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4

SM1. Experiments.5

SM1.1. mLTD Bach Analysis. For the mLTD Bach analysis, we performed a 5-fold cross6

validation to select the tuning parameter λ, then thresholded the final connection weights,7

given by the standardised L2 norm of Zij , at .01, as in the MTD case. First, we note that with8

only 5 total zero weights the final mLTD model is much less sparse than the MTD model. We9

display the final graph in Figure SM1, where, for interpretability, we bold edges with total10

weight greater than .45. In this graph there are strong connections in the counter-clockwise11

direction between G#, C#, F#, and B. However, the other connections on the circle of fifths12

are relatively weaker, and there are many more connections between notes far away on the13

circle of fifths. The mLTD graph also shows that the chord note both affects and is affected by14

many harmony notes. Furthermore, we see that the bass category is effected by most harmony15

notes as well. Overall, however, this graph is much less interpretable than the MTD graph16

and fails to find the full circle of fifths structure.17

SM1.2. iEEG Segmentation. To segment the iEEG time series into a sequence of cat-18

egorical states, we use a Markov switching autoregressive model. The model assumes that19

each channel in the d-dimensional EEG signal, yt ∈ Rd, follows a Markov switching uni-20

variate autoregressive process (AR) each with the same m dynamic regimes. Specifically, let21

a1, . . . ,am, where ai =
(
ai1, . . . , a

i
h

)
, denote the lag h AR(h) parameters for each of the m22

dynamic regimes and let xjt be the latent m-dimensional categorical state that governs the23

dynamics for channel j at time t. The model assumes that yjt follows a locally stationary24

AR(h) model with m state dynamics:25

(SM1.1) yjt =

h∑
l=1

a
xjt
k yj(t−l) + ejt,26

where the lag l AR dynamics at time t, axjt , are indexed by the latent state, xjt, and ejt is27

mean zero Gaussian noise independent across series, E (ejt) = 0 and E
(
ejtej′t′

)
= 0 for all28

(j, t) 6= (j′, t′). The transitions between dynamic regimes are assumed to evolve independently29
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between series according to a hidden Markov model. See [SM11] for more details on the model.30

Due to the long length of the series, we use a stochastic gradient MCMC algorithm [SM7] to31

fit the model with m = 5 categorical states. We display the segmentation of a single channel32

using this method in Figure SM2.
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Figure SM1. The Granger causality graph for the ‘Bach Choral Harmony’ data set using the mLTD method.
The harmony notes are displayed around the edge in a circle corresponding to the circle of fifths. Orange links
display directed interactions between the harmony notes while green links display interactions to and from the
‘bass’, ‘chord’, and ‘meter’ variables.

33

SM1.3. Additional Simulation Results. Figure SM3 compares the signal strengths in the34

mLTD and MTD models for the case where each series has m = 4 possible states and d = 15.35

To capture the effect of time series j on time series i, we unfold the transition probability36

tensor p(xit|x1(t−1), . . . , xd(t−1)) along the mode defined by xj(t−1), and obtain an m × md37

matrix. We then compute the l2 distances between any two rows of the resulting matrix. For38

the MTD model, this is equivalent (up to scaling) to the l2 distance between columns of Zij ,39

since the effect is additive. We repeat this procedure for all (i, j) pairs and aggregate the40

results over 20 replications. Figure SM3 shows a histogram of nonzero signals in the MTD41

and mLTD models.42

We observe that, in our simulation settings, the difference among transition probabilities43

in the mLTD model is larger than that in the MTD model, leading to stronger connections.44

Next, we present median ROC curves over 20 replications for the proposed methods, under45
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10000 150005000

Figure SM2. Colored segmentation with m = 5 states of a single iEEG channel during a seizure using the
Markov switching autoregressive model.
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Figure SM3. Signal strengths in the mLTD and MTD models.

different simulation settings. The results displayed in Figures SM4-SM5, Figures SM6-SM746

and Figures SM8-SM9, correspond to data generated by MTD, mLTD and latent VAR models,47

respectively. We observe that for all three methods, the performance improves with increasing48

sample size T and worsens with increasing dimension d.49

We also show the points on the ROC curves that correspond to tuning parameter values50
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chosen by BIC and cross-validation. In general, cross-validation tends to over-select Granger51

causality relationships. This highlights the importance of thresholding when using cross-52

validation in practice. In contrast, BIC generally gives an overly sparse model when sample53

size is small; but it performs much better with large sample sizes.54

●
●●

●●●
● ●● ●● ●

●
●

●
●●

●
●●● ●● ●

●●●
●

●● ●● ● ●●●

● ●

●

●●
●

●●● ●●●

●
●

●

●●● ●●● ●●●

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
false positive

T = 200
false positive

T = 400
false positive

T = 800
false positive

T = 1600

m
 =

 2
tr

ue
 p

os
iti

ve
m

 =
 3

tr
ue

 p
os

iti
ve

m
 =

 4
tr

ue
 p

os
iti

ve
m

 =
 5

tr
ue

 p
os

iti
ve

m
 =

 6
tr

ue
 p

os
iti

ve

d = 15

glm group lasso mtd group lasso mtd l1

Figure SM4. Median ROC curves over 20 simulation runs, for data generated by a sparse MTD process
with d = 15. Triangles correspond to tuning parameter values chosen by BIC; while dots correspond to the
values chosen by cross-validation.

Finally, in Figure SM10, we show the average run time of the three proposed methods55

under different sample size T and number of time series d, where each time series has 456

categories. We observe that in general mLTD group lasso runs faster than MTD with either57

group lasso or lasso penalty. This is due to the constraints on the parameter set in the MTD58

model, which requires additional projection steps. For all three methods, the run time scales59
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Figure SM5. Median ROC curves over 20 simulation runs, for data generated by a sparse MTD process
with d = 25. Triangles correspond to tuning parameter values chosen by BIC; while dots correspond to the
values chosen by cross-validation.

nearly linearly in sample size.60

SM2. Proofs of Results in Section 3.61

Proof of Proposition 3.3. If the columns of Zj are all equal, then for all fixed values of62

x\j(t−1) the conditional distribution is the same for all values of xj(t−1). If one column is63

different, then the conditional distribution for all values of x\j(t−1) will depend on xj(t−1).64

To prove the second claim, we let Z and Z̃ be two parameterizations for the same MTD65

model. Suppose that they give different causality conclusions. Then, there exists some j ∈66

{1, . . . , d} such that the columns of Zj are all equal, while the columns of Z̃j are not, or the67

other way around. There must thus exist a row where at least two columns differ in this row.68
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Figure SM6. Median ROC curves over 20 simulation runs, for data generated by a sparse mLTD process
with d = 15. Triangles correspond to tuning parameter values chosen by BIC; while dots correspond to the
values chosen by cross-validation.

Without loss of generality, we assume that Z1
11 6= Z1

12 but Z̃1
11 = Z̃1

12. Then under Z, we
have that

P
(
xit = 1|x1(t−1) = 1, x2(t−1), . . . , xd(t−1)

)
6= P

(
xit = 1|x1(t−1) = 2, x2(t−1), . . . , xd(t−1)

)
.

However, under Z̃ we have that

P
(
xit = 1|x1(t−1) = 1, x2(t−1), . . . , xd(t−1)

)
= P

(
xit = 1|x1(t−1) = 2, x2(t−1), . . . , xd(t−1)

)
.

This is a clear contradiction, as Z̃ and Z are different parameterizations of the same model,69

and hence all conditional probabilities should be the same.70
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Figure SM7. Median ROC curves over 20 simulation runs, for data generated by a sparse mLTD process
with d = 25. Triangles correspond to tuning parameter values chosen by BIC; while dots correspond to the
values chosen by cross-validation.

Proof of Theorem 1. First we show that any parameter set Z can be converted to another71

set Z̃ that contains at least one 0 element in each row of each matrix; and that Z̃ satisfies the72

constraints of the MTD model. Let Z be the parameter set for an MTD model. For each Zj73

let the vector αj be the minimal element in each row, αjk = minZj
k:. Let Z̃j = Zj − αj and74

z̃0 = z0 +
∑d

j=1 αj . This Z̃ gives the same MTD distribution as Z. Furthermore, this Z̃ has75

a zero element in each row of each Z̃j by construction.76

The non-negativity constraint is trivially satisfied by Z̃ as we subtract the minimum in each77

row. For all j, we have that 1TZj = γj1
T . Then 1T Z̃j = 1T (Zj − αj1T ) =

(
γj − 1Tαj

)
1T =78

γ̃j1
T , where we define γ̃j = γj −1Tαj . We note that γ̃j ≥ 0 as we subtract the row minimum.79
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Figure SM8. Median ROC curves over 20 simulation runs, for data generated by a sparse latent VAR
process with d = 15. Triangles correspond to tuning parameter values chosen by BIC; while dots correspond to
the values chosen by cross-validation.

Hence within each Z̃j , the column sums are all equal. Finally, we have that γ̃0 = γ0 +80 ∑d
j=1 1

Tαj and
∑d

j=0 γj = 1, so
∑d

j=0 γ̃j = γ0 +
∑d

j=1 1
Tαj +

∑d
j=1

(
γj − 1Tαj

)
=
∑d

j=0 γj =81

1. Hence γ̃j ’s sum up to 1.82

Next, we show that this new parameter set is uniquely determined. Suppose two parameter83

sets X and Y provide the same MTD distribution. Let X̃ be as above for X and Ỹ of Y.84

We use a proof by contradiction. Suppose that Ỹ 6= X̃. There must exist some j and some85

row k such that X̃j
k: 6= Ỹj

k:. Let lX be the index of the zero element for Xj , i.e., such that86

X̃j
kl = 0, and likewise for lY . If there are more than one zero elements, pick any. Furthermore,87

if X̃j
k: and Ỹj

k: share a zero in the same location (if there are one or more zero elements in88
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Figure SM9. Median ROC curves over 20 simulation runs, for data generated by a sparse latent VAR
process with d = 25. Triangles correspond to tuning parameter values chosen by BIC; while dots correspond to
the values chosen by cross-validation.

each), then let lX and lY be that index so that lX = lY .89

If lX = lY , let l′ be an index such that X̃j
kl′ 6= Ỹj

kl′ . This index must exist by construction.90

Let the categories of other series (not for series j), x\j(t−1), be fixed arbitrarily. The difference91
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Figure SM10. Average run time of three proposed methods over 10 replications, with m = 4 and λ = 100
for MTD group lasso, MTD L1 and λ = 12.5 for mLTD group lasso.

between the conditional distributions for X are92

X̃j
kl′ = X̃j

kl′ − X̃j
klX

=
(
X̃j
kl′ + αjk

)
−
(
X̃j
klX

+ αjk

)
= Xj

kl′ −Xj
klX

=

x0
k +

∑
i∈\j

Xi
kxi(t−1)

+ Xj
kl′

−
x0

k +
∑
i∈\j

Xi
kxi(t−1)

+ Xj
klX


= pX

(
xt = k|x\j(t−1), xj(t−1) = l′

)
− pX

(
xt = k|x\j(t−1), xj(t−1) = lX

)
.

93

94

A similar calculation for Y shows that95

Ỹj
kl′ = pY

(
xt = k|x\j(t−1), xj(t−1) = l′

)
− pY

(
xt = k|x\j(t−1), xj(t−1) = lY

)
.9697

However, Ỹj
kl′ 6= X̃j

kl′ , thus showing that98

pY
(
xt = k|x\j(t−1), xj(t−1) = l′

)
− pY

(
xt = k|x\j(t−1), xj(t−1) = lY

)
6=

pX
(
xt = k|x\j(t−1), xj(t−1) = l′

)
− pX

(
xt = k|x\j(t−1), xj(t−1) = lX

)
.

99
100

This inequality contradicts our assumption that the MTD distributions parametrized by X101

and Y are the same since lX = lY .102

If lX 6= lY , then103

pX
(
xt = k|x\j(t−1), xj(t−1) = lY

)
− pX

(
xt = k|x\j(t−1), xj(t−1) = lX

)
= X̃j

klY
,104

105

and106

pY
(
xt = k|x\j(t−1), xj(t−1) = lY

)
− pY

(
xt = k|x\j(t−1), xj(t−1) = lX

)
= −Ỹj

klX
.107

108
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However, −Ỹj
klX
6= X̃j

klY
since at least one of Ỹj

klX
and X̃j

klY
are nonzero and both are109

nonnegative. Again, this shows that110

pY
(
xt = k|x\j(t−1), xj(t−1) = lY

)
− pY

(
xt = k|x\j(t−1), xj(t−1) = lX

)
6=111

pX
(
xt = k|x\j(t−1), xj(t−1) = lY

)
− pX

(
xt = k|x\j(t−1), xj(t−1) = lX

)
,112113

which contradicts our assumption that the MTD distributions parametrized by X and Y are114

the same.115

The same argument shows that the reduction is unique.116

Proof of Proposition 3.1. First we check the parameter set satisfies the constraints of MTD117

model. Since Z and Z̃ are valid MTD parameter sets, we have that ∀j,1TZj = γj1
T ,Zj ≥118

0;1T Z̃j = γ̃j1
T , Z̃j ≥ 0, and 1Tγ = 1, γ ≥ 0;1T γ̃ = 1, γ̃ ≥ 0. Consider the new parameter set119

αZ + (1− α)Z̃; we have that for all j,120

1T (αZj + (1− α)Z̃j)121

= α(1TZj) + (1− α)(1T Z̃j)122

= (αγj + (1− α)γ̃j)1
T

123

= γ̄j1
T ,124125

where we define γ̄j = αγj + (1− α)γ̃j for all j. Then126

(SM2.1) 1T γ̄ = 1T (αγ + (1− α)γ̃) = α+ (1− α) = 1.127

Finally since Zj , Z̃j , γ and γ̃ are all non-negative, we have that αZj + (1 − α)Z̃j ≥ 0 ∀j and128

γ̄ ≥ 0.129

Next we demonstrate that the probability tensor given by this new parameter set is the130

same as those given by Z and Z̃. For any two MTD factorizations Z and Z̃ that have the131

same conditional distribution p (xkt|xt−1) for all xkt and xt−1, then for any 0 < α < 1, the132

probability tensor of the MTD model for the parameter set αZ + (1− α)Z̃ is given by133

αz0
xkt

+ (1− α)z̃0
xkt

+
d∑
j=1

(
αZjxktxj(t−1)

+ (1− α)Z̃jxktxj(t−1)

)
134

= α

z0
xkt

+
d∑
j=1

Zjxktxj(t−1)

+ (1− α)

(
z̃0
xkt

+
d∑
i=1

Z̃jxktxj(t−1)

)
135

= αp
(
xkt|x(t−1)

)
+ (1− α)p

(
xkt|x(t−1)

)
136

= p
(
xkt|x(t−1)

)
.137138

This shows that αZ + (1− α)Z̃ has the same distribution as both Z and Z̃, so that the set of139

parameters with the same distribution is a convex set.140

Proof of Theorem 2. First, we note that a solution always exists since the log likelihood141

L(Z) = −
∑T

t=1 log
(
z0
xit +

∑d
j=1 Z

j
xitxj(t−1)

)
and penalty are both bounded below by zero and142
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the feasible set is closed and bounded. Suppose an optimal solution is Z for which there exists143

some j such that one row, call it k, of Zj does not have a zero element. Let α = min
(
Zjk:

)
144

be the minimum value in row k and let Z̃j be equal to Zj ∀j except that Z̃jk: = Zjk: − α and145

z̃0
k = z0

k + α. Due to the nonidentifiability of the MTD model L(Z̃) = L(Z), while we have146

that Ω
(
Z̃j
)
< Ω

(
Zj
)
, implying for λ > 0147

L(Z̃) + λΩ(Z̃) < L(Z) + λΩ(Z),148149

showing that Z cannot be an optima.150

SM3. Proof of Estimation Consistency. First, we re-introduce some of our notations.151

Recall that we define a covariate vector W ∈ Rm+dm2
as follows: Wt = (W T

t0,W
T
t1, . . . ,W

T
td)

T ;152

Wt0 =
(
W 1
t0, . . . ,W

m
t0

)T ∈ Rm where W l
t0 = I {xit = l}; and Wtj =

(
(W 1

tj)
T , . . . , (Wm

tj )T
)T
∈153

Rm2
, for j ∈ {1, . . . , d}, where W l

tj = (W l1
tj , . . . ,W

lm
tj )T and W lk

tj = I
{
xit = l, xj(t−1) = k

}
.154

Let At denote the sub σ-algebra generated by x1, . . . , xt. Then {Wt} is adapted to {At}. For155

a general MTD parameter set, we collect the parameters in a vector form β ∈ Rm+dm2
where156

β =
(
βT0 , β

T
1 , . . . , β

T
d

)T
, β0 = z0 and βj = vec(Zj) for j ∈ {1, . . . , d}. The MTD model can be157

written as158

(SM3.1) p(xit|xt−1) = W T
t β.159

For a general β, we define Rn and R to be the empirical and conditional expected negative160

log-likelihood risks, respectively,161

(SM3.2) Rn(β) = − 1

T

T∑
t=1

log(W T
t β); R(β) = − 1

T

T∑
t=1

E
[
log(W T

t β)|At−1

]
.162

Denote the group lasso penalty by Ω(β) =
∑d

j=1 ‖βj‖2 =
∑d

j=1 ‖Zj‖F . In the remainder of163

this section, we will use the superscript 0 to denote the true parameter value.164

We now turn to the proofs of the estimation consistency results.165

SM3.1. Proof of Lemma 6.2. By definition, we have166

167

(SM3.3) Rn(β)−R(β)− (Rn(β0)−R(β0))168

= − 1

T

T∑
t=1

{
(log(W T

t β)− log(W T
t β

0))− E
[
(log(W T

t β)− log(W T
t β

0))|At−1

]}
.169

170

For simplicity, we define Ω̃(β) = ‖β0‖1+Ω(β). We will consider the following empirical process171

indexed by f ,172

(SM3.4) Mn(f) =
1

T

T∑
t=1

(f(Wt)− E [f(Wt)|At−1]) , f ∈ F ,173
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where the function class F is defined as174

(SM3.5) F =
{
f : f(Wt) = log(W T

t β)− log(W T
t β

0), Ω̃(β − β0) ≤M
}
.175

In the following, we will consider expectation of the supremum of this empirical process. Since176

W Tβ0 is the transition probability, values of W such that W Tβ0 = 0 will not contribute to177

the expectation as these types of transition occur with probability 0.178

Take Mmax = c(T, d)/2. If Ω̃(β − β0) ≤ Mmax,
∣∣W T

t (β − β0)
∣∣ ≤ Mmax. Then by As-179

sumption 2, we can regard F as a class of [log (c(T, d)/2) ,− log (c(T, d)/2)]-valued functions180

for some function c that only depends on the sample size T and the number of time series181

d. Hence we rescale it by multiplying c(T, d)/2, and denote the new class by F̃ so that F̃ is182

bounded by 1 and is Lipschitz-continuous with Lipschitz constant 1.183

We use the notion of sequential Rademacher complexity and covering number developed184

in [SM9], which generalizes the definition of Rademacher complexity and covering number to185

the setting of dependent samples. For a general function class G mapping from Z to R, its186

sequential Rademacher complexity is defined as187

(SM3.6) Rn = sup
z
Rn(G, z), where Rn(G, z) = E

[
sup
g∈G

1

T

T∑
t=1

εtg(zt(ε))

]
,188

where (εt)
T
t=1 is a sequence of independent Rademacher random variables, i.e., Uniform {−1, 1}189

and z is a Z-valued tree of depth T . Further, define190

(SM3.7)

Dn(G) = sup
z
Dn(G, z), where Dn(G, z) = inf

α

{
4α+ 12/

√
T

∫ 1

α

√
logN2(δ,G, z)dδ

}
,191

and N2(·,G, z) is the l2 covering number of G over a tree z of depth T . See [SM9] for a192

complete introduction to sequential Rademacher complexities and covering numbers.193

By Theorem 2 and Theorem 4 in [SM9] we can bound the expectation by the sequential194

Rademacher complexity and a Dudley-type entropy integral,195

(SM3.8) E

[
sup
f∈F̃
|Mn(f)|

]
= E

[
sup

f∈F̃∪−F̃
Mn(f)

]
≤ 2Rn(F̃ ∪ −F̃) ≤ 2Dn(F̃ ∪ −F̃).196

We note that since β0 is fixed, the covering number of F̃ is the same as that of G = {g(·) :197

g(Wt) = log(W T
t β), Ω̃(β − β0) ≤ M}. Using the same arguments as in Lemma 13 of [SM9],198

we can show that199

(SM3.9) logN2(δ, F̃ , z) = logN2(δ,G, z) ≤ logN∞(δ,H, z),200

where H = {h : h(Wt) = W T
t β −W T

t β
0, Ω̃(β − β0) ≤M}. Hence we have that201

Dn(F̃ ∪ −F̃) = sup
z

inf
α

{
4α+ 12/

√
T

∫ 1

α

√
logN2

(
δ, F̃ ∪ −F̃ , z

)
dδ

}
202

≤ sup
z

inf
α

{
4α+ 12/

√
T

∫ 1

α

√
logN∞ (δ,H ∪−H, z)dδ

}
203

= D∞n (H ∪−H).(SM3.10)204205
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Applying Lemma 9 in [SM9], we then get206

(SM3.11) D∞n (H ∪−H) ≤ 8Rn(H ∪−H)
(

1 + 4
√

2 log3/2
(
eT 2

))
.207

Our last step is to bound the Rademacher complexity of the class H∪−H. Note that by208

definition,209

Rn(H ∪−H) = sup
w

E

[
sup
h∈H

∣∣∣∣∣ 1

T

T∑
t=1

εth(wt(ε))

∣∣∣∣∣
]

210

= sup
w

E

[
sup

β:Ω̃(β−β0)≤M

∣∣∣∣∣ 1

T

T∑
t=1

εtwt(ε)
T (β − β0)

∣∣∣∣∣
]

211

≤ sup
w

E

[∥∥∥∥∥ 1

T

T∑
t=1

εtwt(ε)

∥∥∥∥∥
∞

]
sup

β:Ω̃(β−β0)≤M

∥∥β − β0
∥∥

1
212

≤ mM sup
w

E

[
max

j∈{1,...,m+dm2}

∣∣∣∣∣ 1

T

T∑
t=1

εtwtj(ε)

∣∣∣∣∣
]

213

≤ mM
√

2 log(2(m+ dm2))

T
(SM3.12)214

215

where the fourth line follows from Lemma SM3.1 and the fifth line follows by applying the216

finite class lemma in the dependent setting [SM9] and a union bound.217

218

Finally, combining (SM3.8), (SM3.10), (SM3.11) and (SM3.12), we have that219

(SM3.13) E

[
sup
f∈F
|Mn(f)|

]
≤ 32

c(T, d)
mM

√
2 log(2(m+ dm2))

T

(
1 + 4

√
2 log3/2

(
eT 2

))
.220

Thus, by Markov inequality, we can take221

(SM3.14) λε = Op

 1

c(T, d)

√
log(d) log3(T )

T

 .222

Finally, we need223

(SM3.15)
32λε(1 + δ)2|S|

δ2φ2(1/(1− δ), S, τ)
≤ 1

2
c(T, d),224

which holds with probability tending to 1 by Assumption 2 and Assumption 3.225

SM3.2. Useful lemmas. Before proving our main theorem, we first establish several lem-226

mas which will be useful later in the proof.227

228

The first lemma establishes a margin condition for the negative loglikelihood loss.229
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Lemma SM3.1. (Margin condition) For all β satisfying the MTD model constraints, R(β)−230

R(β0) ≥ 1
2 τ̃

2(β − β0), where τ̃(β) is a semi-norm defined as231

(SM3.16) τ̃(β) =

√√√√ 1

T
βT

(
T∑
t=1

E
[
WtW T

t |At−1

])
β.232

Proof. As β0 is the true parameter in the conditional distribution specified by MTD model,233

it maximizes E[log(W T
t β)|At−1] for all t, and hence minimizes R(β). (The minimizer is not234

unique, as in general the MTD model is not identifiable. But restricting each row to have at235

least one zero can make the solution unique.)236

Let H(β) = 0 denote the set of equality constraints on a valid MTD parameter set. Then,237

consider the Lagrangian form of the MTD optimization,238

(SM3.17) R(β) + λT1 H(β) + λT2 (−β),239

where λ1 and λ2 are the Lagrange multipliers associated with the equality and inequality240

constraints respectively. Then β0 satisfies the following KKT conditions:241

∂R(β)

∂β
|β0 + (λ0

1)T
∂H(β)

∂β
|β0 − λ0

2 = 0;(SM3.18)242

H(β0) = 0;(SM3.19)243

(λ0
2)Tβ0 = 0;(SM3.20)244

λ0
2 ≥ 0, β0 ≥ 0.(SM3.21)245246

We define a new function247

(SM3.22) R̃(β) = R(β) + (λ0
1)TH(β) + (λ0

2)T (−β).248

Note that for all β satisfying the MTD model constraints, H(β) = 0. Thus,249

R̃(β)− R̃(β0) = R(β)−R(β0) + (λ0
1)T (H(β)−H(β0)) + (λ0

2)T (β0 − β)250

= R(β)−R(β0) + (λ0
2)T (β0 − β)(SM3.23)251

= R(β)−R(β0)− (λ0
2)Tβ,(SM3.24)252253

where the last line follows from the KKT conditions. At the same time, using a first order254

Taylor expansion and noting that the derivative of R̃(β) at β0 is 0, we get255

(SM3.25) R̃(β)− R̃(β0) = (β − β0)T
∂2R̃

∂β2
|β∗(β − β0)/2,256

for some β∗ between β and β0. Then, we have257

(SM3.26) R(β)−R(β0) = (λ0
2)Tβ + (β − β0)T

∂2R̃

∂β2
|β∗(β − β0)/2.258
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Since the equality and inequality constraints are both linear, ∂2R̃/∂β2 = ∂2R/∂β2 and we259

have260

(SM3.27)
∂2R

∂β2
=

1

T

T∑
t=1

E
[

1

(W T
t β)2

WtW
T
t |At−1

]
.261

Here, W T
t β models conditional probability, and is bounded between 0 and 1. Hence the above262

expression is lower bounded by
∑T

t=1 E[WtW
T
t |At−1]/T . Also, we have that (λ0

2)Tβ ≥ 0.263

Together, we have264

(SM3.28) R(β)−R(β0) ≥ 1

2
(β − β0)T

∑T
t=1 E[WtW

T
t |At−1]

T
(β − β0).265

Recall that S denotes the active set of β0, i.e., S = {j : j > 0, β0
j 6= 0} and Sc denotes its266

complement in {1, . . . , d}. We define Ω+(β) =
∑

j∈S ‖βj‖1 and Ω−(β) =
∑

j∈Sc ‖βj‖1. The267

next lemma shows some basic properties of the penalty Ω(·).268

Lemma SM3.2. (Properties of the penalty) The penalty Ω(·) satisfies the following for any269

β:270

1. ‖β‖1 ≤ ‖β0‖1 +mΩ(β).271

2. Ω(β0)− Ω(β) ≤ Ω+(β − β0)− Ω−(β − β0).272

Proof. 1. ‖β‖1 =
∑d

j=0 ‖βj‖1. For j 6= 0, βj ∈ Rm2
. By Lyapunov inequality273

1
m2 ‖βj‖1 ≤

√
1
m2 ‖βj‖22, and hence ‖βj‖1 ≤ m‖βj‖2. Invoking the definition of Ω(β)274

completes the proof.275

2. We note that Ω(β) = Ω+(β)+Ω−(β). By the triangle inequality, ‖β0
j ‖1 ≤ ‖β0

j −βj‖1 +276

‖βj‖1. Summing over j ∈ S we have Ω+(β0) − Ω+(β) ≤ Ω+(β0 − β). By definition277

Ω−(β0) = 0 and βj − β0
j = βj for j ∈ Sc, which implies that Ω−(β − β0) = Ω−(β).278

Thus,279

Ω(β0)− Ω(β) = Ω+(β0)− Ω+(β)− Ω−(β)280

≤ Ω+(β − β0)− Ω−(β) = Ω+(β − β0)− Ω−(β − β0).(SM3.29)281282

Recall that we have defined a semi-norm τ̃(β) =
√
βT
∑T

t=1 E[WtW T
t |At−1]β/T . However,283

this semi-norm itself is random as we condition on the past. The next lemma shows that it is284

close to a deterministic semi-norm τ(·), and the compatibility constants defined with τ̃ and τ285

are close. To this end, we will use concentration inequalities for Markov chains developed in286

[SM8].287

Lemma SM3.3. Under Assumption 1 and Assumption 4, with probability at least 1− 1/T ,288

(SM3.30)
φ2(L, S, τ̃)

φ2(L, S, τ)
≥ 1− (1 + (1 + L)m)2C ′

√
log(2(m+ dm2)2) + log(T )

Tγps
|S|/φ2(L, S, τ).289

Thus, under Assumptions 1, 3 and 4, for T sufficiently large, φ2(L, S, τ̃)/φ2(L, S, τ) > 1/2290

with probability at least 1− 1/T .291
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Proof. For any j, k ∈ {1, . . . ,m+dm2}, WjWk is bounded between 0 and 1. For simplicity,292

we will assume, for now, that x0 ∼ π, i.e., the chain starts in the stationary distribution. We293

will relax this assumption later. Applying Theorem 3.11 in [SM8],294

(SM3.31)

P

(∣∣∣∣∣ 1

T

T∑
t=1

E[WtjWtk|At−1]− Eπ[W1jW1k]

∣∣∣∣∣ ≥ t
)
≤ 2 exp

(
− T 2t2γps

8(T + 1/γps) + 20Tt

)
.295

And, using a union bound,296
297

(SM3.32) P

(
sup
j,k

∣∣∣∣∣ 1

T

T∑
t=1

E[WtjWtk|At−1]− E[W1jW1k]

∣∣∣∣∣ ≥ t
)
≤298

2(m+ dm2)2 exp

(
− T 2t2γps

8(T + 1/γps) + 20Tt

)
.299

300

In order to obtain a concentration bound, we will choose t = o(1) and consider large T .301

Hence, the right-hand-side is of the same order as 2(m+dm2)2 exp(−CTt2γps), provided that302

1/γps = o(T ). Now setting t =
√

log(2(m+ dm2)2/α)/CTγps,303

(SM3.33) P

(
max
j,k

∣∣∣∣∣ 1

T

T∑
t=1

E[WtjWtk|At−1]− E[W1jW1k]

∣∣∣∣∣ ≥
√

log(2(m+ dm2)2/α)

CTγps

)
≤ α,304

for T sufficiently large.305

Then, for all β306

∣∣τ2(β)− τ̃2(β)
∣∣ =

∣∣∣∣∣βT
(

1

T

T∑
t=1

E[WtW
T
t |At−1]− Eπ[W1W

T
1 ]

)
β

∣∣∣∣∣307

≤ ‖β‖21

∥∥∥∥∥ 1

T

T∑
t=1

E[WtW
T
t |At−1]− Eπ[W1W

T
1 ]

∥∥∥∥∥
∞

308

≤ ‖β‖21C ′
√

log(2(m+ dm2)2/α)

Tγps
,(SM3.34)309

310

where by (SM3.33) the last line holds with probability at least 1− α.311

Recall the definition of Γ and compatibility constant φ,312

ΓΩ(L, S, τ) =
(
min

{
τ(β) : ‖β0‖1 + Ω+(β) = 1,Ω−(β) ≤ L

})−1
(SM3.35)313

φ2(L, S, τ) = Γ−2
Ω (L, S, τ)|S|.(SM3.36)314315

Thus,316

φ2(L, S, τ̃)

φ2(L, S, τ)
=

Γ2
Ω(L, S, τ)

Γ2
Ω(L, S, τ̃)

=
min τ̃2(β)

min τ2(β)
≥ 1 +

min τ̃2(β)− τ2(β)

min τ2(β)
317

≥ 1− (1 + (1 + L)m)2C ′

√
log(2(m+ dm2)2/α)

Tγps
|S|/φ2(L, S, τ),(SM3.37)318

319
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with probability at least 1−α. Setting α = 1/T , we see that with probability approaching 1,320

the ratio is greater than 1
2 for sufficiently large T , provided that |S|

√
log(d)/Tγps = o(1) and321

φ2(L, S, τ) is bounded away from 0.322

323

If the chain does not start in stationary distribution, a result similar to (SM3.31) can be324

established, provided that the distribution of x0 is not too far away from π. In the rest of this325

subsection, we use Pq to denote the probability under the case x0 ∼ q. Define326

(SM3.38) Nq =

Eπ
[(

q(x)
π(x)

)2
]

if q is absolutely continuous with respect to π,

+∞ otherwise.
327

Applying Proposition 3.15 in [SM8], we get328

Pq

(∣∣∣∣∣ 1

T

T∑
t=1

E[WtjWtk|At−1]− Eπ[W1jW1k]

∣∣∣∣∣ ≥ t
)

329

≤ N1/2
q

[
P

(∣∣∣∣∣ 1

T

T∑
t=1

E[WtjWtk|At−1]− Eπ[W1jW1k]

∣∣∣∣∣ ≥ t
)]1/2

330

≤ 2N1/2
q exp

(
− T 2t2γps

16(T + 1/γps) + 40Tt

)
.(SM3.39)331

332

This bound is essentially the same as in (SM3.31), except that we are working with different333

constants. The rest of the proof follows.334

SM3.3. Proof of Theorem 6.1. Next we prove our main theorem, which is a modification
of the proof of Theorem 7.2 in [SM10]. The difference is that we handle the unpenalized
intercept as in [SM2] and we have time dependence in the data. For notational convenience,
define

M =
4λ(1 + δ)2|S|

δφ2(1/(1− δ), S, τ)
, and t =

M

M + Ω(β̂ − β0) + ‖β̂0 − β0
0‖1

.

Define β̃ = tβ̂ + (1− t)β0. With this construction, ‖β̃0 − β0
0‖1 + Ω(β̃ − β0) ≤M .335

We note that although in general β̃ may not have a zero in each row of the corresponding336

Zj matrices, and hence may not be identifiable, it does satisfy the equality and inequality337

constraints of the MTD model. By the convexity of Rn + λΩ, we have that338

Rn(β̃) + λΩ(β̃) ≤ tRn(β̂) + tλΩ(β̂) + (1− t)Rn(β0) + (1− t)λΩ(β0)339

≤ Rn(β0) + λΩ(β0).(SM3.40)340341

We rewrite this and apply Lemma 6.2 and Lemma SM3.2,342

0 ≤ R(β̃)−R(β0) ≤ −
[
[Rn(β̃)−R(β̃)]− [Rn(β0)−R(β0]

]
+ λΩ(β0)− λΩ(β̃)343

≤ λεM + λΩ(β0)− λΩ(β̃)344

≤ λεM + λΩ+(β̃ − β0)− λΩ−(β̃ − β0).(SM3.41)345346

We consider two cases.347
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• Case 1: If λ‖β̃0 − β0
0‖1 + λΩ+(β̃ − β0) ≤ (1− δ)λεM/δ, we have that348

(SM3.42) δλ
(
‖β̃0 − β0

0‖1 + Ω+(β̃ − β0)
)
≤ λεM,349

and350

(SM3.43) δλΩ−(β̃ − β0) ≤ λεM.351

Hence,352

(SM3.44) δλ
(
‖β̃0 − β0

0‖1 + Ω(β̃ − β0)
)
≤ 2λεM.353

• Case 2: If instead λ‖β̃0 − β0
0‖1 + λΩ+(β̃ − β0) ≥ (1− δ)λεM/δ, then by (SM3.41)354

R(β̃)−R(β0) + λΩ−(β̃ − β0) ≤ λΩ+(β̃ − β0) +
δ

(1− δ)
λ
(

Ω+(β̃ − β0) + ‖β̃0 − β0
0‖1
)

355

≤ λ
(

Ω+(β̃ − β0) + ‖β̃0 − β0
0‖1
)
/(1− δ),(SM3.45)356

357

where the second inequality holds because 0 < δ < 1. Since R(β̃)−R(β0) ≥ 0,358

(SM3.46) Ω−(β̃ − β0) ≤
(

Ω+(β̃ − β0) + ‖β̃0 − β0
0‖1
)
/(1− δ),359

which allows us to use the compatibility condition later. Again from (SM3.41),360

R(β̃)−R(β) + λΩ−(β̃ − β0) + δλ
(

Ω+(β̃ − β0) + ‖β̃0 − β0
0‖1
)

361

≤ λεM + (1 + δ)λ
(

Ω+(β̃ − β0) + ‖β̃0 − β0
0‖1
)

362

≤ λ(1 + δ)τ̃(β̃ − β0)ΓΩ(1/(1− δ), S, τ̃) + λεM363

≤ 1

2
(λ2(1 + δ)2Γ2

Ω(1/(1− δ), S, τ̃)) +
1

2
τ̃2(β̃ − β0) + λεM364

≤ 1

2
(λ2(1 + δ)2Γ2

Ω(1/(1− δ), S, τ̃)) +R(β̃)−R(β) + λεM,(SM3.47)365
366

where the second inequality follows by applying Assumption 3 with stretching factor367

1/(1− δ), and the fourth inequality follows from Lemma SM3.1. It follows that368

δλ
(

Ω(β̃ − β0) + ‖β̃0 − β0
0‖1
)
≤ 1

2
(λ(1 + δ)ΓΩ(1/(1− δ), S, τ̃))2 + λεM369

=
1

2
(λ(1 + δ))2 |S|

φ2(L, S, τ̃)
+ λεM370

≤ (λ(1 + δ))2|S|
φ2(L, S, τ)

+ λεM,(SM3.48)371
372

with probability approaching 1.373
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Hence, in both cases we have that with probability going to 1,374

δλ
(

Ω(β̃ − β0) + ‖β̃0 − β0
0‖1
)
≤ 2λεM + (λ(1 + δ)ΓΩ(1/(1− δ), S, τ))2

375

= δλM/4 + 2λεM ≤ δλM/2,(SM3.49)376377

where the inequality follows from the fact that λ ≥ 8λε/δ and the equality follows from the378

definition of M . Finally, this implies that379

(SM3.50) Ω(β̃ − β0) + ‖β̃0 − β0
0‖1 ≤M/2,380

which in turn, by the construction of β̃, implies that381

(SM3.51) Ω(β̂ − β0) + ‖β̂0 − β0
0‖1 ≤M.382

SM4. Optimization Algorithms. In the main text, we presented a projected gradient383

algorithm for optimization. Here, we present some alternative methods for optimization of384

the MTD objective and discuss in what contexts they might be applicable.385

SM5. Frank-Wolfe. In very high-dimensional settings, with large state spaces, the pro-386

jection step in the MTD projected gradient algorithm presented in the main text becomes387

increasingly more computationally intensive. Frank-Wolfe algorithms, on the other hand, are388

projection free algorithms for solving constrained convex optimization problems and have re-389

cently gained popularity due to their simplicity and scalability in sparse, high-dimensional390

regression and machine learning [SM4]. Fortunately, the Frank-Wolfe algorithm for MTD also391

takes a simple form that allows updating only a small number of parameters at a time. In very392

sparse, high dimensional problems with large state spaces, where most entries are zero, this is393

typically advantageous [SM4]. We develop the algorithm and provide a timing comparison to394

the projected gradient algorithm in the main text. We leave the development of Frank-Wolfe395

using various variants [SM5] for future work.396

SM5.1. Frank-Wolfe MTD. Let Z(0) be the initial MTD model. Let L(Z) = LMTD(Z)+397

λΩ(Z). The Frank-Wolfe algorithm iterates between the following steps starting with k = 0:398

1. Find a direction D̂ that maximizes the dot product with the gradient while staying in399

the constraint set:400

D̂ = argmin
D

(
z0
)T ∇z0L

(
Z(k)

)
+
∑
j=1

trace
((

Dj
)T ∇ZjL

(
Z(k)

))
(SM5.1)401

402
403

subject to 1TDj = γj1
T , Dj ≥ 0 ∀j, 1Tγ = 1, γ ≥ 0.404405

2. Choose θ by line search or set θ = 2
2+k .406

3. Set Z(k+1) = θD̂ + (1− θ)Z(k).407

Step 1 involves solving a linear programming problem. Since the solution to Step 1 stays408

in the constraint set, any step taken in Step 2 for θ ∈ (0, 1) remains in the constraint set.409

Fortunately, the linear program in Step 1 has a simple, closed form solution with linear410

complexity in the number of parameters, O
(
m2d+m

)
.411
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Proposition SM5.1. First let Fj = ∇ZjL
(
Z(k)

)
. Let qjk be the row index of the minimal412

element in column k of Fj:k and let sj be the sum of the minimal elements in each column:413

sj =
∑m

k=1 Z
j

qjkk
. Furthermore, let j∗ be the index of the minimum sj : j∗ = argmin

j

(
sj
)
.414

Then D∗ is given by415

D̂j = 0 ∀j 6= j∗,

D̂j∗
lk =

{
1 if l = qjk
0 if l 6= qjk

.
416

417

Intuitively, to stay in the MTD constraint set any feasible step must place equal mass on each418

column of a Zj , and that the minima is attained by only taking steps in the direction of Zj419

with a minimal sum of columnwise minima.420

Proposition SM5.1 implies that if the model is initialized with
(
Zj
)(0)

= 0 for all j, then at421

step k at most only km entries in Z(k) will be nonzero, and typically less in high-dimensional422

sparse settings since certain entries with strong signal will be updated repeatedly. The final423

Frank-Wolfe algorithm for MTD is shown in Algorithm SM5.1.424

Proof of Proposition SM5.1. We study the KKT conditions. The Lagrangian is given by:425

∑
j

∑
l

∑
k

Dj
lkF

j
lk +

∑
j

∑
k

λjk

((∑
l

Dj
lk

)
− γj

)
+ ν

(
1Tγ − 1

)
+
∑
j

∑
k

∑
l

φjlkD
j
lk.426

427

So that the KKT conditions for an optima are given by:428

Fjlk = λjk + γjlk;(SM5.2)429

mj∑
k

λjk = ν ∀j;(SM5.3)430

φjlk ≥ 0 (dual feasibility) ;(SM5.4)431

φjlkD̂
j
lk = 0 (complimentary slackness) .(SM5.5)432433

We show that for the primary feasible solution given in Proposition SM5.1, there exists a434

set of dual variables that obey the KKT conditions, showing that the solution in Proposition435

SM5.1 is indeed the global optima.436

For the primal solution given in Proposition SM5.1, let the dual variables for j∗ be437

λj∗k = Fj∗
qj∗k k

and φj∗
qj∗k k

= 0 ∀k ∈ (1, . . . ,mj) ,438
439

which obeys (SM5.2) and the complimentary slackness in (SM5.5) since D̂j∗
qj∗k

= 1. For all440

other entries of D̂j∗, φj∗lk = F jlk − λ
j
k = F jlk − F

j∗
qj∗k k

, so that all entries in φj∗lk and λj∗k obey the441

KKT conditions for all l, k in (SM5.4). The complimentary slackness holds in (SM5.5) since442

for these l, k D̂j∗
lk = 0. Finally, set ν =

∑mj∗
k λj∗k =

∑mj∗
k F j∗

qj∗k k
which by construction satisfies443

condition (SM5.3).444
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For j 6= j∗, let λjk = F j
qjkk
− ν̃j−ν

mj
where ν̃j =

∑mj

k F j
qjkk

. By construction,
∑mj

j λjk = ν445

satisfying (SM5.3). Furthermore, letting φjlk = F jlk − λ
j
k, we have that φjlk > 0 since F jlk >446

F j
qjkk

> F j
qjkk
− ν̃j−ν

mj
= λjk and ν̃j − ν =

∑mj

k F j
qjkk
−
∑mj∗

k F j∗
qj∗k k

> 0 satisfying (SM5.4). For all447

these entries the complimentary slackness condition holds since D̂j
lk = 0, satisfying (SM5.5).448

Taken together, we have found a set of dual feasible points that obey the KKT conditions449

for the solution in Proposition SM5.1, showing that the solution is the optima.450

Algorithm SM5.1 Projection free Frank-Wolfe algorithm for MTD.

Initialize
(
Zj
)(0)

= 0 ∀j,
(
z0
)(0)

= 1
m

for k = 0, 1, 2, . . . do
compute ∇L

(
Z(k)

)
determine D̂ according to Proposition SM5.1
determine θ by line search or θ = 2

2+k

Z(k) = (1− θ)Z(k+1) + θD̂
end for

SM5.2. Run time comparison between Frank-Wolfe and Projected Gradient. We com-451

pare the Frank-Wolfe algorithm for MTD to the projected gradient algorithm in the main text.452

In Figure SM11 we show the value of the objective as a function of time for Frank-Wolfe, pro-453

jected gradient descent, and accelerated projected gradient descent on a synthetic data set.454

For Frank-Wolfe, we use the step size of θ = 2
2+k . In this case, the Frank-Wolfe algorithm is455

slower to converge than the projected or accelerated projected gradient algorithm. We suspect456

that the gains of Frank-Wolfe over projected gradient will be in very high-dimensional settings457

with large state spaces, but we leave that exploration for future work.
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Figure SM11. Run time comparison between Frank-Wolfe, projected gradient, and accelerated projected
gradient on a d = 25, T = 400, and m = 5 synthetic data set.
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SM5.3. Majorization-Minimization. Here we use the convex formulation of MTD in the458

main text to derive a majorization-minimization (MM) algorithm [SM3]. The closed form459

updates are only given when there is no penalty function Ω(Z), so that this algorithm is460

not as generally applicable as the projected gradient algorithm presented in the main text.461

Interestingly, we find that the MM updates of the convex formulation correspond exactly462

to the MTD EM algorithm of [SM6] for the non-convex parameterization. This proves that463

the EM algorithm for MTD converges to a global optima even though the log-likelihood is464

non-convex.465

We derive the MM algorithm for the convex MTD formulation with no penalty term (and466

no intercept):467

(SM5.6)
minimize

Z,γ
LMTD(Z)

subject to 1TZj = γj1
T ,Zj ≥ 0 ∀j, 1Tγ = 1, γ ≥ 0.

468

To derive the MM algorithm, we first form the surrogate function469

Q
(
Z,Z(n)

)
=

T∑
t=1

d∑
j=1

pjt log
Zjxitxj(t−1)

pjt
,470

471

where pjt =
Z

j(n)
xitxj(t−1)∑d

l=1 Z
l(n)
xitxl(t−1)

. Now, Q
(
Z,Z(n)

)
satisfies the MM algorithm conditions that472

Q
(
Z,Z(n)

)
≥ LMTD(Z) and Q(Z,Z) = LMTD(Z). This implies we may iteratively minimize473

Q
(
Z,Z(n)

)
:474

Z(n+1) = argmin
Z,γ

Q
(
Z,Z(n)

)
,475

476

and that this sequence of Z(n+1) converges to a global optima since Problem (SM5.6) is convex.477

Proposition SM5.2. The solution to Problem (SM5.6) under the MTD constraints is given478

in closed form:479

(SM5.7) Z
j(n+1)
lk =

(
p̃jlk∑
l p̃
j
lk

)( ∑
lk p̃

j
lk∑

j

∑
lk p̃

j
lk

)
,480

where p̃jlk =
∑

t=1 pjt1(xit=l,xj(t−1)=k).481

Corollary SM5.3. The EM algorithm for the unpenalized MTD model in the original (γ,P)482

parameterization converges to a global optima of the non-convex log-likelihood.483

Proof of Proposition SM5.2 and Corollary SM5.3. The optimization problem for the MM484

update in Problem (SM5.6) is given by485

(SM5.8) minimize
Z,γ

−
T∑
t=1

d∑
j=1

pjt log
Zjxitxj(t−1)

pjt
486
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487

subject to 1TZj = γj1
T ∀j, 1Tγ = 1,488489

where we have removed the non-negativity constraints because these are automatically en-490

forced in the log terms of the Q
(
Z,Z(n)

)
objective. We may first rewrite the objective in491

(SM5.8) equivalently as492

(SM5.9) minimize
Z,γ

−
d∑
j=1

m∑
l=1

m∑
k=1

p̃jlk logZjlk493

494

subject to 1TZj = γj1
T ∀j,1Tγ = 1,495496

where p̃jlk =
∑

t=1 pjt1(xit=l,xj(t−1)=k). We derive the solution by solving the KKT conditions.497

The Lagrangian of (SM5.9) is given by498

d∑
j=1

m∑
l=1

m∑
k=1

p̃jlk logZjlk +
∑
j

∑
k

λjk

((∑
l

Zjlk

)
− γj

)
+ ν

(
1Tγ − 1

)
,499

500

where λkj and ν are Lagrange multipliers. The solution must satisfy the KKT conditions:501

[SM1]502

Zjlk =
p̃jlk
λjk
∀j, l, k,(SM5.10)503

ν =
∑
k

λjk ∀j,(SM5.11)504

1TZj = γj1
T ∀j, 1Tγ = 1.(SM5.12)505506

Summing over Equation (SM5.10) for all rows l gives507

γj =

∑
l p̃
j
lk

λjk
.508

509

Re-arranging and summing over k gives510 ∑
lk p̃

j
lk

γj
=
∑
k

λjk = ν,511

512

and finally re-arranging once more and summing over j gives513 ∑
j

∑
lk p̃

j
lk

ν
=
∑
j

γj = 1.514

515
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Plugging these results back into those above implies that ν =
∑

j

∑
lk p̃

j
lk, γj =

∑
lk p̃

j
lk∑

j

∑
lk p̃

j
lk

,516

λjk =
(
∑

l p̃
j
lk)(

∑
j

∑
lk p̃

j
lk)∑

lk p̃
j
lk

. Plugging into Equation (SM5.10) gives the final update for Z(n+1)517

as518

Z
j(n+1)
lk =

(
p̃jlk∑
l p̃
j
lk

)( ∑
lk p̃

j
lk∑

j

∑
lk p̃

j
lk

)
(SM5.13)519

= P
j(n+1)
lk γ

(n+1)
j ,(SM5.14)520

521

where P
j(n+1)
lk =

( ∑
lk p̃

j
lk∑

j

∑
lk p̃

j
lk

)
and γ

(n+1)
j =

(
p̃jlk∑
l p̃

j
lk

)
.522

This update for P
j(n+1)
lk and γ

(n+1)
j is identical to the updates for the EM algorithm in523

the original (P, γ) parameterization [SM6]. Since the MM algorithm on a convex problem524

converges to a global optima, it follows that the EM algorithm for the original non-convex525

MTD parameterization also converges to a global optima.526
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