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SUPPLEMENTARY MATERIALS: The Convex Mixture Distribution: Granger
Causality for Categorical Time Series*

Alex Tankf* Xiudi Lit$, Emily B. Fox¥, and Ali Shojaiell

SM1. Experiments.

SM1.1. mLTD Bach Analysis. For the mLTD Bach analysis, we performed a 5-fold cross
validation to select the tuning parameter A, then thresholded the final connection weights,
given by the standardised Ly norm of Z¥, at .01, as in the MTD case. First, we note that with
only 5 total zero weights the final mLTD model is much less sparse than the MTD model. We
display the final graph in Figure SM1, where, for interpretability, we bold edges with total
weight greater than .45. In this graph there are strong connections in the counter-clockwise
direction between G#, C#, F#, and B. However, the other connections on the circle of fifths
are relatively weaker, and there are many more connections between notes far away on the
circle of fifths. The mLTD graph also shows that the chord note both affects and is affected by
many harmony notes. Furthermore, we see that the bass category is effected by most harmony
notes as well. Overall, however, this graph is much less interpretable than the MTD graph
and fails to find the full circle of fifths structure.

SM1.2. iEEG Segmentation. To segment the iEEG time series into a sequence of cat-
egorical states, we use a Markov switching autoregressive model. The model assumes that
each channel in the d-dimensional EEG signal, y; € R?, follows a Markov switching uni-
variate autoregressive process (AR) each with the same m dynamic regimes. Specifically, let
al,...,a™, where a’ = (ail, cel aﬁl), denote the lag h AR(h) parameters for each of the m
dynamic regimes and let x;; be the latent m-dimensional categorical state that governs the
dynamics for channel j at time ¢. The model assumes that y;; follows a locally stationary
AR (h) model with m state dynamics:

h

(SM1.1) Yjt = Z azjtyj(t—l) + €jt,
=1

where the lag [ AR dynamics at time ¢, a®*, are indexed by the latent state, xj;, and ej; is
mean zero Gaussian noise independent across series, E (ej;) = 0 and E (ejtej’t’) = 0 for all
(4,t) # (§',t'). The transitions between dynamic regimes are assumed to evolve independently
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between series according to a hidden Markov model. See [SM11] for more details on the model.
Due to the long length of the series, we use a stochastic gradient MCMC algorithm [SM7] to
fit the model with m = 5 categorical states. We display the segmentation of a single channel
using this method in Figure SM2.

mLTD Graph

Figure SM1. The Granger causality graph for the ‘Bach Choral Harmony’ data set using the mLTD method.
The harmony notes are displayed around the edge in a circle corresponding to the circle of fifths. Orange links
display directed interactions between the harmony notes while green links display interactions to and from the
‘bass’, ‘chord’, and ‘meter’ variables.

SM1.3. Additional Simulation Results. Figure SM3 compares the signal strengths in the
mLTD and MTD models for the case where each series has m = 4 possible states and d = 15.
To capture the effect of time series j on time series i, we unfold the transition probability
tensor p(zit|T1(4—1), - - -, Ta—1)) along the mode defined by x;;_1), and obtain an m x md
matrix. We then compute the Iy distances between any two rows of the resulting matrix. For
the MTD model, this is equivalent (up to scaling) to the Iy distance between columns of Z%,
since the effect is additive. We repeat this procedure for all (i,j) pairs and aggregate the
results over 20 replications. Figure SM3 shows a histogram of nonzero signals in the MTD
and mLTD models.

We observe that, in our simulation settings, the difference among transition probabilities
in the mLTD model is larger than that in the MTD model, leading to stronger connections.

Next, we present median ROC curves over 20 replications for the proposed methods, under
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5000 10000 15000

Figure SM2. Colored segmentation with m =5 states of a single iEEG channel during a seizure using the
Markov switching autoregressive model.

mLTD

[ mTD

0.0 0.3 0.6 0.9 1.2
signal strength

Figure SM3. Signal strengths in the mLTD and MTD models.

different simulation settings. The results displayed in Figures SM4-SM5, Figures SM6-SM7
and Figures SM8-SM9, correspond to data generated by MTD, mLTD and latent VAR models,
respectively. We observe that for all three methods, the performance improves with increasing
sample size T" and worsens with increasing dimension d.

We also show the points on the ROC curves that correspond to tuning parameter values
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chosen by BIC and cross-validation. In general, cross-validation tends to over-select Granger
causality relationships. This highlights the importance of thresholding when using cross-
validation in practice. In contrast, BIC generally gives an overly sparse model when sample
size is small; but it performs much better with large sample sizes.
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Figure SM4. Median ROC curves over 20 simulation runs, for data generated by a sparse MTD process
with d = 15. Triangles correspond to tuning parameter values chosen by BIC; while dots correspond to the
values chosen by cross-validation.

Finally, in Figure SM10, we show the average run time of the three proposed methods
under different sample size T and number of time series d, where each time series has 4
categories. We observe that in general mLTD group lasso runs faster than MTD with either
group lasso or lasso penalty. This is due to the constraints on the parameter set in the MTD
model, which requires additional projection steps. For all three methods, the run time scales
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Figure SM5. Median ROC curves over 20 simulation runs, for data generated by a sparse MTD process
with d = 25. Triangles correspond to tuning parameter values chosen by BIC; while dots correspond to the
values chosen by cross-validation.

nearly linearly in sample size.
SM2. Proofs of Results in Section 3.

Proof of Proposition 3.3. If the columns of Z7 are all equal, then for all fixed values of
T\j(—1) the conditional distribution is the same for all values of x;;_1). If one column is
different, then the conditional distribution for all values of z\;;_1) will depend on z;;_y).

To prove the second claim, we let Z and Z be two parameterizations for the same MTD
model. Suppose that they give different causality conclusions. Then, there exists some j €
{1,...,d} such that the columns of Z’ are all equal, while the columns of ZJ are not, or the
other way around. There must thus exist a row where at least two columns differ in this row.
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Figure SM6. Median ROC curves over 20 simulation runs, for data generated by a sparse mLTD process
with d = 15. Triangles correspond to tuning parameter values chosen by BIC; while dots correspond to the
values chosen by cross-validation.

Without loss of generality, we assume that Z], # Z1, but Z}, = Z1,. Then under Z, we

have that

P (zy = Uzyg—1) = L o1y, -, Zgp—1)) # P (@i = Uz1021) = 2, Zo—1), - - - » Tae—1)) -

However, under Z we have that

P (l‘it = 1|$1(t—1) = ].,ZL‘Q(t_l), e ?xd(t—l)) =P (l’it = ].|I’1(t_1) = 27$2(t—1)’ e ,J)d(t_l)) .

60 This is a clear contradiction, as Z and Z are different parameterizations of the same model,
and hence all conditional probabilities should be the same. |

70
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Figure SM7. Median ROC curves over 20 simulation runs, for data generated by a sparse mLTD process
with d = 25. Triangles correspond to tuning parameter values chosen by BIC; while dots correspond to the
values chosen by cross-validation.

Proof of Theorem 1. First we show that any parameter set Z can be converted to another
set Z that contains at least one 0 element in each row of each matrix; and that 7 satisfies the
constraints of the MTD model. Let Z be the parameter set for an MTD model. For each v/l
Let ZJ = 77 — a; and
70 =20+ Z j=10j. This Z gives the same MTD distribution as Z. Furthermore, this Z has

a zero element in each row of each Z7 by construction.
The non-negativity constraint is trivially satisfied by Z as we subtract the minimum in each

let the vector o/ be the minimal element in each row, ozk = min ZJ

row. For all j, we have that 17Z7 = ~,;17. Then 1777 =17(2)
17, where we define ol

Vi

This manuscript is for review purposes only.
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Figure SM8. Median ROC curves over 20 simulation runs, for data generated by a sparse latent VAR
process with d = 15. Triangles correspond to tuning parameter values chosen by BIC; while dots correspond to
the values chosen by cross-validation.

Hence within each Z7, the column sums are all equal. Finally, we have that Jo = Y0 +
Z;'l:1 1"a/ and Z;lzo vj = 1,80 Z?:o ¥ =0 +Z§'l:1 7o +Z;'l:1 (’Yj - 1Taj) = Z?:o V=
1. Hence 7;’s sum up to 1.
Next, we show that this new parameter set is uniquely determined. Suppose two parameter
sets X and Y provide the same MTD distribution. Let X be as above for X and Y of Y.
We use a proof by contradiction. Suppose that Y #* X. There must exist some 7 and some
row k such that X] # Y7. Let Ix be the index of the zero element for X7, i.e., such that

Xil = 0, and likewise for Iy . If there are more than one zero elements, pick any. Furthermore,
if X7 and Y7, share a zero in the same location (if there are one or more zero elements in

This manuscript is for review purposes only.
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Figure SM9. Median ROC curves over 20 simulation runs, for data generated by a sparse latent VAR
process with d = 25. Triangles correspond to tuning parameter values chosen by BIC; while dots correspond to
the values chosen by cross-validation.

89 each), then let Ix and ly be that index so :chat l X = ly.
90 If Ix = ly, let I’ be an index such that Xil, #* Yil,. This index must exist by construction.
91 Let the categories of other series (not for series j), 2\ (;—1), be fixed arbitrarily. The difference
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Figure SM10. Awverage run time of three proposed methods over 10 replications, with m = 4 and A = 100
for MTD group lasso, MTD L1 and A = 12.5 for mLTD group lasso.

between the conditional distributions for X are
] _ ~xJ J
Xkl’ - Xkl’ - Xklx

= (Xiy + %‘k) - (Xizx + ajk)

_xJ J

= X — Xy

_ 0 i J 0 i J

= (xR Ky X | [+ DX, + X,
ie\j i€\j

= px (20 = Floyie), e =) = px (20 = Kl 2j6-1) = Ix)
A similar calculation for Y shows that
Yi, =y (w0 = kloyan,zi0-1) =) =y (@0 = ke, i61) = br) -
However, Yil, #* X{Cl,, thus showing that

py (20 = kloyi), a1y = 1) = py (20 = k|, 201 = Iy) #
px (20 = Floyion, 2jen) = U) = px (@0 = K2y, 1) = Ix)-

This inequality contradicts our assumption that the MTD distributions parametrized by X
and Y are the same since lx = ly.
If Ix # ly, then

bPx (l“t = k|$\j(t—1),$j(t—1) = lY) — DPx (Zﬂt = k|$\j(t—1),93j(t—1) = lX) = Xily,

and

Py (UCt = k\x\j(t—l)aflfj(t—l) = ZY) — Dy (th = k’x\j(t—1)7xj(t—1) = lX) = —Yilx
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However, —?il #* Xil since at least one of ?il and Xil are nonzero and both are
X Y X Y
nonnegative. Again, this shows that

py (@0 = Ky, wje) = by) = py (@0 = Koy, 2je0) = Ix) #
px (2 = Kl a1 = bv) = px (@ = Kl 21 = Ix)
which contradicts our assumption that the MTD distributions parametrized by X and Y are

the same.
The same argument shows that the reduction is unique. |

Proof of Proposition 3.1. First we check the parameter set satisfies the constraints of MTD
model. Since Z and Z are valid MTD parameter sets, we have that Vj, 1777 = fyle, 7l >
0;1777 = ’yj1~T, 77 >0,and 17y = 1,7 > 0; 174 = 1,5 > 0. Consider the new parameter set
aZ + (1 — «)Z; we have that for all j,

17(aZ7 + (1 - )Z)
= a(17Z%) + (1 — a)(172%)
= (v + (1 —a)7;)1"
= ’7le7
where we define 7; = ay; + (1 — a)7; for all j. Then
(SM2.1) 1"y =1T(ay+ (1 -a)y) =a+(1—-a)=1.

Finally since Z7,Z7,~ and 7 are all non-negative, we have that aZ/ + (1-— a)Zi >0V and
7 = 0.

Next we demonstrate that the probability tensor given by this new parameter set is the
same as those given by Z and Z. For any two MTD factorizations Z and Z that have the
same conditional distribution p (xg¢|x¢—1) for all zx and 41, then for any 0 < o < 1, the
probability tensor of the MTD model for the parameter set aZ + (1 — «)Z is given by

az’ + (1-— oz)io + i <azj +(1- a)Zj )

Tt Tt TrtTj(t—1) ThtTj(t—1)
J=1

d d
_ 0 J _ 50 7]
= Q| Zgy, + Z Zxktxj(tfl) + (1 Od) (Zﬂﬁkt + Z ZCL‘kﬂ»‘j(tl))
j=1 i=1

= ap (Ikt|~’ﬂ(t—1)) + (1 —a)p ($kt|93(t—1))

=p (Trelw—1)) -
This shows that aZ + (1 — a)Z has the same distribution as both Z and Z, so that the set of
parameters with the same distribution is a convex set. [ |

Proof of Theorem 2. First, we note that a solution always exists since the log likelihood
L(Z) = - Zle log (zgh5 + Z?Zl chitxm,l)) and penalty are both bounded below by zero and
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the feasible set is closed and bounded. Suppose an optimal solution is Z for which there exists
some j such that one row, call it k, of Z/ does not have a zero element. Let o = min <Zi>
be the minimum value in row k and let Z7 be equal to Z7 Vj except that Zi = Zi: — « and
20 = 2 + a. Due to the nonidentifiability of the MTD model L(Z) = L(Z), while we have
that Q ( ) <Q (ZJ), implying for A > 0

L(Z) 4+ )\Q(Z) < L(Z) + \Q(Z),

showing that Z cannot be an optima. |

SM3. Proof of Estimation Consistency. First, we re-introduce some of our notations.
Recall that we define a covariate vector W € R™H4m* a5 follows: W; = WEWE ..o wiHTs
T g
Wip = (Wi, ..., W) € R™ where W}, = I {z;; = [}; and W, = ((ng) ,...,(thﬂ) ) S
2 .
R™, for j € {1,...,d}, where th = (thjl,...,thjm)T and th]k = I{a:it =Lzjg—1) = k}
Let A; denote the sub o-algebra generated by x1,...,2z;. Then {W,} is adapted to {A4;}. For
a general MTD parameter set, we collect the parameters in a vector form § € R™M+4m* where

B= (8,61, .. ,ﬁg)T, Bo = z° and B; = vec(Z7) for j € {1,...,d}. The MTD model can be
written as

(SM3.1) p(xit]zi—1) = W B.
For a general 3, we define R,, and R to be the empirical and conditional expected negative
log-likelihood risks, respectively,

1 I 1 Z
(SM3.2) Ru(B) = = ) logWi'B);  R(B) == E[log(W/ B)|Ar1]
t=1

T
t=1

Denote the group lasso penalty by Q(5) = Z;l:1 1Bjll2 = Z?:l |Z7|| 7. In the remainder of
this section, we will use the superscript 0 to denote the true parameter value.
We now turn to the proofs of the estimation consistency results.

SM3.1. Proof of Lemma 6.2. By definition, we have
(SM3.3) R.(8) — R(8) — (Ra(8°) — R(8%))

T
5 " { toa(W/'B) ~ os(W{ 5°)) B [(los(W8) — loa(W/" 8°)) | Ac 1] }.
t:1

For simplicity, we define Q(8) = ||Bo||1 +Q(8). We will consider the following empirical process
indexed by f,

T
(SM3.4) _ ! Z FWV)AD),  feF,

t=1

This manuscript is for review purposes only.
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where the function class F is defined as
(SM3.5) F={f: £(W) = 1og(W/'B) — log(W/" 8°), (8 — 5°) < M.

In the following, we will consider expectation of the supremum of this empirical process. Since
WT 30 is the transition probability, values of W such that W7 3% = 0 will not contribute to
the expectation as these types of transition occur with probability 0.

Take Mpax = c(T,d)/2. If Q(B — B°) < Mpax, [WE (8 — %] < Muax. Then by As-
sumption 2, we can regard F as a class of [log (¢(T,d)/2),—log (¢(T,d)/2)]-valued functions
for some function ¢ that only depends on the sample size T" and the number of time series
d. Hence we rescale it by multiplying ¢(T,d)/2, and denote the new class by F so that F is
bounded by 1 and is Lipschitz-continuous with Lipschitz constant 1.

We use the notion of sequential Rademacher complexity and covering number developed
in [SM9], which generalizes the definition of Rademacher complexity and covering number to
the setting of dependent samples. For a general function class G mapping from Z to R, its
sequential Rademacher complexity is defined as

(SM3.6) R, =supR,(G,z), where R,(G,z)=E

where (et)thl is a sequence of independent Rademacher random variables, i.e., Uniform {—1,1}
and z is a Z-valued tree of depth T'. Further, define
(SM3.7)

1
Dn(G) = supDy(G,z), where D,(G,z) = inf {404 + 12/\/T/ V1og No(6, G, z)d5} ,

and Na(-,G,z) is the Iy covering number of G over a tree z of depth 7. See [SM9] for a
complete introduction to sequential Rademacher complexities and covering numbers.
By Theorem 2 and Theorem 4 in [SM9] we can bound the expectation by the sequential
Rademacher complexity and a Dudley-type entropy integral,
sup M, f)] <2R,(FU—-F) < 2D, (FU-F).
feFu-F

(SM3.8) E =E

sup | M, (f)]
feF

We note that since 3° is fixed, the covering number of F is the same as that of G = {g(-) :
g(Wy) = log(WIB),Q(B8 — B) < M}. Using the same arguments as in Lemma 13 of [SM9],
we can show that

(SM3.9) log N2 (8, F,z) = log Na(6, G, z) < log Nao(8, H, z),
where # = {h : h(W;) = W5 —WTB°, Q8 — 5°) < M}. Hence we have that

1
Dp(F U —F) = sup inf {4& n 12/\/T/ \/1og/\/2 (5,ﬁu _F, z>d5}

1
< supinf {4a + 12/\/?/ Viog Ny (6, H U —H,z)dd}
(SM3.10) = DX(H U —H).
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Applying Lemma 9 in [SM9], we then get
(SM3.11) DX(H U —H) < SR, (HU—H) (1 + 4v/210g%? (eTZ)) .

Our last step is to bound the Rademacher complexity of the class H U —H. Note that by
definition,

Rn(HU—H) =supE [sup

=supkE sup
w B:Q(B—BY)<M
T
1
erwi(€)
t=1

t=1

< supE s 8=,
w <M

OJ B:Q(B—p0)

1

T Z EtWij (6)
t=1

where the fourth line follows from Lemma SM3.1 and the fifth line follows by applying the

finite class lemma in the dependent setting [SM9] and a union bound.

T

<mMsupE max
w je{1,....m+dm?2}

(SM3.12) < mM\/Qlog(Q(n;nL dm?))

Finally, combining (SM3.8), (SM3.10), (SM3.11) and (SM3.12), we have that

(SM3.13) E

32 21log(2(m + dm?))
)| = 2D (1o ).

Thus, by Markov inequality, we can take

1 log(d)log?(T)
o(T,d) T

(SM3.14) A =0,

Finally, we need

32X (14 6)2|9| 1
52¢*(1/(1=4),8,7) ~ 2

(SM3.15) T, d),

which holds with probability tending to 1 by Assumption 2 and Assumption 3.

SM3.2. Useful lemmas. Before proving our main theorem, we first establish several lem-
mas which will be useful later in the proof.

The first lemma establishes a margin condition for the negative loglikelihood loss.
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Lemma SM3.1. (Margin condition) For all 5 satisfying the MTD model constraints, R(3)—
R(B%) > $7%(B — B), where 7(B) is a semi-norm defined as

T
(SM3.16) #B) = | 67 (ZE [WtWtTMH]) 8.

t=1

Proof. As 30 is the true parameter in the conditional distribution specified by MTD model,
it maximizes E[log(W 8)|.A;_1] for all ¢, and hence minimizes R(3). (The minimizer is not
unique, as in general the MTD model is not identifiable. But restricting each row to have at
least one zero can make the solution unique.)

Let H(f) = 0 denote the set of equality constraints on a valid MTD parameter set. Then,
consider the Lagrangian form of the MTD optimization,

(SM3.17) R(B) + A H(B) + A5 (—B),

where A1 and Ao are the Lagrange multipliers associated with the equality and inequality
constraints respectively. Then 3° satisfies the following KKT conditions:

OR OH
(SM3.18) agg)yﬂo +OOT aéﬁ) g0 — A =0;
(SM3.19) H(3%) =0;
(SM3.20) (AT = 0;
(SM3.21) A >0,8°>0.
We define a new function
(SM3.22) R(B) = R(B) + (M) H(B) + (23)T (=5).

Note that for all 5 satisfying the MTD model constraints, H(3) = 0. Thus,

R(B) = R(8”) = R(B) — R(B°) + A\)T(H(B) — H(B)) + (\)T (8" = B)
(SM3.23) = R(B) — R(B) + (\)"(B° — B)
(SM3.24) = R(B) — R(B") — (\)" B,

where the last line follows from the KKT conditions. At the same time, using a first order
Taylor expansion and noting that the derivative of R(8) at 5% is 0, we get

~ ~ 2 R
(5M3.25) R(9) - B8°) = (8 = B 5 1 (5 - 89)/2,
for some B* between 3 and 3°. Then, we have
.
(SM3.26) R(B) —R(B%) = (\)TB+(B- ﬂD)Tg;!ﬁ* (8-8%/2.
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Since the equality and inequality constraints are both linear, 82E/8ﬁ2 = 0?°R/03? and we
have

(SM3.27) aQR—lzT:E ;WWTM
‘ opz ~ T4 [wipye

Here, W' 3 models conditional probability, and is bounded between 0 and 1. Hence the above
expression is lower bounded by ZZZI]E[WtWﬂAt,l] JT. Also, we have that (\)73 > 0.
Together, we have

3 EW W [ A ]

(SM3.28) R(B) - R(8") = T

(8-8°% (8- 15°. u

N | =

Recall that S denotes the active set of 8%, i.e., S = {j:j >0, ﬁjo- # 0} and S¢ denotes its
complement in {1,...,d}. We define Q" (8) = >_. ¢ [I8)ll1 and Q7(8) = > e 155ll1. The
next lemma shows some basic properties of the penalty Q(-).

Lemma SM3.2. (Properties of the penalty) The penalty Q(-) satisfies the following for any
p:

L [I8llx < lIBollx +m&(B).
2. Q8% - Q(B) <QF(B- 8% - (B~ 5.
Proof. 1. 18] = Z;l:o |Bjll1. For j # 0,5; € R™. By Lyapunov inequality

#Hﬁjﬂl < ,/#Hﬂjﬂg, and hence ||B;]1 < m||B;||2. Invoking the definition of Q(5)

completes the proof.

2. We note that Q(8) = Q*(8)+Q7(6). By the triangle inequality, ||9(l1 < |59 —8;[1 +
18;l1. Summing over j € S we have O+t (B%) — QT (B) < QF(B° — B). By definition
Q (8% =0 and B; — B}) = B; for j € S¢, which implies that 27 (8 — 8Y) = Q~(8).
Thus,

Q(B%) — Q(B) = 2T(8°) — QF(B) - 27 (B)
(SM3.29) <QHB-BY) -7 (B) =T (B-8%) - (8- 5. =

Recall that we have defined a semi-norm 7(8) = \/ﬁT ST E[WiW[T|A_1]8/T. However,
this semi-norm itself is random as we condition on the past. The next lemma shows that it is
close to a deterministic semi-norm 7(-), and the compatibility constants defined with 7 and 7

are close. To this end, we will use concentration inequalities for Markov chains developed in
[SMS].

Lemma SM3.3. Under Assumption 1 and Assumption 4, with probability at least 1 —1/T,

¢*(L, S, 7) /
(SM3.30) PS5 >1—(1+ 1+ Lym)*C \/

log(2(m + dm?)?) + log(T)
Tps

|S1/¢*(L, S, 7).

Thus, under Assumptions 1, 3 and 4, for T sufficiently large, ¢*(L,S,7)/*(L,S,7) > 1/2
with probability at least 1 — 1/T.
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Proof. For any j,k € {1,...,m+dm?}, W;Wj, is bounded between 0 and 1. For simplicity,
we will assume, for now, that xg ~ m, i.e., the chain starts in the stationary distribution. We

will relax this assumption later. Applying Theorem 3.11 in [SMS],
(SM3.31)

1
Pll=
(7

And, using a union bound,

T
> E[Wy Wik Ar1] — B [W1; W]
t=1

X — .
=) = 2P TS(T + 1/7) + 20T

zt)s

2(m + dm?*)? exp <—

1
(SM3.32) P (sup T

Jk

T
Z E[W Wik Ai—1] — E[W1; W]
=1

T2, >
8(T + 1/ps) + 20Tt
In order to obtain a concentration bound, we will choose ¢ = o(1) and consider large T

Hence, the right-hand-side is of the same order as 2(m + dm?)? exp(—CTt*7,s), provided that
1/7ps = o(T). Now setting t = y/log(2(m + dm?)2/a)/CTps,

- log(2(m + dm?)2/a) <
- CTps =%

(SM3.33) P(max ZEWt]Wtk|At 1] — E[W; Wi

J.k

for T sufficiently large.
Then, for all 5

T
- 1
17%(8) — 7*(8) ( ZE WW A ] - W[W1W1T]> 5'
t=1
T
<87 ZE (WiW, | A1) — B [W1 W] ]
t:1 [e'S)
2)2
(SM3.34) < uﬁu%c’\/ los(2tm Ay /e)
Typs
where by (SM3.33) the last line holds with probability at least 1 — c.
Recall the definition of I' and compatibility constant ¢,
(SM3.35) Pa(L,5,7) = (min {r(8) : [ Boll + 2 (8) = 1,27(8) < L}) ™"
(SM3.36) ¢*(L,S,7) =T (L, S, 7)|S|.
Thus,
F(L,5,7) _THLS,7) _win?(5) _ | min?(@) - 7*(9)
¢*(L,S,7)  T%(L,S,7) mint?(8) ~ min 72()
1 2
(SM3.37) >1-(1+(1+L)m \/0g (m + AP /) o1 1621, 8,7),
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with probability at least 1 — . Setting o = 1/T, we see that with probability approaching 1,
the ratio is greater than 1 for sufficiently large T, provided that |S|\/log(d)/T,s = o(1) and
#*(L, S, 7) is bounded away from 0.

If the chain does not start in stationary distribution, a result similar to (SM3.31) can be
established, provided that the distribution of xg is not too far away from 7. In the rest of this
subsection, we use P, to denote the probability under the case x¢ ~ ¢q. Define

2
N, - E, [(%) ] if ¢ is absolutely continuous with respect to ,

)

T

1

T E E[Wy,iWi|Ai—1] — Ex [W1; Wi
t=1

(SM3.38)
400 otherwise.

Applying Proposition 3.15 in [SMS8], we get

|

1/2
< N/

T

1

T E E[Wi Wik Ai—1] — Ex[W1;Wi]
t=1

4

T2t2
(SM3.39) < 2N exp ( Tps > :

1/2
T 16(T + 1/7ps) + 40Tt

This bound is essentially the same as in (SM3.31), except that we are working with different
constants. The rest of the proof follows. |

SM3.3. Proof of Theorem 6.1. Next we prove our main theorem, which is a modification
of the proof of Theorem 7.2 in [SM10]. The difference is that we handle the unpenalized
intercept as in [SM2] and we have time dependence in the data. For notational convenience,

define
AN(1+6)%|9| . M
= , and t = - - :
6¢*(1/(1 = 6),5,7) M + QB — 8°) + 1160 — Byl

Define § = t3 + (1 — t)°. With this construction, 180 — Bl + QB — B°) < M.

We note that although in general 8 may not have a zero in each row of the corresponding
Z7 matrices, and hence may not be identifiable, it does satisfy the equality and inequality
constraints of the MTD model. By the convexity of R, + A2, we have that

Ry (B) + AB) < tRu(B) + tAQ(B) + (1 = ) Ra(8°) + (1 — )AQ(6°)
(SM3.40) < Ry (B°) + AQ(BY).
We rewrite this and apply Lemma 6.2 and Lemma SM3.2,
0< R(B) = R(8°) < — |[Ra(B) — R(B)] - [Ra(8") = R(8°)| +202(8°) — 22(B)
< AM +20Q(8°%) = AQ(B)
(SM3.41) <AM + 201 (3 - 8% — X (6 - B9).

We consider two cases.

This manuscript is for review purposes only.



SUPPLEMENTARY MATERIALS: CONVEX MIXTURE DISTRIBUTION: GRANGER CAUSALITY FOR

CATEGORICAL TIME SERIES SM19
348 e Case 1: If A||Bo — BIl1 + AT (B — B°) < (1 — §)AM/§, we have that
349 (SM3.42) A (||B0 — B+ (B - BO)) <M,
350 and
351 (SM3.43) A (B — %) < A M.
352 Hence,
353 (SM3.44) dA (||B0 — A + QB — ﬁo)) < 2\ M.
354 e Case 2: If instead \||Bo — B|l1 + A2 (B — 8°) > (1 — §)A M /6, then by (SM3.41)
. e . P . .
355 R(B) = R(5) + 20 (5 = %) S M (B = 5+ 52 (97 (B = 89 + 130 — 1)
16 (SM3.45) <A (1B =B + B0 — B3l ) /(1 - 6),
358 where the second inequality holds because 0 < 6 < 1. Since R(3) — R(8°) > 0
359 (SM3.46) Q7 (5 - 8% < (1B - B + 180 — BBl ) /(1 - ),
360 which allows us to use the compatibility condition later. Again from (SM3.41),
361 R(B) = R(8) + X0 (B = B) + o) (2% (B = 8°) + 130 — A1)
362 <AM + (149N (7B = 8°) + 1o — B3l )
363 <A1+ 0)7(B - BOTa(1/(1 = 6),8,7) + A M
1 o ~
364 < §(>‘2(1 + 5) F?)(l/(l - 5)5 Sv%)) + 57:2(B - /80) + >‘6M
1 ~
365 (SM3.47) < SN+ TQ(1/(1-0),8,7)) + R(B) = R(B) + AM,
367 where the second inequality follows by applying Assumption 3 with stretching factor
368 1/(1 —9), and the fourth inequality follows from Lemma SM3.1. It follows that
369 53 (25— 8 + 1130 — 8311 ) < 5N+ 8)Ta(1/(1~8),5,7)° + AM
- 1 I
370 2()\(1 +6))? R2(L.5.7) + A M
, (A1 +0))%S|
371 SM3.48 < ——7F— + M,
372 (SMEA5) © (LS
373 with probability approaching 1.
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Hence, in both cases we have that with probability going to 1,

o3 (05— 8%) + 1o — B3l11) < 20M + (A1 +)Ta(1/(1 — 5), 5,7))?
(SM3.49) = OAM /4 + 2\ M < §AM/2,

where the inequality follows from the fact that A > 8./ and the equality follows from the
definition of M. Finally, this implies that

(SM3.50) QB —~ 8% + 1150 — B0l < M/2,
which in turn, by the construction of B, implies that
(SM3.51) QB = 8%+ 150 — Boll < M.

SM4. Optimization Algorithms. In the main text, we presented a projected gradient
algorithm for optimization. Here, we present some alternative methods for optimization of
the MTD objective and discuss in what contexts they might be applicable.

SM5. Frank-Wolfe. In very high-dimensional settings, with large state spaces, the pro-
jection step in the MTD projected gradient algorithm presented in the main text becomes
increasingly more computationally intensive. Frank-Wolfe algorithms, on the other hand, are
projection free algorithms for solving constrained convex optimization problems and have re-
cently gained popularity due to their simplicity and scalability in sparse, high-dimensional
regression and machine learning [SM4]. Fortunately, the Frank-Wolfe algorithm for MTD also
takes a simple form that allows updating only a small number of parameters at a time. In very
sparse, high dimensional problems with large state spaces, where most entries are zero, this is
typically advantageous [SM4]. We develop the algorithm and provide a timing comparison to
the projected gradient algorithm in the main text. We leave the development of Frank-Wolfe
using various variants [SM5] for future work.

SM5.1. Frank-Wolfe MTD. Let Z(9) be the initial MTD model. Let L(Z) = Lyrp(Z)+
AQ(Z). The Frank-Wolfe algorithm iterates between the following steps starting with k& = 0:
1. Find a direction D that maximizes the dot product with the gradient while staying in

the constraint set:

(SM5.1) D= arg]gnin (ZO)T VoL (Z(k)) + ;trace ((Dj)T VgL (Z(k)))

subject to 17D7 = 4,17, DI >0V, 1Ty=1,y>0.

2. Choose 0 by line search or set § = QJ%k

3. Set ZK+D) = 9D + (1 — 0)Z®).

Step 1 involves solving a linear programming problem. Since the solution to Step 1 stays
in the constraint set, any step taken in Step 2 for # € (0,1) remains in the constraint set.
Fortunately, the linear program in Step 1 has a simple, closed form solution with linear

complexity in the number of parameters, O (m2d + m)
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Proposition SM5.1. First let F/ = V4, L (Z(k)). Let qi be the row index of the minimal

element in column k of F]k; and let s7 be the sum of the minimal elements in each column:

*

st = ey Zgjk' Furthermore, let j* be the index of the minimum s’ : j* = argmin (sj).
k J

Then D* is given by

D’ =0 Vj # j*,
i = Lifl=q,
0if 1 # qf

Intuitively, to stay in the MTD constraint set any feasible step must place equal mass on each
column of a Z7 , and that the minima is attained by only taking steps in the direction of Z’
with a minimal sum of columnwise minima.

Proposition SM5.1 implies that if the model is initialized with (Zj ) © _ 0 for all J, then at
step k at most only km entries in Z*) will be nonzero, and typically less in high-dimensional
sparse settings since certain entries with strong signal will be updated repeatedly. The final
Frank-Wolfe algorithm for MTD is shown in Algorithm SM5.1.

Proof of Proposition SM5.1. We study the KKT conditions. The Lagrangian is given by:
. . . . o
IDHILES (0N EEAFIEEIES 3 9 L2
i 1k ik ! gk

So that the KKT conditions for an optima are given by:

(SM5.2) Fl =X 497,
m;
(SM5.3) Y M =v VY
k
(SM5.4) 7. > 0 (dual feasibility) ;
(SM5.5) qﬁ{k]j{k =0 (complimentary slackness) .

We show that for the primary feasible solution given in Proposition SM5.1, there exists a
set of dual variables that obey the KKT conditions, showing that the solution in Proposition
SM5.1 is indeed the global optima.

For the primal solution given in Proposition SM5.1, let the dual variables for j* be

X =F . and ¢, =0Vke(1,...,my),

which obeys (SM5.2) and the complimentary slackness in (SM5.5) since ]A);";* = 1. For all
k

other entries of D7*, {,: = Fljk — )\i = Fl]k — F7* | so that all entries in ¢{; and )\f:‘ obey the

q']i*k,
KKT conditions for all [,k in (SM5.4). The complimentary slackness holds in (SM5.5) since
for these I,k D{; = 0. Finally, set v = le AT = le " F q]f*k which by construction satisfies
k

condition (SM5.3).

This manuscript is for review purposes only.



446
447
448

449
450

SM22 A. TANK, X. LI, E. B. FOX, AND A. SHOJAIE

. . J J DI — ~F mj 1j . mi \j
For j # j*, let A}, = Fqik — =Y where 7 = ), Fqik’ By construction, > ;7 A = v

mj
sa"cisfying‘ (SM~5_.3). Fur‘thermo're, letting qb{k = Fljk — )\?{, we have that ¢{k > 0 since Fl]k >
o> F) 2=V = N oand 00 —v =37 F;i.k =S F;ik > 0 satisfying (SM5.4). For all

qik qik mj .
these entries the complimentary slackness condition holds since D{k = 0, satisfying (SM5.5).
Taken together, we have found a set of dual feasible points that obey the KKT conditions
for the solution in Proposition SM5.1, showing that the solution is the optima. |

Algorithm SMS5.1 Projection free Frank-Wolfe algorithm for MTD.

Initialize (Zj)(o) =0 Yy, (ZO)(O) =1
for k=0,1,2,... do

compute VL (Z(k))

determine D according to Proposition SM5.1

determine 6 by line search or § = 52—

A 24k
Z*) = (1 -0)Z*+Y) 16D
end for

SM5.2. Run time comparison between Frank-Wolfe and Projected Gradient. We com-
pare the Frank-Wolfe algorithm for MTD to the projected gradient algorithm in the main text.
In Figure SM11 we show the value of the objective as a function of time for Frank-Wolfe, pro-
jected gradient descent, and accelerated projected gradient descent on a synthetic data set.
For Frank-Wolfe, we use the step size of § = zj%c In this case, the Frank-Wolfe algorithm is
slower to converge than the projected or accelerated projected gradient algorithm. We suspect
that the gains of Frank-Wolfe over projected gradient will be in very high-dimensional settings

with large state spaces, but we leave that exploration for future work.

o
< |
o)
- — Frank-Wolfe
o —— Proj. Gradient
& —— Accel. Proj. Gradient
'§ -
£ 8
o ®©
x —
> o
S © _|
O
o
© _|
N~
o
N
N~
- T T T T T I
0 2 4 6 8 10
time (s)

Figure SM11. Run time comparison between Frank-Wolfe, projected gradient, and accelerated projected
gradient on a d = 25, T = 400, and m = 5 synthetic data set.
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SM5.3. Majorization-Minimization. Here we use the convex formulation of MTD in the
main text to derive a majorization-minimization (MM) algorithm [SM3]. The closed form
updates are only given when there is no penalty function Q(Z), so that this algorithm is
not as generally applicable as the projected gradient algorithm presented in the main text.
Interestingly, we find that the MM updates of the convex formulation correspond exactly
to the MTD EM algorithm of [SM6] for the non-convex parameterization. This proves that
the EM algorithm for MTD converges to a global optima even though the log-likelihood is
non-convex.

We derive the MM algorithm for the convex MTD formulation with no penalty term (and
no intercept):

minimize Lyirp(Z)
(SM5.6) Zy . A
subject to 1727 = ;17,23 > 0 Vj, 1Ty =1,v>0.

To derive the MM algorithm, we first form the surrogate function

W) _ 3N By
Q(2,27) =373 pjrlog =,
t=1 j=1 Pjt
Zj(nz)
where pj; = % Now, @ (Z,Z(”)) satisfies the MM algorithm conditions that

z:l=1 TitTl(t—1)
Q (Z, Z(")) > Lyrp(Z) and Q(Z,Z) = Lytp(Z). This implies we may iteratively minimize
Q(Z,2M):

Z( ) — argmin@) (Z, Z(")) ,
Zy

n+1)

and that this sequence of Z( converges to a global optima since Problem (SM5.6) is convex.

Proposition SM5.2. The solution to Problem (SMb5.6) under the MTD constraints is given
in closed form:

(SM5.7) ZJ(”H) ( B, )( > ik Pl >
lelk Z Zlkpjk

U}h@?ﬂe ﬁ‘ljk - Zt=1 pjt]‘(xitZZ,xj(tfl):k) .
Corollary SM5.3. The EM algorithm for the unpenalized MTD model in the original (v, P)

parameterization converges to a global optima of the non-convex log-likelihood.

Proof of Proposition SM5.2 and Corollary SM5.5. The optimization problem for the MM
update in Problem (SM?5.6) is given by

ZJ
(SM5.8) mlnlmlze— E E pjt log ———— R G
t=1 j=1
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subject to 1727 = 4,17 vj, 1Ty =1,

where we have removed the non-negativity constraints because these are automatically en-
forced in the log terms of the @ (Z, Z (”)) objective. We may first rewrite the objective in
(SM5.8) equivalently as

m
SM5.9 inimize — i log 7
(SM5.9) miggmize =3 >, > 7 log Zj,
subject to 1727 = ;17 vj, 17y = 1,

where ﬁljk => pjtl(m—l Zy00-1y=k)" We derive the solution by solving the KKT conditions.
by ] —_ -
The Lagrangian of (SM5.9) is given by

d m m
ZZZﬁ{klogZ{frZZ)\i((ZZ{é)—vj>+u(1Tfy—1),
J=11=1 k=1 PR !

where ¥ and v are Lagrange multipliers. The solution must satisfy the KKT conditions:

[SM1]

~j
(SM5.10) Zj, = P v 1k,
)‘k
(SM5.11) v=> MV
k
(SM5.12) 1727 =417 vj, 1Ty =1.

Summing over Equation (SM5.10) for all rows [ gives

vy = 2P plk
J
)\J
Re-arranging and summing over k gives
Zm p] 21 Pl Z No—v,

and finally re-arranging once more and summing over j gives

> S i
J - :Z'yjzl
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Plugging these results back into those above implies that v = Ej Dk ﬁ{k, v = Zzgip”;j’

J lk Plk

, = =
N, = (320 70) (2, Zue ) Plugging into Equation (SM5.10) gives the final update for Z(+1)

. =] ~j
(SM5.13) Zi+D) _ p”fj szpZIi .
21 Dy Zj Zkafk
(SM5.14) _ pilm i),
Jnt1) _ (bl (nt1) _ [ 5
where P, = <Zj Zmﬁﬁ) and ~y (Zzﬁfk)'

This update for Pljk(nﬂ) and fyj(.nﬂ) is identical to the updates for the EM algorithm in
the original (P,~) parameterization [SM6]. Since the MM algorithm on a convex problem
converges to a global optima, it follows that the EM algorithm for the original non-convex
MTD parameterization also converges to a global optima. |
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