1 Supplementary Information

2

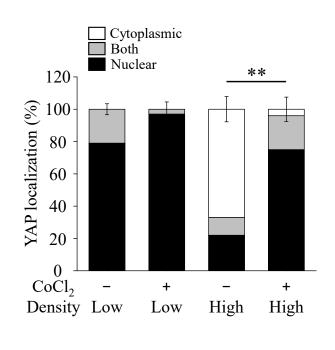
3 Supplementary Figure 1. CoCl₂ induces HIF-1a to interact with YAP, but not TAZ, under high-cell density. 4 A The quantification of the proportion of YAP localization in Figure 1A was shown. 5 Data are presented as mean \pm SEM. **p < 0.01 vs. control group under high-cell density 6 conditions. **B** Quantified nuclear fluorescence intensities of HIF-1a and YAP of Figure 7 8 1B were depicted. C MDCK cells at low density (5×10^4) and high density (3×10^5) were treated with or without 400 µM CoCl₂ for 8 h. Immunofluorescent images of TAZ 9 10 (red) and HIF-1 α (green) were taken using confocal microscope. Scale bar: 10 μ m. 11 12 Supplementary Figure 2. Hypoxia also promotes HIF-1a and YAP interaction in 13 HK-2 cells. A–B HK-2 cells at high density (3 x 10^5) were treated with or without 400 μ M CoCl₂ 14 for 8 h. Immunofluorescent images of YAP (red) and HIF-1α (green) were taken using 15 confocal microscope. Scale bar: 10 µm. The proportion of YAP localization in 16 17 cytoplasmic, nuclear, or both cytoplasmic and nuclear at low and high density were quantified in (B). C HK-2 cells at low and high density were treated with or without 18

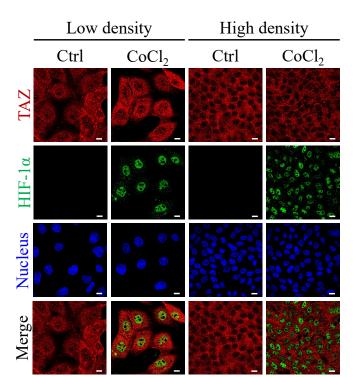
19 1% O_2 for 8 h. Protein levels of Hippo pathway in each group were determined by

1	Western blotting. The ratio of phospho-MST1/MST1, phospho-LATS1/LATS1, and
2	phospho-YAP/YAP were listed below the corresponding blots. D High-density HK-2
3	cells were transient transfected with shHIF-1 α , and subjected to 1% O ₂ for 24 h,
4	followed by immunostaining with anti- γ H2AX antibody. Scale bar: 10 μ m. E High-
5	density HK-2 cells were transient transfected with shHIF-1 α , and subjected to 1% O ₂
6	for 36 h, followed by Annexin V staining. Scale bar: 10 µm. All immunofluorescence
7	images were obtained using confocal microscope.
8	
9	Supplementary Figure 3. Immunoprecipitations showed an increase of HIF-1 α
10	and YAP under CoCl ₂ -treated high-density condition.
11	MDCK cells at low and high density were incubated with or without 400 μM CoCl_2 for
12	8 h. The immunoprecipitations were performed and analyzed by Western blotting with
13	anti-HIF-1α antibody.
14	
15	Supplementary Figure 4. HIF-1a facilitates YAP downstream gene expression
16	under hypoxic condition.
17	MDCK-Parental and MDCK-shHIF-1 α cells at high density were subjected to 1% O ₂
18	for 0, 2, 4, and 6 h. Representative PCR results of gene expression for yap and the
19	downstream gene cyr61 were shown. gapdh was used as an internal control.

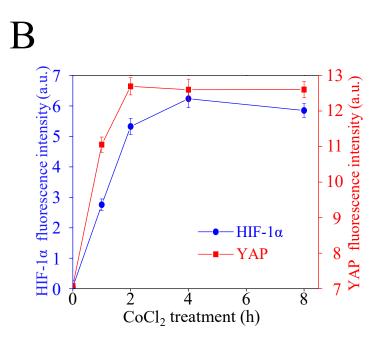
Supplementary Figure 5. Effects of Src and ERK inhibitors on YAP localization under CoCl₂ treatment.

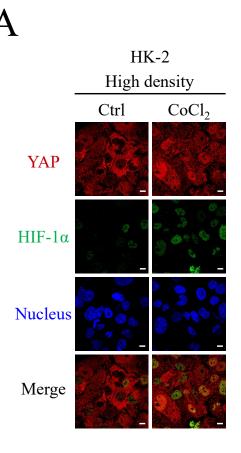
3	MDCK cells at high cell density were treated with 1 μ M dasatinib, 100 μ M U0126, or
4	1 μ M SCH772984 for 24 h, followed by 400 μ M CoCl ₂ for 8 h. A Representative
5	Western blots were shown. Quantification of (B) phospho-Src/Src, (C) phospho-
6	ERK2/ERK2, and (D) phospho-YAP/YAP is presented as mean \pm SEM. B ** $p < 0.01$
7	vs. the CoCl ₂ -alone group. C $*p < 0.05$ vs. control group. $\#\#\#p < 0.001$ vs. control
8	group. ## $p < 0.01$ vs. CoCl ₂ -alone group. D ** $p < 0.01$ and * $p < 0.05$. E
9	Immunofluorescence images of YAP (red) and HIF-1 α (green) were obtained using
10	confocal microscope. Scale bar: 10 μ m. F Proportion of YAP localization in cytoplasm
11	and nucleus was quantified. Data are presented as mean \pm SEM. ** $p < 0.01$.
12	
12 13	Supplementary Figure 6. AKT inhibitor decreases YAP phosphorylation at serine
	Supplementary Figure 6. AKT inhibitor decreases YAP phosphorylation at serine 127 in MDCK-shHIF-1α cells under high-cell density conditions.
13	
13 14	127 in MDCK-shHIF-1α cells under high-cell density conditions.
13 14 15	127 in MDCK-shHIF-1α cells under high-cell density conditions. High density MDCK-shHIF-1α cells were treated with or without 10 μM LY294002 for
13 14 15 16	 127 in MDCK-shHIF-1α cells under high-cell density conditions. High density MDCK-shHIF-1α cells were treated with or without 10 μM LY294002 for 24 h, followed by control or 400 μM CoCl₂ treatment for 8 h. A–B Immunofluorescence

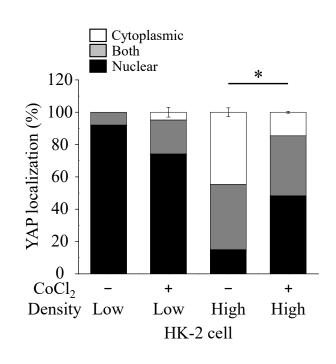

1	0.001. C Representative blots of HIF-1α, phospho-AKT, AKT, phospho-YAP, and YAP
2	were shown. α -tubulin was used as a loading control.
3	
4	Supplementary Figure 7. DNA distribution of parental and shHIF-1 α cells under
5	normoxic and hypoxic conditions.
6	MDCK-parental and MDCK-shHIF-1 α cells were treated with normoxia or 1% O ₂ for
7	48 h and stained with Hoechst 33342. Nuclei morphology was observed under an
8	inverted fluorescence microscope. Pseudocolor shows distribution and intensity of
9	DNA by Hoechst 33342 staining in nucleus. Scale bar: 10 μ m.
10	
11	Supplementary Figure 8. Hypoxic memetic CoCl2 induced DNA damage in MDCK
12	cells.
13	A-B MDCK-parental and MDCK-shHIF-1α cells were treated with normoxia or 400
14	μM CoCl_2 for 24 h, followed by immunostaining with anti- $\gamma H2AX$ antibody. A
15	Representative confocal images were shown. Scale bar: 40 μ m. B γ H2AX intensity was
16	analyzed and presented as mean \pm SEM. *** $p < 0.001$.
17	
18	Supplementary Figure 9. Constitutively active YAP reduced DNA damage under


19 hypoxic conditions.

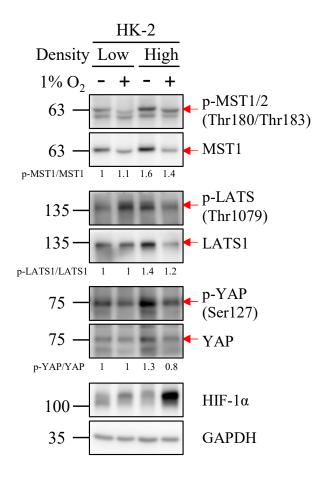
1	A-B MDCK-shHIF-1α-YAP-WT and MDCK-shHIF-1α-YAP-S127A cells were
2	exposed to 1% O_2 for 24 h, followed by immunostaining with anti- γ H2AX antibody. A
3	Representative confocal images were shown. Scale bar: 40 μ m. B γ H2AX intensity was
4	analyzed and presented as mean \pm SEM. * $p < 0.05$.
5	
6	Supplementary Figure 10. MDCK cells with either HIF-1 α or YAP deficiency were
7	sensitive to hypoxic insults.
8	A High-density MDCK-Parental, MDCK-shHIF-1 α , and MDCK-shYAP cells were
9	subjected to 1% O ₂ for 24 h, followed by immunostaining with anti-Rad51 antibody.
10	Scale bar: 10 μ m. B MDCK-Parental, MDCK-shHIF-1 α , and MDCK-shYAP cells were
11	seeded in high density and were treated with $1\% O_2$ for 36 h. The expression of PARP
12	and caspase 3 were determined by Western blotting. α -tubulin was used as a loading
13	control.

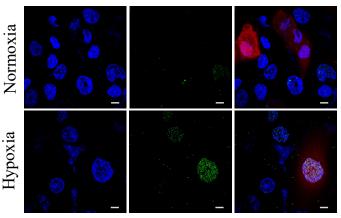

Supplementary Figure 1


A



C

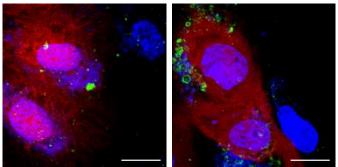


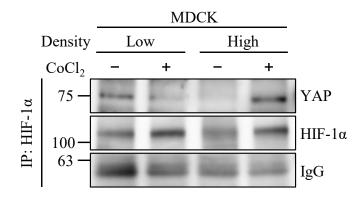

В

D

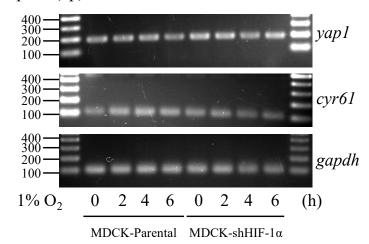
E

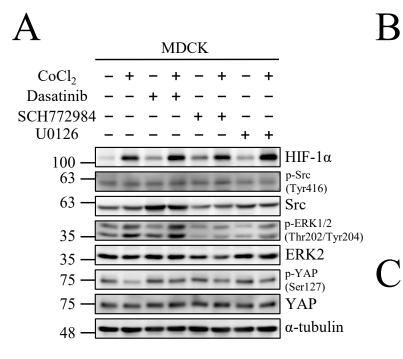
C



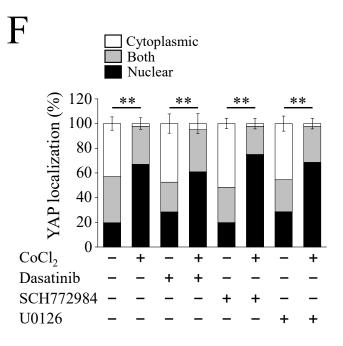

Nucleus shHIF- $1\alpha \gamma H2AX$

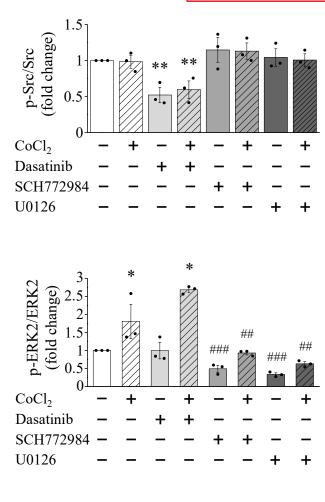
Normoxia

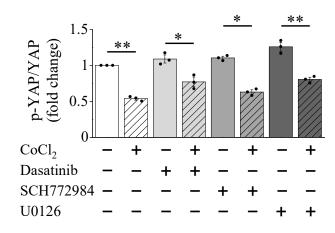

Hypoxia

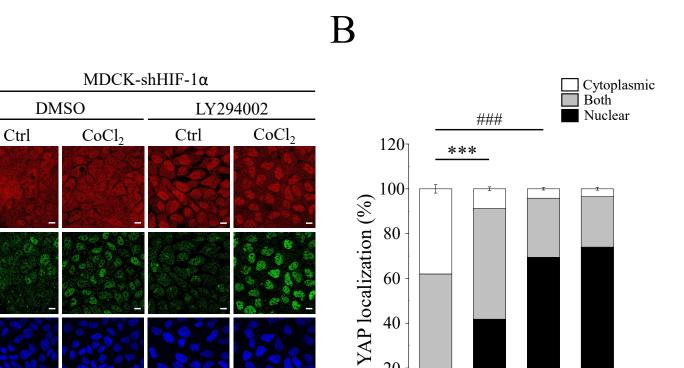

Nucleus shHIF-1α AnnexinV

Base pairs (bp)




Supplementary Figure 5

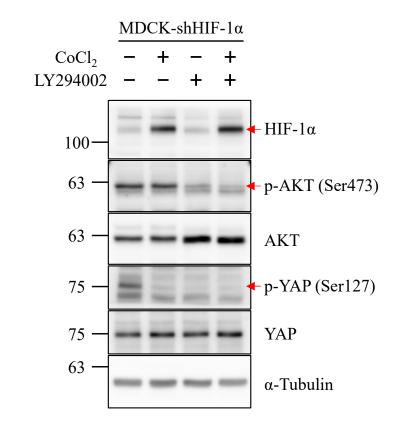




+ +

20

0


+

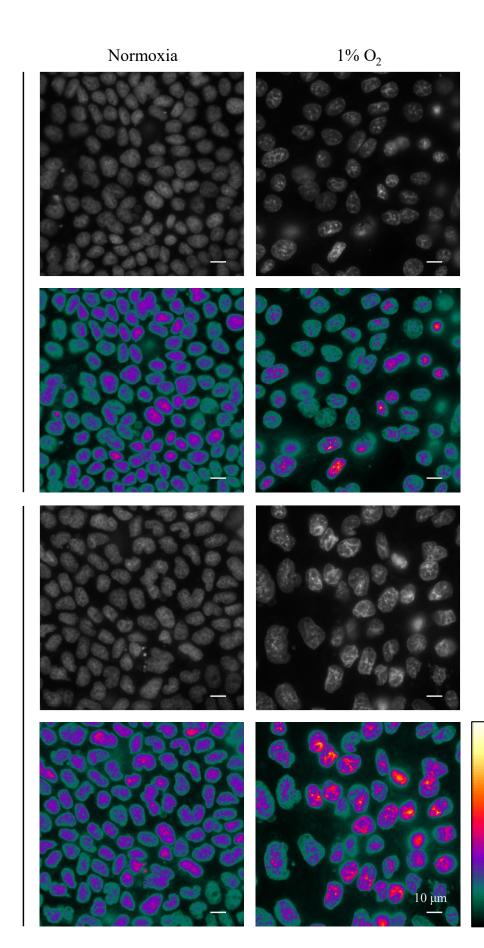
_

+

 $CoCl_2$

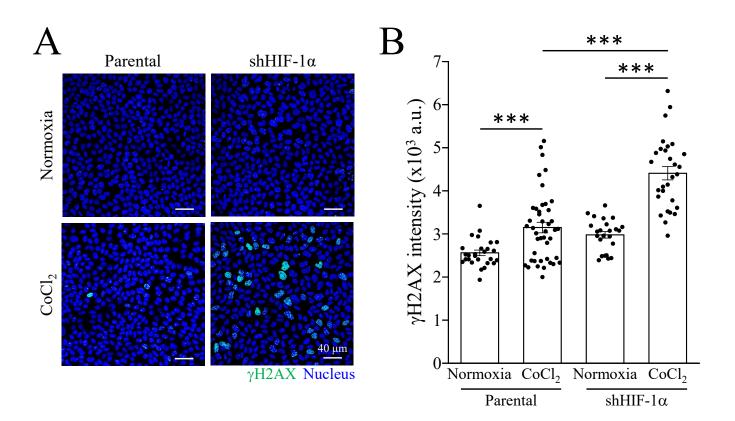
LY294002

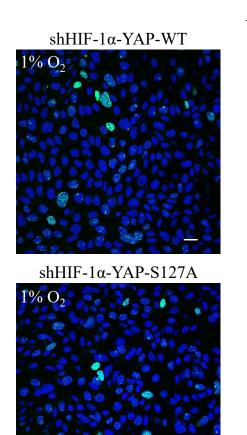
А

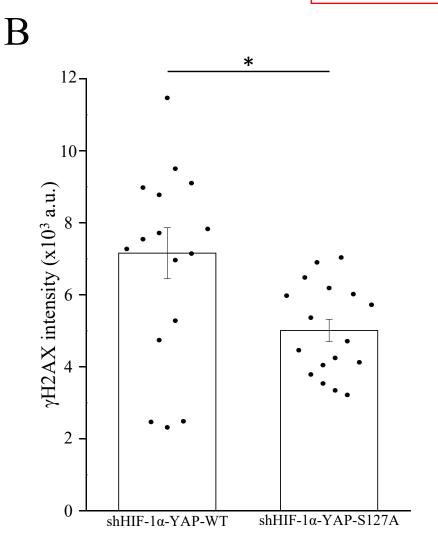

YAP

HIF-1a

Nucleus

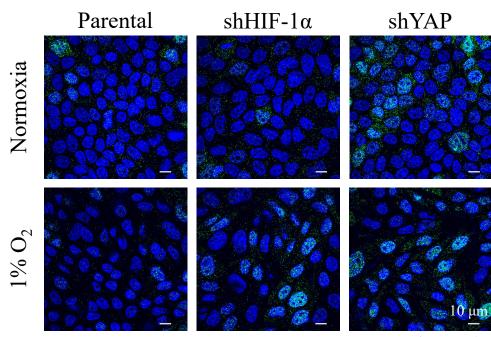

Merge


C

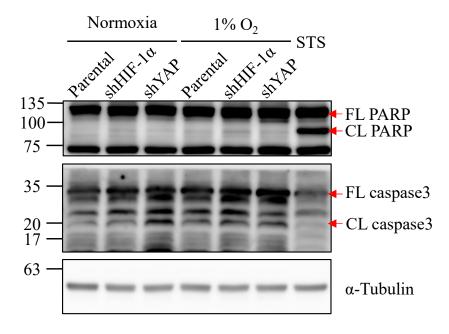


Parental

 $shHIF-1\alpha$



γH2AX Nucleus


40 μm

A

В

Nucleus Rad51

