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eTable 1. Cross-validated performance characteristics of the final proposed model (in bold) for prediction 
of geographic atrophy (GA) progression within the next year. The difference in the area under the receiver 
operating characteristics curve (AUROC) between the proposed model and the next closest autonomous 
model was statistically significant (p < .001) using the Delong test for receiving operating characteristic 
comparisons.22 The difference between the proposed model and the same model supplemented with 
human-annotated features was not statistically significant (p = .19).  
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eTable 2. A description of manually annotated SD-OCT features from Data Set 1. Features were used to 
provide further training of DeepGAze in addition to the strategy without annotated data as described 
previously. The version of DeepGAze trained with manually annotated features did not show improvement 
compared to the version without the features. All other experiments were performed with the version of 
DeepGAze trained without manually annotated features.  
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eTable 3. A comparison of patient recruitment with or without the use of DeepGAze for a clinical trial 
targeting the progression of intermediate age-related macular degeneration (iAMD) to geographic atrophy 
(GA). The simulation assumes that 1000 patients would be recruited for the trial. Four different rates of per-
year progression from iAMD to GA are provided that span the range of previously published estimates of 
baseline disease progression. Two operating points for the algorithm are demonstrated: one selected by 
Youden’s index as the optimal operating point based on a balance of sensitivity and specificity; and a 
second operating point selected for high-specificity at an acceptable sensitivity for optimal clinical trial 
screening.  
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eFigures 
 
eFigure 1. a) Model architecture of the proposed multi-scan position-aware model for geographic atrophy 
(GA) prediction, simultaneously for diagnosis (current year) and prognosis (following year). The detail in 
the right-hand side shows the building blocks of the position-aware module used for view pooling. b) 
Learning with proactive pseudo-interventions (PPI). Saliency maps are obtained via Weight 
Backpropagation (WBP). Negative contrasts are constituted by masking out the saliency map from the 
input scans. Positive contrasts are constituted by either using the input scans without masking or by using 
a randomly selected mask. The multi-scan position-aware model performs predictions on both negative 
and positive contrasts. 
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eFigure 2. Attention maps of eyes with current intermediate age-related macular degeneration (iAMD; A), 
that will progress to GA in one year (B), or that will remain iAMD the following year (C). The top image 
overlays DeepGAze attention mapping (red dots) over the unaltered bottom image. GA probability of the 
SD-OCT line scan and corresponding SD-OCT volume are denoted as p and p’, respectively.  
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eFigure 3. Case study of individual eyes across scan volumes. (A) Case study of an eye with geographic 
atrophy (GA). Images in rows 2 and 4 are optical coherence tomography (OCT) scans of the same eye 
with GA. Images in rows 1 and 3 are their corresponding attention maps. GA probability of the scan is 
denoted as p. A histogram of p values for all 100 scans can be found in the bottom of the figure. (B) Case 
study of eye with intermediate age-related macular degeneration (iAMD) that will progress to GA in one 
year. Images in rows 2 and 4 are various SD-OCT scans from the same volume. Images in rows 1 and 3 
are their corresponding attention maps. The probability of GA development in one year scan is denoted 
as p. The histogram of p values for all 100 scans can be found in the bottom of the figure.  
 

 
  



 

© 2023 Dow ER et al. JAMA Ophthalmology. 

eFigure 4. Weight backpropagation attention maps generated from model inference on the external 
validation data set. The first and second rows are from eyes with intermediate age-related macular 
degeneration (iAMD) that will not progress to geographic atrophy (GA) within the next thirteen months; 
the third and fourth rows are from eyes that will progress to GA within the 1-13 months.  
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eFigure 5. Example predictions from DeepGAze. A-D. True positive prediction of progression to 
geographic atrophy (GA). Attention map (AB) shows clustering around the pigment epithelial defect (PED, 
blue) with overlying hyperreflective foci (HRF, purple) that collapses into a GA lesion (overlying magenta 
arrowhead) less than one year later. The lesion continues to expand during the subsequent three years. 
E-H. True negative prediction of nonprogression to GA shows attention directed to several PEDs as well 
as diffusely distributed along the outer retina. At 26 months after prediction, the eye remains without GA. 
I-L. False positive prediction. Model attention is diffusely distributed rather than concentrating over 
disease lesions. One year after prediction, the eye has not progressed, but just over two years later, the 
PED collapses resulting in a small GA lesion. M-P. False negative prediction. Model attention is 
anomalously clustered at an area of peripapillary atrophy rather than at the PED with underlying choroidal 
hypertransmission (violet) that will collapse into a GA lesion one year later. Subretinal drusenoid deposits 
are highlighted in green.  
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eFigure 6. Predicted pre-classification 𝑝ሺ𝐺𝐴ሻ values (y-axis) grouped by scans (x-axis) and geographic 
atrophy (GA) status; orange designates the GA group and blue designates the control group. Lines and 
shaded areas represent mean and standard deviations, respectively, for cross-validated predictions 
obtained from the proposed model 
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eMethods 
 
AREDS-A2A Dataset 

Over 7.4 years 316 patients with (1) bilateral large drusen > 125 µm or non-foveal GA, or (2) large drusen 
or non-foveal GA in one eye and advanced AMD (neovascularization or foveal GA) in the other eye were followed 
for conversion to foveal GA. Neovascularization or foveal GA at the outset were excluded as study eyes.1,2 During 
the study period, 58 eyes progressed from iAMD to GA and 258 eyes remained as iAMD. In concordance with 
standard definitions,3–7 OCT-GA was defined as the presence of the following three criteria: (1) RPE atrophy or 
absence, (2) choroid enhancement, and (3) outer plexiform layer (OPL) dipping towards the RPE over an area at 
least 175 µm.8–10 SD-OCT volumes were graded by certified, blinded expert graders in the Duke Advanced 
Research in SS/SD-OCT Imaging Laboratory using the Duke Optical Coherence Tomography Retinal Analysis 
Program.11–13  
 
Model 

Geographic atrophy has been shown to begin in a perifoveal location, suggesting that SD-OCT scans from 
perifoveal regions will have preferential ability to identify GA.8 To account for the varying predictability of each 
scan or “view” of the retina, we leveraged the multi-view CNN architecture,7 which combined information from 
multiple “views” or scans of the retina to perform SD-OCT volume-level predictions. We proposed an end-to-end 
multi-scan position-aware volumetric image classification model. The model is presented in eFigure 1. Using the 
M=100 scans of an SD-OCT volume, for the i-th scan, the model used a shared CNN image feature extractor to 
obtain scan features (𝑓௜) that were then fed to a fully connected (FC) layer14,15 with sigmoid activation function16 to 
obtain scan-wise pre-classification GA probabilities (𝑝௜). Pre-classification probability (𝑝௜) was defined as the initial 
probability of GA or progression to GA for the i-th scan prior to pooling views in subsequent steps. The CNN image 
feature extractor has the structure of the Inception V3 neural network, which was initialized with parameters from 
the Inception V3 architecture17 pre-trained on natural images from ImageNet.18 To visually interpret model 
predictions, the model generates attention maps via WBP,19 which probabilistically masks out regions of the scan 
that do not contribute to the ability of the model to predict GA and the estimation of 𝑝௜. Subsequently, pre-
classification GA probabilities ሺ𝑝௜) from different scans were aggregated, for which we considered different 
approaches, for instance, a simple average (i.e., mean pooling). 

As shown in eFigure 6, some image scans were more informative of GA than others after model training 
(in terms of their 𝑝௜ values) when examining the differences in distribution of the GA group relative to the controls, 
confirming that scan position may be leveraged for improved GA identification. Thus, we proposed the position-
aware view pooling illustrated in the right panel of eFigure 1a, in which each scan is assigned a position identifier 
ranging from 1 to 𝑀. The model first used a transformation layer to embed the position identifier into a 6-
dimensional positional feature vector 𝑒௜. Then, the feature vector 𝑓௜ and positional feature 𝑒௜ were concatenated and 
fed into a fully-connected layer to obtain 𝑎௜ ൌ 𝐹𝐶ଶሺሾ𝑓௜ , 𝑒௜ሿሻ, which were progressed to attention weights 𝑤௜ by 
feeding the 𝑎௜ into a softmax function, so ∑௜ୀଵ

ெ 𝑤௜ ൌ 1. The final probability of GA for a given SD-OCT volume was 
the weighted summation of the attention weights 𝑤௜ and corresponding pre-classification probabilities 𝑝௜ for all 
scans, 𝑝ሺ𝐺𝐴ሻ ൌ ∑௜ୀଵ

ெ 𝑤௜𝑝௜. It is worth noting that the positional features and attention weights allow the model to 
accommodate volumes of different sizes, thus not necessarily restricted to M=100.  
 The model was trained in a contrastive learning manner as shown in eFigure 1 to maximize the weighted 
binary cross-entropy loss, (i.e., 𝐿ሺ𝑦, 𝑓ሺ𝑥ሻሻ, the likelihood that scans from SD-OCT inputs, 𝑥, were correctly 
assigned (prognosticated) to either the GA or control groups, 𝑦, in the assessment of the following year, while 
encouraging that i) regions masked-out by the saliency maps, 𝑥∗, which we call negative contrasts, were not 
informative of GA, and ii) unmasked input scans, 𝑥, and regions masked-out by a randomly assigned saliency map, 
𝑥ᇱ, which we call positive contrasts, did not affect the model’s ability to predict GA. This strategy, termed Proactive 
Pseudo Intervention (PPI) learning, was previously described.19 Note that positive and negative contrasts consist of 
mutually exclusive image regions and that negative contrasts are created to prevent that learned saliency maps 
include non-predictive regions or image regions spuriously associated with GA. Additionally, the model predicted 
the probability of GA in the current year. We allowed the model to learn 𝑝ሺ𝐺𝐴ሻ in the current and following year 
simultaneously to encourage a more informative and robust feature extractor. 

The small sample-size of the dataset (316 iAMD patients, 1085 volumetric SD-OCT scans) placed 
limitations on the model to be trained. One way to improve model performance is by leveraging additional data to 
perform multi-task learning.18 We employed a publicly available SD-OCT dataset20 consisting of 108,312 individual 
SD-OCT B-scans (not full SD-OCT volumes) from 4,686 individuals. These images were labeled for the following 
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classification endpoints: choroidal neovascularization (CNV), diabetic macular edema (DME), drusen, and control. 
The single-scan B-scan images were higher resolution than those from the 100-scan SD-OCT volumes acquired in 
the A2A SD-OCT Study. Implementing multi-task learning, shared information from these related tasks (predicting 
iAMD progression to GA and identification of various pathologic features) can be leveraged to improve the model 
performance on our GA prediction task.20 This multi-task approach shared the CNN image feature extractor 
(Inception V3) but used separate FC layers for these three tasks: (1) current GA prediction (2) progression to GA in 
the following year, and (3) CNV, DME, drusen and control prediction. 

Due to the infrequency of progression from iAMD to GA, several approaches were tested to bolster model 
performance on the small data set with an ablation design to determine the contribution of each approach. First, 
CNN classification on single B-scans was compared to classification across all B-scans in the SD-OCT volume 
(“multi-scan”). All versions of the multi-scan approach outperformed all versions of the single-scan approach 
including the single-scan models trained on a large public database of individual SD-OCT B-scans (eTable 1). 
Second, implementation of an embedding that made the model position-aware, rather than considering the B-scans 
as an unordered set, also boosted performance (eTable 1). Next, for each of the 100 B-scans in an SD-OCT volume 
pre-classification probabilities of GA were generated by the model and then plotted. We found that the average 
probability of GA was substantially higher in the GA group than that of the iAMD group, and moreover, that scans 
in the center (lines 35-75) were much more informative of GA presence compared to those at the extremes (1-34 and 
76-100) (eFigure 1). Therefore, probabilities from scans 35-75 were given greater weight in the final classification 
than peripheral scans. Finally, training the model using PPI, a form of contrastive learning, further improved 
classification performance compared to models not trained with this technique (Figure 1, eTable 1). Comparison 
between the final model and the next closest by AUROC resulted in p < .001 using the Delong test for receiving 
operating characteristic comparisons.21 
 The model was coded in PyTorch and trained with the Adam Optimizer22 on a GPU TITAN Xp for 100 
epochs with a learning rate of 0.0005 for pre-trained feature exactor (0.005 for fully connected layers) and a decay 
of 0.5 applied to the learning rate at every 10 epochs. The dataset available for model training consisted of 108,500 
512x1000 pixels SD-OCT scans corresponding to 1085 individuals, 28% of which (30,400 scans) correspond to GA 
patients. A major concern associated with limited labeled data was over-fitting, meaning the model performed very 
well on the training data (over-fitting the observed data), but performed poorly on testing (unobserved or new data). 
Consequently, we estimated model performance via 5-fold cross-validation to maximize the data available for model 
training while still being able to properly estimate performance characteristics. Specifically, we reported AUROC,23 
as well as Standard Deviation (SD) over 5-fold to represent performance variability. The statistical significance of 
the difference between ROC curves for different models was quantified with the DeLong test.24 Further, we 
presented confusion matrices and their summaries (sensitivity, specificity, PPV, NPV, and accuracy) obtained by 
thresholding the predictions, values, from the model with thresholds estimated via Youden’s index.25 All 
performance metrics were computed for both tasks: (1) current presence of GA and (2) progression to GA in one 
year.  
 In order to justify the design choices in the proposed multi-scan position-aware model trained with PPI, we 
also considered simplified versions of this model (i.e., an ablation study): without PPI learning, only using the center 
of the SD-OCT volume (scans 35-75) without the position-aware pooling, training with single scans (in contrast 
with “multi-scan” or multiple views) and averaging the predictions, using a feature encoder pretrained on a separate 
set SD-OCT scans, and using a feature encoder pretrained on ImageNet. Technical details of the model have been 
previously reported.19 Additionally, human-annotated features were fed into the pre-prediction layer of the model to 
determine if it could improve model accuracy. These human-annotated features have been previously 
published.1,9,26–29 For model validation, SD-OCT volume scans from the independent validation data sets, Data Set 2 
and 3, described above were input to the final model (multi-scan, position-aware model trained with PPI) after 
CLAHE image normalization.   
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