Supplementary Information - Humoral immune response to SARS-CoV-2 and endemic coronaviruses in urban and indigenous children in Colombia

Nathalie Verónica Fernández Villalobos^{1,*}, Patrick Marsall^{2,*}, Johanna Carolina Torres Páez¹, Julia Strömpl³, Jens Gruber², Martín Lotto Batista^{1,4}, Daria Pohl³, Gustavo Concha⁵, Hagen Frickmann^{6,7}, Fernando Pio de la Hoz Restrepo⁸, Nicole Schneiderhan-Marra², Gérard Krause^{3,9,10,11}, Alex Dulovic², Monika Strengert^{3,11,&,**}, Simone Kann^{12,&}

¹Department of Epidemiology, PhD Programme, Helmholtz Centre for Infection Research (HZI), Braunschweig-Hannover, Germany.

²Multiplex Immunoassays, NMI Natural and Medical Sciences Institute at the University of Tübingen (NMI), Reutlingen, Germany.

³Department of Epidemiology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany.

⁴Global Health Resilience, Barcelona Supercomputing Center (BSC), Barcelona, Spain.

⁵Organization Wiwa Yugumaiun Bunkauanarrua Tayrona (OWYBT), Department Health Advocacy, Valledupar, Colombia.

⁶Department of Microbiology and Hospital Hygiene, Bundeswehr Hospital Hamburg, Hamburg, Germany.

⁷Institute for Medical Microbiology, Virology and Hygiene, University Medicine Rostock, Rostock, Germany.

⁸Universidad Nacional de Colombia, Facultad de Medicina, Departamento de Salud Pública, Bogotá, Colombia.

⁹Hannover Medical School, Hannover, Germany.

¹⁰German Centre for Infection Research (DZIF), partner site: Braunschweig-Hannover, Germany.

¹¹TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture of the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany.

¹²Medical Mission Institute, Würzburg, Germany.

** Corresponding authorE-Mail: Monika.Strengert@helmholtz-hzi.de (MS)

* These authors contributed equally

[&] These authors jointly supervised this work

Supplementary Figure 1. Sample selection strategy for analysis of SARS-CoV-2 and endemic coronavirus antibody responses in urban children

Supplementary Figure 2. Sample selection strategy for analysis of SARS-CoV-2 and endemic coronavirus antibody responses in indigenous children

Supplementary Figure 3. Comparison between SARS-CoV-2 IgG ELISA and MULTICOV-AB results in the study population (n=162)

a. Spike S1-specific serum IgG levels plotted as semi-quantitative S/CO ratio on the y-axis were categorized into the respective qualitative ELISA results (non-reactive, borderline, reactive). Boxes represent the median, 25th and 75th percentiles, whiskers show the largest and smallest non-outlier values. Outliers were determined by 1.5 times IQR. **b.** SARS-CoV-2 S1 IgG titers measured by MULTICOV-AB (x-axis) and EUROIMMUN ELISA (y-axis) were plotted for correlation analysis by Spearman coefficient ρ . Samples in graph b were additionally split based on collection time. Borderline results (ratio: $\geq 0.8 - <1.1$) in the ELISA are located within the grey lines (a, b). Qualitative MULTICOV-AB results per individual sample are indicated by yellow- (reactive) or grey (non-reactive) -colored symbols (a, b).

Supplementary Figure 4. Measurement of pre-pandemic indigenous and urban sera samples Samples from urban children (n=17) and from the Wiwa community (n=30) collected in 2018 and 2019 were measured as specificity control with the EUROIMMUN ELISA (a) and MULTICOV-AB (b). S/CO ratios for the indicated antigens were plotted to illustrate value distribution. Reactivity in the EUROIMMUN ELISA is defined as S/CO ratio \geq 1.1 (a) or for MULTICOV-AB as dual S/CO ratio \geq 1.0 (b, grey lines) for the indicated antigens. For correlation analysis between antigens, Spearman coefficient p was used (b). Qualitative MULTICOV-AB results per individual sample are indicated by yellow- (reactive) or grey (non-reactive) -colored symbols (b). Boxes represent the median, 25th and 75th percentiles. Whiskers show the largest and smallest non-outlier values (a).

Supplementary Figure 5. Humoral immune response towards the endemic human coronaviruses in urban and indigenous children

S1 IgG responses towards the endemic coronaviruses OC43, HKU1, NL63 and 229E were measured in children from Bogotá (n=80) and from the indigenous Wiwa (n=82) using MULTICOV-AB. Normalized MFI ratios are plotted as heatmap with color shades from light to dark blue to display increasing S1 IgG signal ratios.

Supplementary Table 1. Exclusion factors from the study for children and their companions living in Bogotá

Comorbidities or medical conditions
Companions above the age of 60
Hypertension
Obesity
Malnutrition
Pregnancy
Predisposition for bleeding or blood clots
Any form of immune disorder
Metabolic syndromes (thyroid disease, severe liver or kidney disease, diabetes)
Neurologic disorders, cognitive deficits
Untreated asthma or other pulmonary diseases

Supplementary Table 2. Characteristics of urban children from Bogotá

Characteristics of the participants		80 (100%) All	63 (78.8%) SARS-CoV-2 IgG	17 (21.2%) SARS-CoV-2	p-value (Fisher's	
characteristics of the participants	participants: n (%)	non-reactive: n (%)*	IgG reactive: n (%)*	Exact Test)		
Socio-economic condition	ons					
Age in years: Median (IQR)		11 (9-14)	11 (9-14)	11 (8-15)	§	
Sev	Male	37 (46.3)	28 (44.4)	9 (52.9)	n=0.59	
	Female	43 (53.7)	35 (55.6)	8 (47.1)	μ=0.55	
BMI (kg/m ²): Median (IQR)		19.35 (16.96-21.36)	18.82 (16.59-21.31)	19.65 (17.98-22.16)	§	
School type	Public	53 (66.3)	40 (63.5)	13 (76.5)	n=0.40	
School type	Private	27 (33.7)	23 (36.5)	4 (23.5)	μ=0.40	
Affiliation to the health system	Subsidized	8 (10.0)	8 (12.7)	0 (0.0)	– p=0.19	
Annation to the health system	Contributory	72 (90.0)	55 (87.3)	17 (100.0)		
	One	4 (5.0)	2 (3.2)	2 (11.8)		
Sociooconomically strata**	Тwo	46 (57.5)	36 (57.1)	10 (58.8)	n=0.46	
	Three	29 (36.2)	24 (38.1)	5 (29.4)	μ=0.46	
	Four	1 (1.3)	1 (1.6)	0 (0.0)		
	1-2 minimum wages	53 (66.2)	39 (61.9)	14 (82.3)		
	2-6 minimum wages	18 (22.5)	18 (28.6)	0 (0.0)		
Income [†]	> 6 minimum wages	3 (3.8)	2 (3.2)	1 (5.9)	p=0.02*	
	Reply denied	5 (6.2)	4 (6.3)	1 (5.9)		
	Unknown	1 (1.3)	0 (0.0)	1 (5.9)		
	Ciudad Bolívar	29 (36.2)	20 (31.7)	9 (52.9)		
Locality	Kennedy	30 (37.5)	25 (39.7)	5 (29.4)	p=0.51	
Locality	Bosa	12 (15.0)	10 (15.9)	2 (11.8)		
	Tunjuelito	9 (11.3)	8 (12.7)	1 (5.9)		
Country	Colombia	79 (98.7)	62 (98.4)	17 (100.0)	n=1.00	
country	Venezuela	1 (1.3)	1 (1.6)	0 (0.0)	p=1.00	
Variables associated with	SARS-CoV-2 infection					
Participants with PCR-confirmed SARS-CoV-2 infection	Yes	6 (7.5)	0 (0.0)	6 (35.3)		
	No	74 (92.5)	63 (100)	11 (64.7)	p=<0.001	
Contact with probable or confirmed COVID-19 case	Yes	15 (18.7)	8 (12.7)	7 (41.2)		
	No	64 (80.0)	54 (85.7)	10 (58.8)	p=0.01 [‡]	
	Unknown	1 (1.3)	1 (1.6)	0 (0.0)		
Contact with individuals suffering from COVID-19 related symptoms	Yes	2 (2.5)	1 (1.6)	1 (5.9)	n=0.29	
	No	78 (97.5)	62 (98.4)	16 (94.1)	p=0.38	
Members of the family with confirmed SARS-CoV-2 infection	Yes	17 (21.3)	9 (14.3)	8 (47.1)	n=0.006	
	No	63 (78.7)	54 (85.7)	9 (52.9)	p=0.006	
Healthcare worker in the family	Yes	5 (6.2)	4 (6.3)	1 (5.9)	p=1.00	
	No	75 (93.8)	59 (93.7)	16 (94.1)		
Travel history of minor or household member to location with confirmed	Yes	8 (10.0)	7 (11.1)	1 (5.9)	n=1.00	
COVID-19 cases within 14 days before participation	No	72 (90.0)	56 (88.9)	16 (94.1)	h-1.00	
Paracetamol use	Yes	13 (16.3)	7 (11.1)	6 (35.3)		
	No	67 (83.7)	56 (88.9)	11 (64.7)	p=0.02	

* Based on MULTICOV-AB SARS-CoV-2 IgG serostatus

** One corresponds to the lowest and six to the highest strata

+ Colombian minimum wage approximate 280 USD

‡ Unknown category and Reply denied category were not included in the calculation

§ Quantitative variables were examined using a logistic regression: Age OR 1.01 per year (95% CI: 0.86-1.19), BMI OR 1.10 per kg/m² (95% CI: 0.94-1.31)

Symptoms		80 (100%) All participants n (%)	63 (78.8%) SARS-CoV-2 IgG non-reactive n (%) *	17 (21.2%) SARS-CoV-2 IgG reactive n (%) *	p-value (Fisher's Exact Test)	
	F	Respiratory sympton	ns			
Fovor	No	76 (95.0)	59 (93.6)	17 (100.0)	n-0 57	
rever	Yes	4 (5.0)	4 (6.4)	0 (0.0)	p=0.57	
Nasal	No	64 (80.0)	52 (82.5)	12 (70.6)	n=0.21	
congestion	Yes	16 (20.0)	11 (17.5)	5 (29.4)	p=0.31	
Coursh	No	75 (93.7)	60 (95.2)	15 (88.2)	p=0.28	
Cougn	Yes	5 (6.3)	3 (4.8)	2 (11.8)		
Threat nain	No	75 (93.7)	60 (95.2)	15 (88.2)	a 0.20	
inroat pain	Yes	5 (6.3)	3 (4.8)	2 (11.8)	p=0.28	
Breathing difficulties	No	80 (100.0)	63 (100.0)	17 (100.0)		
Loss of smell or	No	79 (98.7)	63 (100.0)	16 (94.1)	n-0 21	
taste	Yes	1 (1.3)	0 (0.0)	1 (5.9)	p=0.21	
Muscle or bone	No	78 (97.5)	62 (98.4)	16 (94.1)	n-0.29	
pain	Yes	2 (2.5)	1 (1.6)	1 (5.9)	p=0.38	
Gastrointestinal symptoms						
Nausea	No	75 (93.7)	61 (96.8)	14 (82.3)	- 0.00	
	Yes	5 (6.3)	2 (3.2)	3 (17.7)	p=0.06	
	No	74 (92.5)	60 (95.2)	14 (82.3)	- 0.11	
Abdominal pain	Yes	6 (7.5)	3 (4.8)	3 (17.7)	p=0.11	
Diawahaa	No	73 (91.2)	58 (92.1)	15 (88.2)	- 0 C 1	
Diarrhea	Yes	7 (8.8)	5 (7.9)	2 (11.8)	p=0.64	

Supplementary Table 3. Self-reported symptoms of urban children from Bogotá

* Based on MULTICOV-AB SARS-CoV-2 IgG serostatus

Supplementary Table 4. MULTICOV-AB antigen panel

Virus	Antigen	Manufacturer	Cat #
SARS-CoV-2	spike trimer	NMI	-
SARS-CoV-2	RBD	NMI	-
SARS-CoV-2	S1 domain	NMI	-
SARS-CoV-2	S2 domain	Sino Biological	40590-V08B
SARS-CoV-2	Nucleocapsid	Aalto Bioreagents	CK 6404-b
HCoV-OC43	S1 domain	NMI	-
HCoV-HKU1	S1 domain	NMI	-
HCoV-NL63	S1 domain	NMI	-
HCoV-229E	S1 domain	NMI	-

Supplementary Table 5. RBDCoV-ACE2 antigen panel

Virus	Antigen	Manufacturer	Cat #
SARS-CoV-2	RBD Wuhan (B.1)	NMI	-
SARS-CoV-2	RBD Delta (B.1.617.2)	NMI	-
SARS-CoV-2	RBD Omicron (BA.1)	Sino Biological	40592-V08H121
SARS-CoV-2	RBD Mu (B.1.621)	NMI	-
SARS-CoV-2	RBD Gamma (P1)	NMI	-

Supplementary Table 6. SARS-CoV-2 seroprevalence adjustment¹ with assay sensitivity and specificity

Assay	Sensitivity	Specificity
MULTICOV-AB	88.3% calculated from 181/205	100% calculated with samples from
	reconvalescent individuals with a previous	72/72 uninfected individuals ²
	PCR-confirmed SARS-CoV-2 infection ²	
SARS-CoV-2 ELISA (EI 2606-9601G)	80% calculated from 164/205 reconvalescent SARS-CoV-2-infected ²	97.2% calculated from 70/72 uninfected individuals ²

Supplementary Table 7. R-packages used for statistical analysis and data visualization

Analysis	R add-on package
Fisher's exact test (function fisher.test())	stats ³
Generalized Linear Models (GLM) with binomial	tidyverse ⁴ , MASS ⁵
family, logit link, and Maximum-likelihood (ML)	
estimation	
Seroprevalence adjustment according to Lang and	asht ⁶
Reiczigel ¹	
Fleiss's k statistic with 95% Cl	irrCAC ⁷
Graphical display	gridExtra ⁸ , ComplexHeatmap ⁹ , ggplot2 ¹⁰ , cowplot
	¹¹ , ggpubr ¹² , ggpmisc ¹³

Supplementary Table 8. ACE2 binding inhibition responder rates* towards indicated SARS-CoV-2 RBDs in seropositive** children

% ACE2 binding inhibition responder rates in SARS-CoV-2 seropositive children					
		RBD B.1	RBD ɣ	RBD µ	RBD o BA.1
Urban	Responder (n)	4	0	0	0
children (17)	Responder (%)	23.5	0.0	0.0	0.0
Indige-nous	Responder (n)	7	1	1	0
children (28)	Responder (%)	25.0	3.6	3.6	0.0

* Responders are defined with an ACE2 binding inhibition of >20%

** Based on MULTICOV-AB SARS-CoV-2 IgG serostatus

Supplementary References

- 1. Lang, Z. & Reiczigel, J. Confidence limits for prevalence of disease adjusted for estimated sensitivity and specificity. *Preventive Veterinary Medicine* **113**, 13-22 (2014).
- 2. Becker, M., et al. Exploring beyond clinical routine SARS-CoV-2 serology using MultiCoV-Ab to evaluate endemic coronavirus cross-reactivity. *Nature Communications* **12**, 1152-1152 (2021).
- 3. Team, R.C. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, Vienna, Austria, 2021).
- 4. Wickham, H., et al. Welcome to the Tidyverse. Journal of Open Source Software **4**, 1686-1686 (2019).
- 5. Ripley, W.N.V. & B, D. *Modern Applied Statistics with S*, (Springer, New York, 2002).
- 6. Fay, M.P. asht: Applied Statistical Hypothesis Tests. (2022).
- 7. Gwet, K.L. & PhD. Computing Chance-Corrected Agreement Coefficients (CAC). (2019).
- 8. Auguie, B. gridExtra: Miscellaneous Functions for "Grid" Graphics. (2017).
- 9. Gu, Z., Eils, R. & Schlesner, M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. *Bioinformatics* **32**, 2847-2849 (2016).
- 10. Wickham, H. *ggplot2: Elegant Graphics for Data Analysis*, (Springer-Verlag New York, New York, 2016).
- 11. Wilke, C.O. cowplot: Streamlined Plot Theme and Plot Annotations for 'ggplot2'. (2020).
- 12. Kassambara, A. ggpubr: 'ggplot2' Based Publication Ready Plots. (2020).
- 13. Aphalo, P.J. ggpmisc: Miscellaneous Extensions to 'ggplot2'. (2022).