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Supplementary Material A  
Fitting the Cox proportional hazard model 

Box 1 outlines a typical Cox model of the 
type that provides the foundation for the 
analyses described in this document. 
Model fitting is in R using the coxph(.) 
function. Model construction starts with the 
used of the Surv(.) function that converts 
the raw survival times and censoring 
statuses from the original data set into a 
Surv object (here called survmod): 
survmod<-Surv(survival.time,failed). The R 
object ‘survmod’ can now be declared as 
the outcome term of a Cox model fitted 
using coxph (i.e. the first argument in the 
regression formula). The next few terms in 
the formula typically represent a set of time 
fixed covariates that are felt to 
appropriately capture at least some of the 
key variability in the risk of death in the 
absence of COVID-19. Here, for illustrative 
purposes, these are age, sex, BMI, and 
presence/absence of diabetes.  Covariates 
designated “tt(variable name)” are time 
dependent covariates where the time 
dependency in each case is defined by a 
function (declared in the tt list that follows) 
that determines the value of that covariate 
in every risk set (i.e. at every unique failure time). Within each function, x specifies the 
variable identified as variable name in the original call to tt(.) and t is the time corresponding 
to whatever risk set is being considered.  The functions in the tt list are always in the same 
order as the corresponding tt() covariates in the model specification. For this illustration 
using exemplar code, t is measured in days since the day an individual entered follow-up (t = 
0) which is itself defined as the day that individual had a hip fracture recorded in the national 
hip fracture registry. In the real analysis we later changed the primary analytic time-scale 
from days to weeks to reduce computing load. The variables, COVID_19.date.1 … 
COVID_19.date.4 are all copies of an original variable COVID_19.date that specifies the 
date (if any) at which a positive COVID-19 test was reported in each individual – the  date 
being specified in days on the same scale (t) as the basis of the primary analysis (i.e. 0 
refers to the start of follow-up for any given individual). Anyone who never had a positive 
COVID-19 test is allocated an arbitrary, but large, value for COVID_19.date (and therefore 
all four of the copy variables) that is greater than the maximum follow-up time of any subject 
in the data set. The need to declare four exact copies of the same variable is a quirk of the 
coxph(.) function which does not allow the same variable name to be used for more than one 
tt covariate. 

As an illustration, and given these definitions, the covariate week2.post.COVID_19 will take 
the value 1 in any risk set where the date of the risk set (t) is greater than or equal to 7 days 
after the t corresponding to the first positive COVID-19 test in a particular individual and less 
than 14 days after that same positive test in that individual. At all other times it takes the 
value 0. This defines a time-dependent covariate that is a binary step function (either 1 or 0 

cox.model<-coxph(survmod~age60+female+bmigp.1+bmigp.2+diab +  

               tt(COVID_19.date.1) + tt(COVID_19.date.2)+ 

               tt(COVID_19.date.3) + tt(COVID_19.date.4), 

               x=TRUE,ties="breslow", 

               tt=list( 

                function(x,t, ...) 
                 { 
                   week1.post.COVID_19<-((t>=x)& t<(x+7)) 
                 }, 
                function(x,t, ...) 
                 { 
                   week2.post.COVID_19<-((t>=x+7)& t<(x+14)) 
                 }, 
               function(x,t, ...) 
                 { 
                   week3.post.COVID_19<-((t>=x+14)& t<(x+21)) 
                 }, 
                 function(x,t, ...) 
                 { 
                   week4.post.COVID_19<-((t>=x+21)& t<(x+84)) 
                }  )) 
Box 1: the type of Cox model typically required for our approach 
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on any given date) and its coefficient will reflect the risk of death in the second week after a 
positive COVID-19 test relative to all other times. 
 
All covariates and their standard errors are estimated directly from the model fit above. But 
estimating the baseline hazard, which is also crucial, is slightly more difficult than normal. 
This is because the function that is normally used to generate the baseline hazard function in 
R – that is, basehaz(.) – has not been generalized to models containing time-dependent 
covariates. In consequence, because our approach demands an estimate of the baseline 
hazard function and requires that we use time dependent covariates we estimated the 
baseline hazard at each failure time using the method described by Breslow 24 in the 
discussion of the original paper describing the Cox model 49. 

 

Supplementary Material B  
Simulation protocol 
The basis for the simulation in the actual and counterfactual scenarios is summarised by the 
following protocol: 

(1) Start simulation 1 of M. 
(2) Start at time 0 with all (N) subjects alive (i.e. censoring status = 0 for everybody). 
(3) Consider subject 𝒾 = 1 at unique failure time 𝓊 = 1. Use the Cox model results and 

Equation 1 (main manuscript) to estimate 𝜆(1)!, the instantaneous combined hazard for 
subject 1 at unique failure time 𝓊 = 1. A unique failure time refers to a point in time on 
the primary time scale of the Cox model when at least one person died – that is, it 
defines a risk set in the Cox model. In general, we often abbreviate the term “unique 
failure time” to 𝑢𝑓𝑡 but when, in the following description of the simulation algorithm, we 
are referring to the time at which a particular 𝑢𝑓𝑡 occurred, we shorten this to 𝑢 to save 
space and make the text easier to read. 

(4) Use equation 𝑓(𝑡)" = 1 − 𝑒#$(&)𝒾22, 24 (see main manuscript, Methods section 2) to 
transform 𝜆(1)!	to	𝑓(1)!,	the probability that subject 1 dies at  𝓊 = 1 given that they are 
alive arriving at 𝓊 =1. 

(5) In R, use the function rbinom(1,1,	𝑓(1)!) to generate a random Bernoulli (0,1) value 
ℬ(1)!,  where  𝑓(1)!	is the probability that ℬ(1)! is 1 and 1 − 𝑓(1)!the probability it is 0. 

(6) If ℬ(1)! = 1, declare that subject 1 died at 𝓊 = 1 and that the simulated outcome data in 
subject 1 is complete: survival time = 1; censoring status = 1 (i.e. died at time = 1).  This 
terminates the data synthesis for subject 1 in iteration 1. Return to step 3 moving on to 
subject 𝒾 = 2, 3, 4 … N and keep repeating steps 3-8. 

(7) If ℬ(1)! = 0 declare that subject 1 survived through 𝓊 = 1, return to step 3 and keep 
repeating steps 3-7 for 𝓊 = 2, 3, 4, …. 𝓊()* until reaching uft 𝓊 at which ℬ(𝓊)! = 1. 
Then declare that the simulated outcome data in subject 1 is complete: survival time = 𝓊; 
censoring status = 1 (i.e. died at time = 𝓊). This completes the data synthesis for subject 
1 in iteration 1. Return to step 3 moving on to subject 𝒾 = 2, 3, 4 … N and keep repeating 
steps 3-8 

(8) If ℬ(𝓊)! = 0 at the end of observed follow-up i.e. at 𝓊 = 𝓊()*	declare that the simulated 
outcome data in subject 1 is complete: survival time = 𝓊()*; censoring status = 0 (i.e. 
still alive at time = 𝓊()*). This completes the data synthesis for subject 1 in iteration 1. 
Return to step 3 moving on to subject 𝒾 = 2, 3, 4 … N and keep repeating steps 3-8 

(9) When the current simulation is complete for subject N declare that that simulation is 
closed and save the results as two vectors of N survival times and N values for 
censoring status. Return to step 2 and repeat all steps for simulations 2, 3, 4 … M 
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(10) When simulation M is complete, save all results from all simulations as two matrices 
each with N rows and M columns where element n,m in matrixsurvtime represents the 
survival time of subject n in simulation m and element n,m in matrixcensor  holds the 
corresponding censoring status. The simulation procedure is now complete. 

If any given individual has no failures is any of the simulations, they get recorded as 
censored at 𝓊()* in every simulation. In effect, this means we know with high certainty that 
they should survive beyond the period covered by our analysis of mortality displacement. But 
there is almost no information about how long they may be expected to survive beyond this 
period. This issue is discussed in detail in Discussion in considering the differences between 
analysing mortality displacement and years of life lost (YLL) and when, and when not, our 
method may sensibly be used. 

 

Supplementary Material C  
Comparison of the simulated actual and counterfactual scenarios 

For the first application of the simulation protocol, simulating the actual (real world) scenario, 
the distribution of the simulated dates of death in each subject across the M simulations 
should approximately reflect the observed time of death in that same individual in the original 
real data. However, that reflection should, in principle, be systematically biased. The reason 
for this is well illustrated by someone who dies very early (e.g. on the second uft). In most 
simulations they will, by chance be simulated as having a later date of death than was 
observed (simply because it is only if they are simulated as dying at the first uft that their 
simulated value can be lower than their observed value). If they are simulated as dying at 
the second uft the observed and simulated values will be equal. But, if they die at any other 
uft their simulated value will exceed their observed value. However, perhaps non-intuitively, 
this ‘bias’ is necessary. This is because, based on an argument closely related to regression 
to the mean and caused directly by random chance, those individuals who actually died 
closest to the start of follow-up will often have died earlier (but rarely later) than their real 
survival time expected given their covariate pattern. It is therefore appropriate that under 
stochastic simulation their simulated survival times will more often exceed their observed 
survival times than occur earlier. Analogously, the opposite bias will occur in individuals 
observed to have particularly long survival times. Crucially, this means that when we come 
to compare survival times under the actual and counterfactual scenarios, we must use the 
distribution of the simulated survival times for everybody under the real world scenario even 
though it may appear intuitively more appealing to use their observed survival times. 

For the second application, simulating the counterfactual scenario, the baseline hazard 
remains precisely the same as under the previous scenario. This is because, in the full 
model, the impact of COVID-19 is modelled entirely by the COVID-19 covariates and this 
implies that the baseline hazard - defined as being the hazard when all covariates are set to 
zero - will appropriately model the hazard in someone who does not have COVID-19 
regardless whether that is because they haven’t recently been infected by COVID-19 (actual 
scenario), they never develop COVID-19, or because we are assuming nobody is infected by 
COVID-19 (i.e. the counterfactual scenario). 

To avoid confusion, it should be noted that the baseline hazard at any time t applies to 
everybody who is still alive at time t (regardless whether or not they have COVID-19 at that 
time or at any other time). Crucially, the baseline hazard does not represent the ‘underlying 
risk of death amongst people without COVID-19’ which it may intuitively be misinterpreted to 
represent. In other words, by modelling the data in the way we are, the baseline hazard 
reflects the instantaneous risk of death from all causes in anybody (for convenience in 
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scaling, being estimated as the instantaneous hazard for someone in whom all covariates – 
including the COVID_19 covariates – are all zero). The extent to which this risk is then 
increased when someone is actively infected with COVID-19 is modelled entirely by the four 
time dependent COVID_19 covariates. This parameterisation allows us to completely 
disentangle that enhanced risk associated with COVID-19 infection from the risks shared by 
everybody (i.e. accounted for by the baseline hazard and all non-COVID_19 covariates). 

Given this theory, once the M simulations for the actual scenario are complete and the 
expected survival profiles of everybody in the study population have been estimated, the 
same process can now be repeated on the same study population, but under the 
counterfactual scenario: that is, using the modified covariate structure with the COVID-19 
covariates set to zero for all individuals at all times.  Among subjects that did not contract 
COVID-19 the two sets of simulations should generate to very close approximation the same 
expected times of death (and corresponding survival times) under both models. Any minor 
variation that is observed is consequent solely on stochastic variation in the simulations. In 
contrast, among those that did test positive to COVID-19, the probability of death under the 
counterfactual scenario during the period when, in reality, a subject actually had COVID-19, 
will be markedly reduced because of the removal of the effect of the COVID-19 covariates. 

 

Supplementary Material D 
Extrapolation of the Kaplan Meier survival curve 

Using the approach outlined above, a key challenge is how to estimate the expected median 
survival time (i.e. the follow-up time at which it is estimated precisely half of simulations will 
have failed) for individuals in whom, in actuality, less than 50% of simulations have failed 
even though the maximum follow-up time has been achieved. This requires extrapolation of 
the Kaplan Meier survival function beyond the observed simulated data. As our work 
progressed, we recognised an evolving range of general approaches and technical details 
that could enhance such extrapolation. 

First, if instead of following our study population from close to the start of the COVID-19 
pandemic, we instead followed them from say, a year earlier, our total follow-up time and 
number of ufts could be markedly increased. This reduced the proportion of individuals 
whose simulations failed to reach a 50% probability of dying before the end of the 
simulations. It may appear counterintuitive that increasing the follow-up time over periods 
when nobody had COVID-19 could refine our estimates of the impact of COVID. However, it 
is in fact logical. First, it increased the observed number of deaths in low risk subjects 
(including those without COVID), and therefore increased statistical power. Second,  as we 
see below, a particular extrapolation problem can arise in people who develop COVID-19 
close to the end of the maximum follow-up time. By starting follow-up substantially before the 
COVID-19 pandemic started, the only way that the COVID-19 covariates could impact on 
simulations at the ufts close to the maximum follow-up times would be in individuals who 
were both recruited early (i.e. had a hip fracture substantially ahead of 2020) and were 
tested for COVID-19 very close to the end of follow-up e.g. in April 2021. Inevitably, there 
were relatively few of these.  

Second, we began by arguing that it was primarily individuals who tested positive for COVID-
19 and also died that could be responsible for mortality displacement and so only compared 
the two survival time distributions in these individuals. But, the distribution of simulated 
survival times in the COVID-19 scenario was substantially positively biased relative to the 
observed survival times in this group. We ultimately recognised that this was consequent 
upon the issue, closely related to regression to the mean, that was addressed in 
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Supplementary Material C. Specifically, if an individual in reality, and entirely by chance, died 
earlier than might have been expected from their risk profile they could appear in the sample 
of people who died and had COVID. In contrast, if an individual died unexpectedly late, 
again entirely by chance, they may well be missing from this analytic sample because they 
didn’t actually die during the follow-up period. However, because the simulated survival 
times based on observed covariate patterns are not biased in this way (see Supplementary 
Material C), the distribution of observed survival times in the actual sample would inevitably 
appear, on average, shorter than the unbiased simulated survival times. 

Before we realised that the bias was in the observed survival times rather than their 
simulated equivalents, we set out to correct the simulated estimates, so they were less 
biased relative to the observed estimates. As an initial solution, we excluded anybody from 
the sample who actually died before the end of follow-up if their median simulated survival 
time under the COVID-19 scenario was greater than the total follow-up time. This did indeed 
mitigate the bias between the observed and simulated survival times.  But we later realised 
this was because we were imposing a bias on the simulated data that was equivalent to that 
in the observed data. In addition, we recognised that we were discarding people who were 
informative for our analysis. In consequence, once we properly understood the nature of the 
bias and realised that it applied to the observed survival times rather than the simulated 
survival times, we determined that the comparative analysis ought to include anybody who 
had tested positive for COVID-19 regardless whether they died or not and whether or not 
their median simulated survival time was less than the total follow-up or not. Finally, to echo 
Supplementary Material C, we also realised that it was their simulated expected median 
survival times in the actual (real world) scenario that should be compared to their simulated 
equivalents under the counterfactual scenario: not their observed survival times in the real 
world data. 

This latter approach successfully circumvented much of the bias that we had previously 
seen. However, we still needed to construct a valid estimate of the expected median survival 
time in individuals in whom less than 50% of the simulations had failed before the end of 
follow-up. To do this we argued that if the underlying risk of death remains precisely constant 
over time, the survival curve would follow an exponential survival distribution – the archetype 
for radioactive decay. In that case it is well known that the half-life is constant and that the 
survival function (the probability of survival over linear time) itself curves with a gradually 
flattening gradient. This means any direct extrapolation of the survival function itself must 
take proper account of curvature. But, a plot of the logarithm of the probability of survival 
against linear time is a straight line. Furthermore, the log of the probability of survival is 
equal to the negative cumulative hazard. In consequence, in order to extrapolate any Kaplan 
Meier survival function that failed to fall as low as 50% we chose to extrapolate the (rising) 
straight line representing the cumulative hazard versus time and used this to identify the 
future date at which the cumulative hazard would be expected to attain the value loge2 i.e. 
0.6931. This corresponds to a survival probability of exp(-loge2) which equals one half and 
therefore corresponds to 50% survival (i.e. the expected median survival time). 

A final piece of theory that applies to the method of extrapolation is that, in real data, the true 
curve of survival probability over linear time does not precisely represent an exponential 
decay. This is because truly exponential decay demands that the risk of failure of each 
‘individual’ is constant over time. In the specific case of our simulations, this would imply that 
the risk of death at every uft for any given individual is always the same. But, in reality the 
risk of death varies across ufts because of changes in the baseline hazard and/or because 
of time dependent covariates. However, in practice, the empirical plots of cumulative hazard 
against linear time were typically quite close to straight lines except during the period when 
an individual was sick with covid. During this period, when the time-dependent covariates 
modelling the impact of COVID-19 were being switched on and off sequentially, the 
approximate straight line increase of the cumulative hazard over time markedly increased in 
gradient and this meant that the overall relationship between cumulative hazard and time, 
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from the start to the end of follow-up time would be far from linear.  For this reason, when 
extrapolation was required, we used only the last 25% of the cumulative hazard v survival 
time graph as the basis for extrapolation. In the vast majority of subjects, this was based on 
simulated outcomes after COVID-19 had been and gone and the extrapolation was 
unbiased. Crucially, extrapolation of the cumulative hazard versus survival time curve in the 
counterfactual (NO COVID) scenario is not disturbed by the COVID-19 covariates because 
they are set to zero at all times. Finally, it might be argued that we should have used a more 
sophisticated extrapolation approach – e.g. based on splines to account for curvature. 
However we were concerned that this could result in overfitting with an enhanced fit to the 
observed data in any given individual but generating wildly diverging extrapolation lines in 
some individuals once one moved beyond the observed data. In addition, we were able to 
demonstrate good consistency in predicted median survival times based on our simple 
method even if, for example, we changed from using the last 25% of the curve to the last 
33% or last 50%.  

 

Supplementary Material E 
Applying the displacement correction to excess mortality estimates 
There are three important issues to note: (1) The area under the curve representing the 
distribution of survival time shifts sums to 1.00 – so the total number of balls removed from 
future urns each week is precisely equal to the number of deaths in people with COVID-19 in 
the week being accounted for.  However, some of these could in theory be removed from 
urns that are years into the future and beyond the scope of the expected deaths at present.  
(2) For convenience, the analogy of balls in urns is used, but in reality, expected deaths are 
not necessarily integers, and neither are the changes made to the expected deaths by this 
method. (3) Zero and negative time shifts are both mathematically possible and theoretically 
plausible. They arise if a death occurs after COVID-19 has been diagnosed but the death 
either occurs on the same date that the subject would have died anyway, or else the death 
occurs before it would otherwise have done. Zero time shifts appear quite reasonable but 
COVID-19 delaying the date of death may seem counter-intuitive. But one real world 
scenario where this could happen would be if someone would otherwise have died during an 
elective procedure that was cancelled because of COVID. As well as being theoretically 
plausible, such shifts are an inevitable feature of the stochastic method by which the 
simulated survival data are generated and so when Δ+ contains negative values the 
adjustment procedure remains consistent, we simply remove a small number of balls from 
urns representing earlier weeks. In reality, negative shifts are only rarely predicted. 

 

 

 

 

 

 

 

 


