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Supplemental Methods 

Participants and assessment 

The study was approved by the London Westminster NHS Research Ethics 

Committee (15/LO/1361). All participants provided written informed consent and were 

compensated for their time. We initially recruited a total of 31 PScz (6 female, 25 male) 

with schizophrenia (assessed with the Structured Clinical Interview for DSM-IV-TR, Axis 

I Disorders, SCID-I (1)) from London community psychosis NHS clinics, and 29 healthy 

volunteers (6 female, 23 male), from the same geographical area through online 

advertisements. Groups were matched for age, gender, IQ and educational attainment. 

General exclusion criteria were anticonvulsant or benzodiazepine medication, age > 45 

years, poor vision limiting performance and not having been educated in English. Healthy 

volunteers were not taking neurological or psychiatric medication, had no history of 

neurological or psychiatric disorder (assessed by SCID-I (1)), and no family history of 

psychosis. PScz had no neurological or psychiatric comorbidity. Participants attended for 

two study visits. Visit 1 comprised verbal fluency tasks, cognitive and clinical assessments, 

and MEG pre-training. Visit 2 (typically 1 day later) comprised MEG task (as described in 

(2)). 

Of the recruited participants, 53 completed verbal fluency tasks on visit 1 (26 PScz 

[6 female, mean age 28.5 years, range 21 – 40 years, 13 not taking D2/3 antagonist 

medication, 2 medication naïve] and 27 controls [6 female, mean age 27.7 years, range 18 

– 45 years), of whom 52 additionally completed the MEG task on visit 2 (1 PScz 

[medication naïve] declined due to paranoia). We identified outliers as participants who 

generated word lists containing a number of repetitions that exceeded the group median by 

>3.5 standard deviations, and excluded them from all analyses (1 control participant, who 

met outlier criteria for both ‘category’ [10 repetitions] and ‘letter’ [18 repetitions] tasks). 

See Table S1 for final sample demographic and clinical / cognitive scores. 

We assessed psychiatric symptoms with the Positive and Negative Syndrome Scale 

(PANSS) scale (3), Montgomery Åsberg Depression Rating Scale (MADRS) (4), and 

General Assessment of Function (GAF) (5). We administered brief measures of IQ (the 
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Wechsler Test of Adult Reading, WTAR (6)) and working memory (mean of forward and 

backward Digit Span).   

Pre-processing of verbal fluency data 

Pre-processing was identical for ‘category’ and ‘letter’ tasks. Item lists for each 

participant were generated from transcribed verbal responses. We first removed all items 

that did not have a semantic embedding (i.e., non-words, e.g., ‘pozzy’. ‘Category’ task: no 

responses met this criterion. ‘Letter’ task: control: mean = 0.23 non-words per list ± 0.08 

SEM, PScz: mean = 0.38 ± 0.19, z(50) = 0.17, P = 0.87, Wilcoxon rank sum test, two 

tailed), and all words that were deemed invalid under the task rules (i.e., non-animals for 

‘category’ task: control: mean = 0.00 ± 0.00, PScz: mean = 0.12 ± 0.06, z(50) = -1.74, P = 

0.08, Wilcoxon rank sum test, two tailed, and non-‘p’ words for ‘letter’ task controls: mean 

= 0.08 ± 0.05, PScz: mean = 0.08 ± 0.05, z(50) = 0.00, P = 1.00, Wilcoxon rank sum test, 

two tailed). We removed consecutive word perseverations for all analyses. Non-

consecutive word repetitions were additionally removed for optimal path analyses (as 

identified optimal paths, by definition, cannot include re-visits to the same response item). 

We used a semi-automated approach to extract inter-response retrieval times (RT) 

corresponding to each response item for each participant (used for supplementary 

analyses). We first computed the amplitude envelope of the audio time series data 

corresponding to each participant’s verbal responses (after down-sampling this time series 

to 100 Hz and smoothing with a 50 ms Gaussian window). We then used an automated 

peak detection algorithm to identify time points of transiently high amplitude (i.e., 

candidate start times of a new response item) 

(https://terpconnect.umd.edu/~toh/spectrum/PeakFindingandMeasurement.htm). 

Candidate start times were then inspected manually one-by-one to identify the events that 

corresponded to the beginning of the first syllable of each transcribed response item. 

Word embedding and semantic distance quantification 

To quantify semantic association each response item was first represented as a 

vector in a common multidimensional semantic space (as in (7–10)) (Figure 1A). We used 

a fastText word embedding model (Facebook AI Research), which had been pre-trained 

on a 16 billion token corpus of English language text (internet corpus, including Wikipedia 

https://terpconnect.umd.edu/~toh/spectrum/PeakFindingandMeasurement.htm
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2017, UMBC webbase corpus and stat.org news dataset), as implemented in the MATLAB 

Text Analytics toolbox (fastTextWordEmbedding) and available from 

https://fasttext.cc/docs/en/english-vectors.html (wiki-news-300d-1M.vec.zip). This model 

contains a 300 dimension vector representation for ~1 million English words (11). 

Briefly, training predictive word embedding models starts form an assumption that 

the semantic association between a pair of words is reflected in their co-occurrence 

statistics in natural language (i.e., the degree to which they are found together in sentences, 

documents, or text windows of a fixed number of words). A general approach for a 

‘continuous bag of words’ model is to train a simple neural network, which takes a natural 

language ‘context’ as input (e.g., the collection of words that are contained in a fixed size 

window centered around the target word, window size 5 – 15 (11)) and outputs a prediction 

for the target word. Words in the input and output layer may be represented as one-hot 

vectors (or multi-hot vectors for multi-word context inputs), such that the dimensionality 

these inputs and outputs is equal to the number of unique words (tokens) in the training 

set. A fully-connected hidden layer, however, has a much reduced dimensionality (e.g., 

300 units), imposing an information bottleneck. On completion of training, a word’s 

‘embedded’ representation is equal to the [300, 1] dense vector of connection weights from 

the ‘hot’ input unit, to each node of the hidden layer (12). This approach thus embeds the 

high dimensional input representation within a much lower dimensional space that is 

optimal for predicting word co-occurrence in natural language. Stemming from this 

objective, distances between word vectors in the learned low dimensional representation 

capture a semantic association between words (13, 14). 

The cosine of the angle between two word embedding vectors (i and j) is a proxy 

for the semantic similarity between words (𝑠!,#$%&, scaled between 0 and 1): 

𝑠!,#$%& = 	𝑐𝑜𝑠𝜃!,# =
〈𝑖, 𝑗〉
‖𝑖‖‖𝑗‖

(1) 

 

, where 𝑐𝑜𝑠𝜃!,# is the normalized dot product of vectors i and j. 𝑠!,#$%& can be used to populate 

an item-item similarity weight matrix, 𝐒$%&'()!*, for each participant (Figure 1B), and 



 
 

5 
 

permits the analyses of item lists as trajectories in a common semantic space (Figure 1C). 

Semantic distance is defined as: 

𝑑!,#$%& = 1 − 𝑠!,#$%&	 (2) 

We also defined a measure of orthographic distance between item pairs, 𝑑!,#+,)-, 

using the Levenshtein distance between words (15) (this quantifies the number of single 

character edits to transform one character string into another, where permitted edits are 

character insertions, deletions, and substitutions). 𝑑!,#+,)-  was scaled between 0 and 1 (using 

the distribution of distances between all item pairs). We defined orthographic similarity as 

𝑠!,#+,)- = 1 − 𝑑!,#+,)-	 (3) 

We operationalized distances involving multi-word response items (e.g., distance 

between ‘killer whale’ & ‘shark’) as the mean of the distances between the constituent 

words of both items (e.g., S(‘killer’,‘shark’) & S(‘whale’,‘shark’)). 

Importantly, the correlation between semantic and orthographic distance was low 

(‘category’ task: r(138754) = 0.04, P < 0.001, ‘letter’ task: r(953559) = 0.11, P < 0.001, 

Pearson’s correlation across all word pairs). 

 

Trajectory effect size quantification 

We used a within-participant permutation approach to quantify the degree to which 

the sequential order of generated word lists reflected distances between adjacent words 

(vs. a random order), in a manner that controlled for between-participant differences in 

composition and length of word lists (using within-participant z-scoring and a sliding-

window approach, respectively). Specifically, for each participant we calculated the degree 

to which measures of sequential sampling deviated from those expected under a null 

distribution, generated by a random sampling policy on the set of words emitted by the 

participant (i.e., the z-score of observed effect vs. list-specific empirical null distribution 

generated from 1000 permutations, as in Figure S1 (10, 16)). Notably, participants also 

differed in the total number of words generated within 5 minutes, and list length may 

confound our z-score effect size measure. To address this potential confound, whenever 



 
 

6 
 

reporting z-score effects (i.e., optimality divergence and community trajectories) we use a 

sliding window approach that allows us to estimate effects of interest using word lists of 

identical length for each participant, while still making use of the complete data from each 

participant (window size = minimum list length across participants, stride length = 1). 

Thus, we calculate the (z-scored) effect of interest for each window, and then calculated 

the mean of this effect over all windows (analogous to (16, 17)). 

Optimal trajectory identification 

To identify optimal search paths for each participant we implemented the 

Travelling Salesman optimization algorithm using linear integer programming in 

MATLAB (https://uk.mathworks.com/help/optim/ug/travelling-salesman-problem.html). 

Here, for an observed sequence of 𝑛 words, 𝑆, containing no duplicates, our goal was to 

identify the path that starts with 𝑠. (the 1st word in the observed list), and visits each other 

word in 𝑆 exactly once, with the lowest sum of edge weights (undirected edge weights 

between words denote distances in a given metric: semantic or orthographic). The standard 

Travelling Salesman problem concerns the identification of shortest cycles (i.e., paths that 

start and end with 𝑠., visiting each other word only once), and as such is not perfectly 

aligned with our objective. However, by including an additional ‘dummy’ word 𝑠/0&&1, 

which has a very small non-zero directed edge weight to 𝑠. (the 1st observed word in the 

list) and from 𝑠( (any other chosen word in the list), and no permissible edges to any other 

word in 𝑆, we force the algorithm to identify an optimal (shortest) path that starts at 𝑠. and 

ends with 𝑠( (i.e., a cycle containing 𝑠( → 𝑠/0&&1 → 𝑠.). For a list of length n we 

implemented this modified optimization algorithm 𝑛 − 1 times, on each occasion 

assigning the end state (𝑠() as a different (non-𝑠.) word (𝑠. is fixed as the true observed 

1st word in the list). We define the ‘optimal path’ as the shortest path of this set (i.e., lowest 

sum of distances).  

We then define the ‘global optimality divergence’ as the difference between the 

total (semantic) distance traversed in the observed word sequence vs. that identified by the 

modified Travelling Salesman procedure (i.e., the ‘optimal’ sequence). We also define a 

measure of ‘local optimality divergence’ for each analysis window. Here, for each adjacent 
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item pair in an observed list we identified the number of edges separating items in the 

optimal trajectory (i.e., the geodesic distance), and calculated the sum of this divergence 

metric across all transitions in the observed list.  

As outlined above, for each participant list we express effects (optimality 

divergences) as z-scores of the observed value with respect to participant-specific 

permuted lists, and nest the entire analysis within a sliding window outer loop, ensuring 

that effects from all participants are derived using list length windows of the same size.  

Computational modelling of behavior 

In computational modelling we considered a family of generative models that 

construed the sequential selection of words as a local search process in internal memory 

space, in which the association between items (i.e., the topology of the space) is defined 

by orthographic and/or semantic similarity, and where the probability of selecting a word 

is a monotonic function of its proximity to the previously emitted item (18, 19). 

Specifically, the probability of observing the tth emitted word (𝑊)) is derived from a 

softmax function of the association strength between 𝑊) and the previous emitted word 

(i.e., 𝑆9𝑊)2# ,𝑊):), where the softmax is normalized by the set of all unique 𝑁 words 

emitted by over all participants. This similarity function (semantic or orthographic space) 

is fixed across participants, but scaled by a multiplicative salience parameter (𝛽) which 

varies across participants (i.e., a free parameter) (18, 19): 

 

𝑃(𝑊)|𝑊)2.) = 	
𝑒3	5(7!"#,7!)

∑ 𝑒3	5(7!"#,7$)9
:;.

(4) 

 

We fitted 5 such models, instantiating different hypotheses regarding the relative 

influence of semantic and orthographic association in task performance, and how this 

varies between ‘category’ and ‘letter’ fluency tasks.  

The simplest 3 models contain separate 𝛽 parameters for word lists relating to 

‘category’ and ‘letter’ tasks (i.e., 2 free parameters), but mandate that in each task the 

softmax response function depends on semantic (𝑆$%&(𝑊)2.,𝑊))) or orthographic 
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(𝑆+,)-(𝑊)2.,𝑊))) similarity alone. These models are therefore equivalent to fitting a 

separate softmax model to ‘category’ and ‘letter’ fluency data separately.  

The first (‘semantic’) model uses the semantic similarity for both ‘category’ and 

‘letter’ tasks:  

 

𝑃(𝑊)|𝑊)2.) = 	
𝑒3%&'	5%&'(7!"#,7!)

∑ 𝑒3%&'	5%&'(7!"#,7$)9
:;.

(5) 

 

 

A second (‘orthographic’) model uses orthographic similarity for both tasks:  

 

𝑃(𝑊)|𝑊)2.) = 	
𝑒3()!*	5()!*(7!"#,7!)

∑ 𝑒3()!*	5()!*(7!"#,7$)9
:;.

(6) 

 

 

Finally, a third (‘task congruent’) model used semantic similarity for the ‘category’ task 

data, and orthographic similarity for ‘letter’ task data, guided by our model-agnostic 

findings.  

 

𝑃(𝑊)|𝑊)2.) = 	
𝑒3!,%$	5!,%$(7!"#,7!)

∑ 𝑒3!,%$	5!,%$(7!"#,7$)9
:;.

(7) 

 

(‘task’ is assigned to ‘semantic’ for the ‘category’ fluency task data and ‘orthographic’ for 

the ‘letter’ fluency task data, similar to (9)).  

Importantly, these 2-parameter models do not permit any arbitration between 

semantic and orthographic similarity in task performance. To capture such an arbitration, 

we defined 2 additional models in which the selection of the tth word is a function of both 

semantic and orthographic similarity, and where the relative weighting of these association 

strengths can vary between ‘category’ and ‘letter’ tasks. The first of these arbitration 

models contained a single salience parameter that was held constant over both tasks, and a 
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weighting parameter governing the relative contribution of semantic and orthographic 

similarity, fitted separately for ‘category’ and ‘letter’ tasks (i.e., 3 free parameters). 

 

𝑃(𝑊)|𝑊)2.) = 	
𝑒3-&.	5(7!"#,7!)

∑ 𝑒3-&.	5(7!"#,7$)9
:;.

(8) 

 

where,  

 

𝑆(𝑊)2.,𝑊)) = 	𝛽<%!=-)	𝑆$%&9𝑊)2.,𝑊): + 91	 − 𝛽<%!=-):	𝑆+,)-9𝑊)2.,𝑊): (9) 

	 

 

The second arbitration model fitted separate semantic and orthographic salience 

parameters for ‘category’ and ‘letter’ fluency tasks (i.e., 4 free parameters).   

 

𝑃(𝑊)|𝑊)2.) = 	
𝑒 	3%&'	5%&'(7!"#,7!)>3()!*	5()!*(7!"#,7!)

∑ 𝑒 	3%&'	5%&'(7!"#,7$)>3()!*	5()!*(7!"#,7$)9
:;.

(10) 

 

On each response item we first mapped similarity measures 𝑆(𝑊)2.,𝑊:) to a 

uniform distribution on the interval (0, 1] prior to calculation of	𝑃(𝑊)|𝑊)2.) (using the 

empirical cumulative probability distribution of 𝑆(𝑊)2.,𝑊:) measures over all words 𝑘; 

akin to conducting model fitting using the rank-ordered association between the previous 

word and all candidate words).  

We fitted all models to participant lists (concatenated over tasks) using maximum 

likelihood estimation, and for each participant quantified the Akaike information criterion 

(AIC) for each model,  

 

𝐴𝐼𝐶 = 2𝑘 − 2 ln(ℒP) (11) 

 

where k indicates the number of estimated free parameters in the model (penalizing for 

model complexity), and ℒP is the maximum of the likelihood function for the model. We 

identified the winning model at the group level as that yielding the lowest summed AIC 
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over participants (of note, the 4P model described in eq. (10) is also the winning model in 

PScz and control samples separately). 

To assess the parameter recoverability of the winning arbitration model (4P) model 

(eq. (10)), we simulated word list data from 100 experiments, in each generating word lists 

(length = 50) for 25 ‘participants’, where each participant exhibits a unique combination 

of 𝛽$%& and 𝛽+,)- values (corresponding to different red asterisk positions in Figure S4A). 

We then fitted the winning arbitration model to each simulated participant’s word list and 

compared the recovered parameters to the ground truth (generative) parameters. Note that 

the winning arbitration model (4P model, eq. (10)) in effect can be considered as two 

separate 2P arbitration models, applied to each task independently (unlike the 3P model, 

which retains a common general salience parameter spanning both tasks, eq. (8)).  

The models above conceive of semantic search as a ‘local’ search process, sensitive 

only to association strength between a candidate response (t), and the previous response 

(t-1). Previous analyses have considered that such local search governs task performance 

only when participants are engaged in selecting items from within a ‘semantic community’ 

(e.g., ‘fish’, ‘shark’, ‘whale’), while inter-community ‘switch’ responses (e.g., ‘whale’, 

‘ant’) are instead governed by more global (non-semantic) salience cues, such as word 

frequency (8, 9, 19). To test whether our model-derived results were robust to exclusion 

of ‘inter-community’ responses, we re-fitted our winning computational model (eq. (10)) 

, censoring the contribution of an observed word (t) to the likelihood estimation if the 

community assignment of (t) was not identical to that of item (t-1) (see Identifying 

community structure in animal space, and Supplemental Results). 

 

Identifying community structure in animal space 

We used the Louvain agglomerative clustering algorithm (20) in combination with 

a consensus clustering procedure (21) to partition the semantic similarity matrix of 

‘category’ task words (all unique words over participants) into the set of non-overlapping 

communities, c. The algorithm seeks a partition that maximizes the modularity statistic 

(Q), which is a measure of network segregation that quantifies the difference between the 

density of within-community connection weights and the density that would be expected 
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under a null model that preserves the distribution of node strengths in the observed network 

(20, 22, 23). For positive undirected weighted networks, it is defined as: 

 

𝑄 =	
1
2𝑣S T𝑠!# − 𝜆

𝑘!𝑘#
2𝑣 V𝛿(𝑐! , 𝑐#)!#

(12) 

 

, where i and j refer to individual network nodes (words), 𝑣 is the total sum of unique 

connection weights (semantic similarities) between all nodes in the network (𝑣 =
.
?
∑ 𝑠!#!# ), 𝑠!# is the observed connection weight between nodes i and j, :/:0

?@
 is the connection 

weight between i and j that would be expected under a null model respecting node-specific 

strength (𝑘! = ∑ 𝑠!## ), and 𝛿(𝑐! , 𝑐#) is an indicator (Kronecker delta) function set to 1 when 

𝑐!=𝑐# (i.e., when word i and j are assigned to the same community), and 0 otherwise (20, 

22). The resolution parameter, 𝜆, tunes the threshold for community detection by scaling 

the influence of the null model, such that larger values result in partitions with an increased 

number of smaller communities (23). We set 𝜆 as 1, and present supplementary results 

showing that our results are relatively robust to a change in this value (Figure S5). The 

Louvain algorithm was implemented in the MATLAB Brain Connectivity Toolbox 

(https://www.nitrc.org/projects/bct/) version 2017-15-01. 

Given the stochastic nature of the Louvain algorithm we used a consensus 

clustering approach to ensure the robustness of the final community structure (21, 23). 

Specifically, we iteratively applied the algorithm 1000 times with different initial random 

seeds. This generated 1000 separate partitions, which were then combined to a single 

agreement matrix, D, where entry 𝑑!# represents the proportion of partitions in which nodes 

(words) i and j were assigned to the same community. Following a thresholding step (in 

which all entries <50% agreement were set to zero) (24, 25), the agreement matrix was 

then subjected to another 1000 iterations of the Louvain algorithm. This procedure was 

repeated until each of the resulting 1000 partitions was equal (i.e., a consensus partition). 

Prior to running community detection, we set 𝑠!# = 0 for all 𝑖 = 𝑗, and ensured that the 

network was symmetrical (input matrix = .
?
𝐒𝐒A) such that 𝑠!# =	𝑠#!. 

 

https://www.nitrc.org/projects/bct/
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MEG sequence learning task and analysis 

The MEG task and analysis details are outlined in detail in Nour et al,. (2021) (2), 

and are described here only briefly.  

During MEG (visit 2), participants performed a non-spatial sequence learning 

(‘Applied Learning’) task, previously shown to elicit neural replay during a post-task rest 

session (2, 26). During the Applied Learning task sessions participants needed to infer the 

sequential relationships between 8 task pictures ([AàBàCàD] & [A’àB’àC’àD’]). 

MEG contained two additional sessions of relevance. First, a Stimulus Localizer task prior 

to Applied Learning, wherein we presented each task picture in a random order (1 s 

presentation, ~ 40 - 52 presentations per picture), to obtain visually-evoked MEG data for 

training stimulus decoders. Second, a 5 minute eyes-open rest session immediately after 

Applied Learning, wherein we quantified spontaneous neural replay of inferred task 

sequences. 

MEG was recorded continuously at 1200 samples/second using a whole-head 275-

channel axial gradiometer system (CTF Omega, VSM MedTech), while participants sat 

upright (3 sensors not recorded due to excessive noise in routine testing). Sensor data were 

high-pass filtered at 0.5 Hz using a first-order IIR filter, and downsampled to 100 Hz 

(sequenceness analysis) and 400 Hz (time-frequency analysis). Excessively noisy segments 

and sensors automatically identified and removed from the data. Independent Component 

Analysis (FastICA, http://research.ics.aalto.fi/ica/fastica) was used to decompose the 

sensor data for each session into 150 temporally independent components and associated 

sensor topographies. Artefact components were classified by automated inspection of the 

spatial topography, time course, kurtosis of the time course and frequency spectrum, and 

subtracted from the data. 

Sequenceness analysis relies on the ability to decode transient spontaneous neural 

reactivations of task stimulus representations from in MEG data collected during resting-

state. First, we characterized participant-specific MEG sensor patterns corresponding to 

each task picture (A, B, C, …) using visually-evoked MEG patterns from a pre-learning 

Stimulus Localizer task. As previously described (2), for each task picture (n = 8) we 

trained a separate one-vs-rest lasso-regularized logistic regression (decoding) model using 

epoched MEG sensor-level data from Stimulus Localizer, and assessed prediction accuracy 
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for the family of trained decoders at each time point of the visually-evoked response in 

leave-one-out cross validation. Group-level cross-validated peak decoding accuracy was at 

180 ms after picture onset. We then applied trained decoders (from this peak accuracy time 

bin) to MEG (sensor-level) data from each time point of the post-learning rest session to 

generate a [time, state] reactivation probability matrix, and used a Temporally Delayed 

Linear Modelling (TDLM) framework to quantify evidence for sequential reactivations 

consistent with the inferred task transition structure (27). 

In our previous work (2) we found maximal evidence for spontaneous neural replay 

at 40 ms stateàstate transition lag (i.e. neural reactivation of state ‘A’ followed by 

reactivation of state ‘B’, 40 ms later). In the present work we therefore identified time 

points during the rest session where strong reactivation of one stimulus (e.g., A) was 

followed by strong reactivation of another stimulus that is adjacent in the learned task 

sequence (e.g., B), with 40 ms lag. As previously described (2), we identified replay events 

that were preceded by a pre-event baseline of low replay probability, and epoched the post-

learning rest MEG data surrounding each such putative replay event. For each epoch 

(event) we then computed a frequency decomposition (wavelet transformation) in the 

window -100 to +150 ms with respect to replay onset, for each (non-artefactual) sensor. 

Averaging this estimate over sensors and epochs resulted in a [time, frequency] matrix for 

each participant, capturing the typical spectrally-resolved power change at replay onset. As 

previously reported, this analysis identified a transient increase in high-frequency (ripple 

band, 120 – 150 Hz) power coinciding with replay onset, compared to a pre-onset baseline 

(-100 to -10 ms), source localized to hippocampus (2) (Figure 6A). 

In the present work we extract two MEG-derived variables estimated during post-

learning rest session, and correlate these MEG measures with our model-derived semantic 

association variable (∆𝜔): (1) replay-associated ripple power (i.e., peak power increase in 

the 120-150 Hz range, occurring 0 – 50 ms (±10 ms) following a replay event, compared 

to an event free baseline, and measured over all sensors), and (2) replay strength (i.e., mean 

sequenceness effect detected at 40-50 ms replay lag). These MEG measures are identical 

to those discussed in detail in our previous published MEG study (2). 

 In exploratory analyses we also quantified several dynamical ‘ripple power’ 

measures in the post-learning MEG rest session. As in our previous work (2), for each 
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participant we estimated the instantaneous ‘ripple’ power at each time point and channel 

during the post-learning MEG rest session (using a Hilbert transform on MEG data, 

sampled at 400 Hz and filtered to 120 – 150 Hz). We defined a ripple ‘event’ as a 

contiguous stretch of time points each exhibiting ripple power (sum over channels) greater 

than 2 standard deviations from the subject- and session-specific median (28–30). For each 

participant, we extracted summary measures characterizing the temporal dynamics of these 

ripple events, including mean (and SD) ripple ‘duration’ (i.e., number of contiguous 

suprathreshold timepoints per event) and mean (and SD) ‘interval-time’ (i.e., number of 

subthreshold timepoints separating two adjacent events) (31).  

 

Statistical analysis and software 

Statistical analysis was performed using MATLAB (Mathworks) 2019a. Analysis-

specific toolboxes are named in respective sections. Prior to testing group differences or 

computing correlations using parametric tests (e.g., unpaired t-test, Pearson’s correlation), 

we conducted a formal test that the effects in question were sampled from a population 

with a normal distribution (Shapiro Wilk test), and used non-parametric equivalent tests 

where this null hypothesis was rejected at α = 0.05 (e.g., Wilcoxon rank sum test for equal 

medians, Spearman’s rank correlation). For between-subjects multiple regression analyses, 

‘group’ was effects coded (patients = -0.5, controls = +0.5) and the design matrix included 

the experimental variable under investigation (e.g., ∆𝜔), group membership, and the 

multiplicative interaction of these terms. For all analyses summary effects are reported as 

mean ± 1 standard error of the mean (SEM), and two-tailed P < 0.05 is deemed significant. 

For low-dimensional visualization of item sequence trajectories in ‘semantic space’ 

(Figure 1 and Figure 3) we used the Uniform Manifold Approximation and Projection 

(UMAP) algorithm (32) implemented in MATLAB 

(https://www.mathworks.com/matlabcentral/fileexchange/71902). We used cosine 

distance as the metric in native (300D) space and Euclidean distance as the metric in 2D or 

3D space. Embedding vectors for response items with multiple words were defined as the 

mean vector over individual words. Parameters for 2D projection: minimum distance = 0.2, 

number neighbors = 25, spread 1.0. 

  

https://www.mathworks.com/matlabcentral/fileexchange/71902
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Supplemental Results 

List length 

PScz generated fewer unique valid words compared to control participants in the 

‘category’ fluency task (controls = 54.1 ± SEM 2.70, PScz = 46.9 ± 1.87, z(50) = 2.13, P 

= 0.03, Wilcoxon rank sum test, two tailed, as in (33–35)), but not in the ‘letter’ fluency 

task (control = 39.7 ± 2.60, PScz = 41.7 ± 2.90, t(50) = -0.50, P = 0.62, two sample t-test, 

two tailed) (Figure 2A), in line with previous findings (9, 36, 37).  

 

Comparison of semantic distance between consecutive words vs. all unique pairs 

Across all participants, median semantic distance was lower between word pairs 

that occupied adjacent positions in observed lists (e.g., ‘1. Cat’ - ‘2. Dog’), compared to 

the distribution of such distances observed for all possible word pairs (e.g., ‘1. Cat’ - ‘9. 

Fish’) (‘Category’ task: median adjacent pair distance across all participants = 0.56 [inter-

quartile range (IQR) 0.44 – 0.64], all pair distance = 0.64 [0.58 – 0.69], difference between 

medians P < 0.0001. ‘Letter’ task: adjacent pair distance = 0.67 [0.59 – 0.73], all pair 

distance = 0.69 [0.64 – 0.74], difference between medians P < 0.0001, Wilcoxon rank sum 

test of equal medians, two tailed, Figure 2B). This semantic influence was more 

pronounced in the ‘category’ task compared to the ‘letter’ task (P < 0.0001, Wilcoxon rank 

sum test of equal medians of consecutive word distances, two tailed), suggesting that task 

demands influence the degree to which semantic information constrains (guides) the search 

process. 

 

Semantic distance as a function of item number 

In the ‘category’ task semantic distance between consecutive words increased as a 

function of the number of words already produced (indicative of fatigue and/or reduction 

of remaining words in vocabulary). However, the rate of this increase was not significantly 

different between groups (mean regression coefficients from regression of semantic 

distance on item number in ‘category’ task: controls = 8.50*10-4 ± 2.48*10-4, PScz 1.3*10-

3 ± 2.46*10-4 , t(50) = -1.33, P = 0.19). (We similarly found no group difference in the 

‘letter’ task.) 
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Trajectories through semantic communities and analysis of retrieval times 

As described in the main text, in the ‘category’ task, we sought to test whether 

semantic search trajectories display signatures of being influenced by a meso-scale 

structure of the cognitive map – namely, whether they are influenced by distinct semantic 

communities. A prediction of this effect is that trajectories may linger within coherent 

semantic communities for a period of time, before transitioning to a new community, 

where such ‘community switches’ are associated with a measurable time delay (19). In the 

animal foraging literature such community-based search trajectories are expected under 

formal accounts of foraging optimality (19, 38), and may arise from biologically plausible 

sequence generation mechanisms within hippocampal-entorhinal cortex (39). 

To investigate this phenomenon in the ‘category’ task data, we identified 

nonoverlapping (semantic) communities in the set of unique items generated across all 

participants by applying a data-driven agglomerative clustering algorithm to the [item, 

item] semantic similarity matrix (see Identifying community structure in animal space). 

This approach partitioned the set of all items into 5 nonoverlapping communities which 

correspond to intuitive animal categories with good face validity Figure 4A. 

To assess predictive validity, we asked whether information pertaining to semantic 

community assignment was predictive of time intervals between response items (‘retrieval 

times’, RT), over and above the predictive effect attributable to semantic distance per se. 

In effect, this analysis asks whether the presence of a transition between communities (e.g., 

transitioning from ‘flying creatures’ to ‘sea creatures’) can predict an increase in RT even 

after accounting for the local pairwise similarity information from which the community 

partition solution was derived. For each participant we regressed ln	(𝑅𝑇) onto a design 

matrix comprising predictor variables for pairwise semantic distance, presence of a 

community ‘switch’ (binary variable), a regressor controlling for the effect of fatigue (or 

exhaustion of items in memory), and a constant term. The community switches predictor 

explained a significant proportion of unique variance in ln	(𝑅𝑇) across all participants 

(z(51) = 4.31, P < 0.001, one sample Wilcoxon sign test for effect different to 0, two-tailed 

, control mean 𝛽$<!)*-  = 0.25 ± 0.07, PScz mean  𝛽$<!)*-	= 0.23 ± 0.07), with no difference 

between groups (z(50) = -0.06, P = 0.95, Wilcoxon rank sum test, Figure 4B). As expected, 

we also found large and significant predictive effects from (local) semantic similarity 
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between words (control mean  𝛽$!&!B',!)1  = 3.20 ± 0.28, PScz 𝛽$!&!B',!)1  = 2.88 ± 0.27, 

t(51) = 15.8, P < 0.001, one sample t-test, two-tailed), and word number expressed as a 

proportion of list length (a proxy for fatigue or word list depletion, controls 𝛽C')!=0%  = 1.06 

± 0.09, PScz 𝛽C')!=0%  = 1.24 ± 0.13, t(51) = 14.4, P < 0.001, one sample t-test, two-tailed), 

again with no significant group difference (𝛽$!&!B',!)1  t(50) = 0.84, P = 0.41; 𝛽C')!=0%  t(50) 

= -1.11, P = 0.27, two sample t-tests, two tailed). We interpret the lack of any group 

difference in the 𝛽$!&!B',!)1  coefficient as indicating that the internal semantic 

representations of both PScz and controls are equally well characterized by the pre-trained 

semantic word embeddings. 

Having assigned each item to exactly one community, we could then investigate 

the participant-specific search trajectories through communities (Figure 4). 

 We considered a possibility that the reduction in model-derived semantic salience 

(Figure 5B) might be attributable to a tendency for PScz to switch between semantic 

communities more than control participants. Previous analytic approaches have construed 

semantic search as a two-step process, in which periods of ‘local search’ (governed by the 

association strength between recent response items, as in our modelling approach) are 

separated by periods of ‘global search’ (community switch, where semantic similarity 

plays no role) (8, 9, 19). In light of this, we re-fitted the winning computational model to 

all participants a second time, now ensuring that ‘community switch’ response items did 

not affect the model likelihood estimation. This analysis again showed that PScz exhibit a 

reduced influence of semantic association compared to controls in the ‘category’ task 

(group * task interaction on 𝛽$%& . variable, P = 0.049), with no such effect for the 

orthographic salience parameter (group * task interaction on 𝛽+,)-  variable, P = 0.81). 

We refrained from conducting similar community trajectory analyses in the ‘letter’ 

task, or in either task using orthographic distance metric, as the community partitions 

derived from these data and lacked face validity. 

Trajectories through orthographic space 

We repeated the trajectory analysis (Figure 3) using a non-semantic association 

measure (i.e., orthographic [Levenshtein] distance (15), i.e., letter-by-letter word 
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similarity, a proxy for phonemic similarity), which we reasoned would exhibit a boosted 

influence on the word selection process when semantic information is not immediately task 

relevant (as in the 'letter’ task), and where this influence might be similarly expressed in 

PScz and controls (given an emphasis on semantics in classical descriptions of thought 

disorder (40), and findings showing largely preserved phonemic similarity in PScz during 

‘letter’ fluency (9)).  

Consistent with this hypothesis, the orthographic distance separating consecutive 

words was significantly smaller in the ‘letter’ task (control: mean orthographic distance = 

0.34 ± 0.009, PScz: mean orthographic distance = 0.36 ± 0.009) compared to the ‘category’ 

task (control: mean orthographic distance = 0.48 ± 0.005, PScz: mean orthographic 

distance = 0.49 ± 0.005), with no group difference (group * task ANOVA on orthographic 

distance: main effect of task: F(50,1) = 305.3, P < 0.001; main effect of group: F(50,1) = 

0.004, P = 0.09; group * task interaction: F(50,1) = 1.10, P = 0.30). Optimality divergence 

analyses using orthographic distance, likewise, revealed no significant group differences 

(Figure S3). Intriguingly, while we found no relationship between (orthographic) global 

optimality divergence and task performance in the ‘category’ task (r(50) = 0.08, P = 0.59, 

Pearson’s correlation), such a relationship did exist for the ‘letter’ task (r(50) = -0.30, P = 

0.03, Pearson’s correlation), and remained significant when controlling for group 

differences in list length per se (list length ~ group * optimality divergence multiple 

regression. 𝛽+D)!&'B!)1_/!@%,=%(*%  = -4.48 ± 1.77, t(48) = -2.53, P = 0.015, 𝛽=,+0D  = 14.15 

± 7.30, t(48) = 1.94, P = 0.06. 𝛽=,+0D∗+D)!&'B!)1_/!@%,=%(*%  = -7.06 ± 3.54, t(48) = -1.20, P 

= 0.05).  
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Supplemental Figures and Table 

Figure S1 

 
Figure S1: Quantifying efficiency of semantic search paths. 
Related to Figure 3 and SI Appendix Methods. 
(A) When quantifying path optimality it is important to control for between-subject differences in list 
membership. Two hypothetical item lists depicted as similarity weight matrices ordered by item position 
(left) and as paths through semantic space (middle). In the extreme case one hypothetical participant may 
generate a relatively unstructured list of animals belonging to a single semantic cluster (e.g., birds, top), 
while another (bottom) may generate a more diverse list of exemplars in a more structured manner (indicated 
by block diagonal structure in semantic similarity weight matrix). The optimal path (i.e., the trajectory 
visiting each item exactly once, minimizing distance travelled) is depicted on the right (item color randomly 
assigned to community allocation derived from an agglomerative clustering algorithm on the similarity 
weight matrix of all response items). 
(B) Measures of path optimality that do not correct for between-subject differences in list membership (left: 
mean cosine similarity of consecutive pairs, right: difference in mean distance per edge between optimal and 
actual paths, i.e., distanceactual - distanceoptimal) are unable to identify path optimality differences between 
participants. 
(C) However, by comparing summary effects to a null distribution generated from participant-specific 
random list shuffles, it is evident that one participant exhibits a semantic trajectory that is highly non-random 
with respect to semantic information. Left: Raw distanceactual - distanceoptimal effect (magenta) plotted 
alongside the distribution of the effect under 1000 random list permutations (green). Right: Optimality 
divergence, defined as z-score of distanceactual - distanceoptimal effect vs. permuted distribution. Of note, the 
optimality divergence z-score is mathematically identical to the cosine distance traversed per step (1-
simiarity, in B left), expressed as a z-score vs. the null distribution expected under random list shuffles.  
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Figure S2 

 
 
Figure S2: Semantic path optimality analysis in ‘letter’ task (using window length = 32). 
Related to Figure 3. 

(A) Global optimality divergence (distanceactual – distanceoptimal) expressed as a z-score against participant-
specific list shuffles such that 0 indicates a near-random word selection process (random sampling policy), 
and increasingly negative values indicate an optimality divergence that is smaller (i.e., improved) with 
respect to the random word selection process. Semantic distance used.  

(B) Relationship between global optimality divergence (expressed as the z-score of optimality divergence 
vs. a random word selection process) and total items retrieved from memory in 5 minutes. Pearson’s 
correlation, 2 tailed. 

(C) Local optimality divergence, as in Figure 3. Two sample t test, two tailed.  

Mean ± SM over participants. n = 40 (20 PScz and 20 controls) as 12 participants were excluded for having 
a list length shorter than the window length of 32.  
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Figure S3 

 
Figure S3: Orthographic path optimality analysis. Related to Figure 3. 
(A) Global optimality divergence (distanceactual – distanceoptimal) expressed as a z-score against participant-
specific list shuffles such that 0 indicates a near-random word selection process (random sampling policy), 
and increasingly negative values indicate an optimality divergence that is smaller (i.e., improved) with 
respect to the random word selection process. Distance metric used is orthographic distance. Two sample t-
test, two tailed. 
(B)) Relationship between global optimality divergence (expressed as the z-score of optimality divergence 
vs. a random word selection process) and total items retrieved from memory in 5 minutes. Pearson’s 
correlation, 2-tailed.  
(C) Local optimality divergence, defined as in Figure 3. Wilcoxon rank sum test, two tailed. 
(D) As (A) but using data from the ‘letter’ task. Two sample t-test, two tailed. 
(E) As (B) but using data from the ‘letter’ task. Pearson’s correlation. 
(D) As (C) but using data from the ‘letter’ task. Two sample t-test, two tailed. 
Group comparisons (A, C, D & F) expressed as mean ± SEM. Error bars on linear trend lines (B & E) 
reflect 95% confidence intervals of the linear regression slope. Window length for all analysis equals the 
task-specific minimum list length across all participants (for ‘category’ task = 32, for ‘letter’ task = 15 
[similar results using window length of 32]). Sample n = 26 controls, n = 26 PScz.  
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Figure S4 

 
Figure S4: Parameter recovery and correlations of winning computational model. 
Related to Figure 5. 
(A) Parameter recovery for the winning arbitration model, containing 2 free parameters for each task 
(Equation 10, i.e., 4 free parameters when fitting to data concatenated over 2 tasks). (Left): ground truth 
parameter setting (red) and recovered parameters (mean ± 2 SEM over 100 experiments, see SI Appendix 
Methods for details). (Right): For each experiment we calculated the Spearman’s rank correlation (color bar) 
between both generative parameters and both recovered parameters, and display the mean over these 
correlation coefficients. 
(B) For each participant we fit a separate semantic and orthographic salience parameter for each task (letter, 
left, and category, right), which compete to explain the task-specific behavioral data. There is no correlation 
between these parameters (‘within task’) across participants, in line with the notion that they explain separate 
sources of variance in the data.  
(C) We also find no correlation (across participants) in the rank order of the orthographic (left) or semantic 
(right) salience parameters across tasks (independently estimated in the winning model).  
Parameters in (B) and (C) from the winning computational model (4P model, see Figure 5 & Equation 
10). Error bars indicate 95% confidence interval on the linear line of best fit. Correlation coefficients and P 
values from Spearman’s rank correlation. Sample: PScz n = 26, controls n = 26.  
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Figure S5 

 
Figure S5: Effect of clustering algorithm resolution parameter on reported community trajectory 
effect sizes (‘category’ task, semantic similarity). 
Related to Figure 4. 
(A) We repeated the clustering analysis separately over a range of resolution parameters (𝜆 =
[0.95: 0.01: 1.15]), and repeated the community-based trajectory and retrieval time (RT) analysis in an 
identical manner to the main results. In (A) we show the t value of the group difference (two sample t-test) 
in community lifetimes, plotted as a function of resolution. Positive values indicate that control participants 
exhibit longer community lifetime effects compared to PScz (effect expressed as a z-score relative to the 
participant-specific null distribution).  
(B) T value of the group difference (two sample t-test) in mean number of return visits to an already-visited 
community, as a function of resolution. Negative values indicate that control participants exhibit a lower 
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number of repeat visits compared to PScz (effect expressed as a z-score relative to the participant-specific 
null distribution). 
(C) At each analyzed clustering resolution, and for each participant, we regressed the inter-word retrieval 
time (ln 𝑅𝑇) onto a design matrix comprising the response-specific semantic distance (to preceding item), 
response number (as a proportion of list length, a proxy for fatigue or memory depletion), a patch switch 
binary variable (as defined by the resolution-specific partition), and a constant (baseline) term. Here we plot 
the t-values of the regression coefficients associated with each predictor, taken from a one sample t-test over 
all participants, as a function of resolution. 
(D) Number of communities identified at each resolution. 
(E) Graph modularity (Equation 12) of the final partition solution at each resolution.  
(F) Similarity matrices, rows and columns ordered so as to group items belonging to the same clusters 
(block diagonal structure), such that the ordering is not consistent between panels.  
For trajectory analyses (A and B) window length = 33 (minimum list length over all participants). 
Consecutive repetitions removed from participant lists (non-consecutive repetitions remain). Sample: 
controls n = 26, PScz n = 26. All analyses conducted on the ‘category’ task word lists, using semantic 
distance.  
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Table S1 

 
Variable Healthy 

volunteers 
Patients  Group comparison# 

    
Demographic    
Sample size  27 26  
Gender 6 F, 21 M 6 F, 20 M x2 = 0.006 (P = 0.95) 
Age (mean, SEM) 27.7 (6.1) 28.5 (5.2) z = -0.76 (P = 0.45) 
Years in education (mean, SD) 18.2 (3.5) 17.8 (2.6) t = 0.53 (P = 0.60) 
Employment status [F/P/S/U]* 7 / 7 / 8 / 5 9 / 3 / 3 / 11  x2 = 6.36 (P = 0.10) 
Handedness  23R, 4L 24R, 2L x2 = 0.67 (P = 0.41) 
Ethnicity [W / BAME / Other]† 10 / 15 / 2 8 / 16 / 2 x2 = 0.24 (P = 0.89) 
Alcohol units week-1 (mean, SD) 3.74 (5.6) 3.58 (6.4) z = 0.85 (P = 0.40) 
Recreational cannabis (not within 1 week) 9  9  x2 = 0.01 (P = 0.92) 
Current smoker (not within 6 hours) 6  13  x2 = 4.44 (P = 0.04) 
    
Cognitive    
IQ (SD) 104.0 (5.6) 105.2 (7.9) z = -1.11 (P = 0.27) 
Digit span forward (mean, SD) 6.34 (0.92) 6.29 (1.11) z = 0.41 (P = 0. 68) 
Digit span backward (mean, SD) 4.17 (0.99) 3.87 (1.11) z = 1.12 (P = 0.26) 
    
Psychiatric symptoms and signs    
Depressive symptoms‡ (mean, SD) 0.93 (2.53) 9.35 (8.02) z = -5.57 (P < 0.001) 
Positive psychotic symptoms§ (mean, SD) 7.15 (0.36) 14.4 (6.45) z = -5.69 (P < 0.001) 

Negative psychotic symptoms§ (mean, SD) 7.07 (0.27) 13.6 (6.38) z = -5.86 (P < 0.001) 
General psychopathology§ (mean, SD) 16.4 (1.01) 25.5 (7.67) z = -6.20 (P < 0.001) 
General assessment functioning|| (mean, SD) 98.0 (5.4) 68.6 (15.2) z = 6.22 (P < 0.001) 
    
Clinical Details    
Num. taking D2/3R antagonist medication - 13¶ - 
Months since symptom onset (median, IQR) - 45 (30 - 60) - 
Num. psychotic episodes (median, IQR) - 3 (2 - 4) - 
Num. inpatient admissions (median, IQR) - 1 (1 - 4) - 

 

Table S1. Participant demographic, cognitive and clinical information.  
Related to Methods.  
* F = fulltime employment, P = part-time employment, S = student, U = unemployed. 
† W = White. BAME = Black, Asian, and Minority Ethnic. Other includes multiple ethnic groups. 
‡ Montgomery Åsberg Depression Rating Scale (MADRS), floor = 0. 
§ Positive and Negative Syndrome Scale (PANSS) scale, floor = 7(positive), 7(negative), 16(general). 
|| General Assessment of Functioning (GAF) scored from 0 – 100. 
¶ D2/3 antagonist medication per medicated patient: (1) olanzapine 15 mg day-1, (2) olanzapine 10 mg day-1, 
(3) lurasidone 37 mg day-1, (4) risperidone 3 mg day-1, (5) aripiprazole 400mg month-1 (depot), (6) risperidone 
0.5 mg day-1, (7) aripiprazole 5 mg day-1, (8) olanzapine 7.5 mg day-1, (9) olanzapine 10 mg day-1, (10) 
amisulpride 400 mg day-1 & aripiprazole 5 mg day-1, (11) paliperidone 50 mg month-1 (depot), (12) 
paliperidone 175 mg 3-month-1 (depot), (13) paliperidone 50 mg month-1 (depot). 
#Group comparisons: unpaired t-test or Wilcoxon rank sum test for continuous variables (normally and non-
normally distributed, respectively), Chi squared test for categorical variables. All P values are two-tailed. 
SD: standard deviation. IQR: inter-quartile range.  
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