. We based our comparison on the two established lipid databases LIPID MAPS and SwissLipids. For
each  database,  a  distinct  set  of  fatty  acyl  chains  with  at  least  one  double  bond  position  information  was
extracted. Double bond (DB) positions were compared either when starting to count from the carbonyl carbon
group (forward) or from the methyl group (omega / backward). The probability that two arbitrary fatty acyl chains
with a different DB composition have zero matching double bond positions is at least 73 % in both directions for
the LIPID MAPS entries and between 64 % and 71 % for the SwissLipids entries.
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Figure S7: Preservation of the spatial organization of lipids in structural space model.  Here, a list of 14
diacylglycerophosphocholine lipids PC 12:0/[12-24,26]:0 were analyzed individually (left) forming a sequential
arc with increasing fatty acyl chains. On the right-hand side, the 14 lipids were analyzed along with a set of 500
lipids from different lipid categories. The 14 PC lipids preserve the sequential arc (magnified field) although
slightly deformed. Please note that both the lipid diacylglycerophosphocholine and the principal components
have the same abbreviation PC.

Figure S8: Reanalysis of a lipidomics study on human plasma. The results computed by LipidSpace are in
agreement with the results reported by Saw et al. [2]. The lipid species PC O-40:7 and PE O-40:7 have the
highest group separation potential.
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Figure S9: Reanalysis of a lipidomics study on mouse platelets.  In the study of Peng et al. [3], the main
abundant glycerophosphoglycerols (PG) species are significantly regulated between the conditions wild type
(WT) and knockout (KO) with a p-value < 0.001.

Figure S10: Study on different ethnicities. A separation model for the Chinese and Indian populations based
on data derived from Saw et  al.  [2]  was computed.  Both populations were separated with  an accuracy of
90.65 % under the consideration of a 23 lipids-comprising panel.

S8



Figure S11: Comparison of seven different lipidomics experiments. A hierarchical clustering was performed
by calculating the structural space between all 702 lipid species over all 1037 studies within seven datasets from
four  different  lipidomics  studies (Ishikawa et  al.  [4],  Sales et  al.  [5],  Saw et  al.  [2],  Wolrab et  al.  [6]),  and
computing  the  pairwise  distances  between  all  lipidomes  based  on  their  corresponding  lipid  spaces.  This
clustering does not take the lipid abundances into consideration. Three studies (red, green, blue) have no further
hierarchical structure within their branches because no differences in lipid composition were reported.
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