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Summary
Transcriptome prediction models built with data from European-descent individuals are less accurate when applied to different popu-

lations because of differences in linkage disequilibrium patterns and allele frequencies. We hypothesized that methods that leverage

shared regulatory effects across different conditions, in this case, across different populations, may improve cross-population transcrip-

tome prediction. To test this hypothesis, we made transcriptome prediction models for use in transcriptome-wide association studies

(TWASs) using different methods (elastic net, joint-tissue imputation [JTI], matrix expression quantitative trait loci [Matrix eQTL],

multivariate adaptive shrinkage in R [MASHR], and transcriptome-integrated genetic association resource [TIGAR]) and tested their

out-of-sample transcriptome prediction accuracy in population-matched and cross-population scenarios. Additionally, to evaluate

model applicability in TWASs, we integrated publicly available multiethnic genome-wide association study (GWAS) summary statistics

from the Population Architecture using Genomics and Epidemiology (PAGE) study and Pan-ancestry genetic analysis of the UK Biobank

(PanUKBB) with our developed transcriptome prediction models. In regard to transcriptome prediction accuracy, MASHR models per-

formed better or the same as other methods in both population-matched and cross-population transcriptome predictions. Furthermore,

in multiethnic TWASs, MASHRmodels yielded more discoveries that replicate in both PAGE and PanUKBB across all methods analyzed,

including loci previouslymapped in GWASs and loci previously not found in GWASs. Overall, our study demonstrates the importance of

using methods that benefit from different populations’ effect size estimates in order to improve TWASs for multiethnic or underrepre-

sented populations.
Introduction

Through genome-wide association studies (GWASs), many

associations between single-nucleotide polymorphisms

(SNPs) and diverse phenotypes have been uncovered.1

However, most GWASs to date have been conducted on

individuals of European descent, even though they

make up less than one-fifth of the total global popula-

tion.2,3 Ancestry diversity in human genetic studies is

important because linkage disequilibrium and allele fre-

quencies differ among populations and thus associations

found within European ancestry individuals may not

reflect associations for individuals of other ancestries,

and vice versa.3 Some efforts to increase ancestry diversity

in human genetics studies include the NHLBI Trans-

Omics for Precision Medicine (TOPMed) consortium,4

the Population Architecture using Genomics and Epide-
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miology (PAGE) study,5 the Human Heredity and Health

in Africa (H3Africa) initiative,6 and the Pan-ancestry ge-

netic analysis of the UK Biobank (PanUKBB7).

Alongside GWASs, transcriptome-wide association

studies (TWASs) test predicted gene expression levels

for association with complex traits of interest, identi-

fying gene-trait associated pairs.8 Different TWAS

methods, such as PrediXcan and FUSION, work by esti-

mating gene expression through genotype data using

transcriptomic prediction models built on expression

quantitative trait locus (eQTL) data.9,10 Similarly to

GWASs, TWASs are also negatively affected by ancestry

underrepresentation, as gene expression prediction

models for use in TWASs are often trained in European

descent datasets, which reduces the power of studies

conducted with individuals of other ancestries.11,12 Still,

we expect the underlying biological mechanisms of
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Figure 1. Overall study methodology
Using TOPMed MESA as a training dataset, we built population-based transcriptome prediction models using five different methods
(elastic net [EN], joint-tissue imputation [JTI], multivariate adaptive shrinkage in R [MASHR],Matrix eQTL, and transcriptome-integrated
genetic association resource [TIGAR]). With these transcriptome models, we evaluated their out-of-sample transcriptome prediction ac-
curacy using the GEUVADIS dataset. Additionally, we assessed their applicability in multiethnic TWASs using GWAS summary statistics
from the PAGE Study and the PanUKBB. AFA, African American; CHN, Chinese; EUR, European; HIS, Hispanic/Latino; Mono, CD14þ
monocytes; PBMC, peripheral blood mononuclear cells; Tcell, CD4þ T cells.
complex traits to be shared across human popula-

tions,11,13 and thus prediction methods that account

for allelic heterogeneity and better estimate effect sizes

can improve the discovery rate and interpretation of

TWASs across populations.

Here, we used genomic and transcriptomic data from the

Multi-Ethnic Study of Atherosclerosis (MESA)14 multiomics

pilot study of TOPMed to build TWAS prediction models

(Figure 1). Using five different methods to estimate effect

sizes, elastic net,15,16 joint-tissue imputation (JTI),17 Matrix

eQTL,18 multivariate adaptive shrinkage in R (MASHR),19

and transcriptome-integrated genetic association resource

(TIGAR),20 we built population-specific transcriptomic pre-

diction models for four MESA-defined populations—Afri-

can American, Chinese, European, and Hispanic/Latino—

across three blood cell types and evaluated their prediction

performance in the Geuvadis21 cohort using PrediXcan.9

From there, we used S-PrediXcan22 to apply our models

to GWAS summary statistics of complex traits from the

multiethnic PAGE5 study and the PanUKBB.7 We hypothe-

sized that MASHR and JTI were most likely to improve

transcriptome prediction and increase the number of

TWAS hits compared with the other methods, as they

both leverage similar effect size estimates across different

conditions—in this case, different populations—to adjust

effect sizes. In agreement with that, our results indicated

that in cross-population predictions, MASHR models have

a higher transcriptome prediction accuracy than other

methods. Furthermore, in our TWASs, MASHR models

discovered the highest number of associated gene-trait

pairs across all population models. These findings illustrate

that leveraging genetic diversity and effect size estimates

across populations can help improve current transcriptome

prediction models, which may increase discovery and repli-

cation in association studies in underrepresented popula-

tions or multiethnic cohorts.
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Material and methods

Training dataset
This study was approved by the Loyola University Chicago institu-

tional review board (project #2014).

To build our transcriptome prediction models, we used data

from the MESA14 multiomics pilot study of the NHLBI TOPMed

consortium. This dataset includes genotypes derived from

whole-genome sequencing and transcripts per million (TPM)

values derived from RNA sequencing (RNA-seq) for individuals

of four different populations—African American (AFA), Chinese

(CHN), European (EUR), and Hispanic/Latino (HIS)—for three

different blood cell types: peripheral blood mononuclear cells

(PBMCs; AFA n ¼ 334, CHN n ¼ 104, EUR n ¼ 528, HIS n ¼
321), CD14þ monocytes (Monos; AFA n ¼ 75, EUR n ¼ 221, HIS

n ¼ 99), and CD4þ T cells (T cells; AFA n ¼ 75, EUR n ¼ 224,

HIS n ¼ 98).
Genotype and RNA-seq QC
We performed quality control (QC) on each MESA tissue-popula-

tion pair separately. For the genotype data4 (Freeze 8,

phs001416.v2.p1), we excluded insertions or deletions (indels),

multiallelic SNPs, and ambiguous-strand SNPs (A/T, T/A, C/G,

G/C) and removed the remaining variants with minor allele fre-

quencies (MAFs) <0.01 and Hardy-Weinberg Equilibrium (HWE)

p <1 3 10�6 using PLINK23 v.1.9. For chromosome X, filtering

by HWE was only applied in variants found within the pseudoau-

tosomal regions based on GRCh38 positions. Furthermore, for the

non-pseudoautosomal region of X, male dosages were assigned

either 0 or 2. After QC, the average numbers of non-ambiguous

SNPs remaining per population across all cell types were as fol-

lows: AFA ¼ 15.7 M, CHN ¼ 8.4 M, EUR ¼ 9.7 M, and HIS ¼
13.2 M.

For the RNA-seq data, we also performed QC separately by tissue

population. First, we removed genes with average TPM values

<0.1. For some individuals, RNA expression levels were measured

at two different time points (exam 1 and exam 5); thus, after log

transforming each measurement and adjusting for age and sex as
023



covariates using linear regression and extracting the residuals, we

took the mean of the two time points (or the single adjusted log-

transformedvalue if expression levelswereonlymeasuredonce),per-

formed rank-based inverse normal transformation, and adjusted for

the first 10genotype and 10 expression principal components (PCs).

To estimate PCs, we used PC-AiR24 with a kinship threshold of

�0.022, which corresponds to 4th-degree relatives. No individuals

were removed. For each tissue, we removed genes absent in at least

one population. After QC, we had 17,585 genes in PBMCs, 14,503

in Monos, and 16,647 in T cells. We used GENCODE25 annotation

v.38 to annotate gene types (e.g., protein coding, long non-coding

RNA [lncRNA], etc.) and gene transcription start and end sites.
Gene expression cis-heritability estimation
We estimated gene expression heritability (h2) using cis-SNPs

within the 1 Mb region upstream of the transcription start site

and the 1 Mb region downstream of the transcription end site. Us-

ing the genotype data filtered only by HWE p <1 3 10�6, for each

tissue-population pair, we first performed linkage disequilibrium

(LD) pruning with a 500 variant count window, a 50 variant count

step, and a 0.2 r2 threshold using PLINK23 v.1.9. Then, for each

gene, we extracted cis-SNPs and excluded SNPs with MAFs

<0.01. Finally, to assess cis-SNP expression h2, we estimated the

genetic relationship matrix and h2 using GCTA-GREML26 with

the ‘‘–reml-no-constrain’’ option. We considered a gene heritable

if it had a positive h2 estimate (h2 � 2*SE > 0.01 and p < 0.05)

in at least one MESA population. In total, 9,206 genes were herita-

ble in PBMCs, 3,804 in Monos, and 4,053 in T cells. We only built

transcriptome prediction models for these heritable genes across

all populations in their respective cell types.
Transcriptome prediction models
With the aforementioned genotype and gene expression data,

we built transcriptome prediction models for each MESA tissue-

population pair, and for each gene, we considered cis-SNPs as

defined in the previous section. Additionally, we only considered

SNPs present in the GWAS summary statistics of the PAGE study5

to build our prediction models to make sure that there would be a

high overlap between SNPs in the transcriptome models and

SNPs in the GWAS summary statistics. After merging with

PAGE SNPs, the average numbers of SNPs left in our dataset

were as follows: AFA ¼ 12.8 M, CHN ¼ 6.2 M, EUR ¼ 7.4 M,

and HIS ¼ 10.5 M.

We built our population-based models using five different ap-

proaches. The first was elastic net (EN) regression using the glmnet

package in R,15,16 with mixing parameter a ¼ 0.5. We considered

EN our baseline model, as it has been previously used to make

transcriptome prediction models for the TOPMed MESA data.27

The second method implemented was MASHR.19 Unlike EN,

MASHR does not estimate weights by itself; rather, it takes Z score

(or weight and SE) matrices as input and adjusts them based on

correlation patterns present in the data in an empirical Bayes algo-

rithm, allowing for both shared and condition-specific effects. By

doing so, MASHR increases power and effect size estimation accu-

racy.19 Originally, MASHR applicability was demonstrated by

leveraging effect size estimates across different tissues;19 however,

herein, we sought to assess its potential to leverage effect sizes

across populations. We ran MASHR for each gene at a time, using

cis-SNPs weights (effect sizes) estimated by Matrix eQTL18 and

MESA populations as different conditions (Figure 2A). Then, we

split MASHR-adjusted weights according to their respective popu-
Human
lations and selected the top SNP (lowest local false sign rate) per

gene to determine which SNPs would end up in the final models

(Figure 2B). Local false sign rate is similar to false discovery rate

but is more rigorous, as it also takes into account the direction

of effect.19 Thus, by selecting one top SNP per population, the

maximum number of SNPs per gene in the final model is 4, which

corresponds to the number of populations in our study. If two or

more populations had the same variant as the top SNP, it was

only included once. To make population-based models, we used

population-specific effect sizes taken from the corresponding

MASHR output matrices.

The third method was based on the unadjusted effect sizes esti-

mated by Matrix eQTL18 using the linear regression model. We

used the same approach taken to build the MASHR models,

including the SNP with the lowest p value from each population,

but the key difference is that we made the models using the unad-

justed effect sizes.

The fourth method we used was TIGAR, which trains transcrip-

tome imputation models using either EN or non-parametric

Bayesian Dirichlet process regression (DPR).20 As we already used

EN to make a set of transcriptome prediction models, we opted

to make DPR-based models. We used TIGAR’s default parameters

to train our models, such as using the variational Bayesian algo-

rithm and outputting fixed effect sizes. However, by default,

TIGAR performs 5-fold cross-validation (CV) during training and

only outputs results if the final average CV R2 is equal or greater

than 0.005; thus, since we did not implement CV for any of the

aforementionedmethods and instead tested performance in an in-

dependent sample, we opted to skip this step of TIGAR’s pipeline

and generate outputs for all genes. Most genemodels generated by

TIGAR had hundreds of SNPs with near-zero effect sizes. To reduce

memory requirements for storage of these models, we removed

SNPs with effect sizes smaller than 1 3 10�4.

The fifth and last method we implemented was JTI.17 JTI was

designed to leverage similarity in gene expression and DNase 1

hypersensitive sites across different tissues to possibly improve

prediction performance. Thus, similarly to MASHR, we sought

to assess whether the method could be adapted to use popula-

tions instead of tissues. To assess gene expression similarity be-

tween MESA populations, we computed transcriptome-wide

pairwise correlations between populations using the median

TPM value per gene. Additionally, we did not have population

DNase 1 hypersensitivity site data, so we set column five to 1

in our input files. By default, JTI performs 5-fold CV and only

produces outputs for genes with an average CV R greater than

0.1. Thus, similarly to TIGAR, we removed this filtering step of

the pipeline to generate output for all genes regardless of CV

performance.

To perform TWASs using GWAS summary statistics data, it is

necessary to have information about the correlation between

the SNPs used to predict gene expression levels.22 Thus, for all

our transcriptome prediction models previously mentioned, we

computed pairwise covariances for the SNPs within each

TOPMed MESA population model using the respective population

dosage data. All model files are freely available for anyone to use

(see data and code availability section).
Assessing transcriptome prediction performance
To evaluate the gene expression prediction performance of all our

transcriptome prediction models, we used DNA and lymphoblas-

toid cell lines RNA-seq data from 449 individuals in the
Genetics and Genomics Advances 4, 100216, October 12, 2023 3



Figure 2. Design of the methodology implemented to make MASHR models
(A) Using effect sizes estimated using Matrix eQTL within each population dataset, we combined them across genes, with the different
populations as conditions, to use as input for MASHR. The output matrixes contain adjusted effect sizes.
(B) For each population, we selected the top SNP (lowest local false sign rate) per gene. Then, we concatenated the gene-top SNP pairs
across populations to determine which SNPs would end up in the final models. Lastly, to make our population-based transcriptome pre-
diction models, we used population-specific effect sizes taken from the corresponding MASHR output matrices. AFA, African American;
CHN, Chinese; EUR, European; HIS, Hispanic/Latino.
Geuvadis21 study. Individuals within the testing dataset belong to

five different populations (Utah residents with Northern and

Western European ancestry [CEU], n ¼ 91; Finnish in Finland

[FIN], n ¼ 92; British in England and Scotland [GBR], n ¼ 86; To-

scani in Italy [TSI], n¼ 91; Yoruba in Ibadan, Nigeria [YRI], n¼ 89),

which we analyzed both separately and together (ALL). Similarly

to our training dataset, we performed rank-based inverse normal

transformation on the gene expression levels and adjusted for

the first 10 genotype and 10 expression PCs using the residuals

as observed expression levels. With the Geuvadis genotype data

and our transcriptome prediction models, we used PrediXcan9 to

estimate gene expression levels. PrediXcan is a two-step TWAS

method in which the first step is to estimate genetically regulated

expression levels (GReXs). Thus, to assess transcriptome predic-

tion performance, we compared GReXs with the adjusted,

measured expression levels using Spearman correlation.

Assessing performance in TWASs
To test the applicability of our transcriptome prediction models in

multiethnic association studies, we applied S-PrediXcan22 to

GWAS summary statistics from the PAGE study.5 The PAGE study

consists of 28 different phenotypes tested for association with var-

iants within a multiethnic, non-European cohort of 49,839 indi-

viduals (Hispanic/Latino, n ¼ 22,216; African American, n ¼
4 Human Genetics and Genomics Advances 4, 100216, October 12, 2
17,299; Asian, n ¼ 4,680; Native Hawaiian, n ¼ 3,940; Native

American, n ¼ 652; or other, n ¼ 1,052). Since we tested multiple

phenotypes and transcriptome prediction models in our TWASs,

we used a conservative approach and considered genes as signifi-

cantly associated with a phenotype if the association p value

was less than the standard Bonferroni-corrected GWAS signifi-

cance threshold of 5 3 10�8.

To replicate the associations found in PAGE, we also applied S-

PrediXcan19 to PanUKBB7 GWAS summary statistics (total n ¼
441,331; European, n ¼ 420,531; Central/South Asian, n ¼
8,876; African, n ¼ 6,636; East Asian, n ¼ 2,709; Middle Eastern,

n ¼ 1,599; or admixed American, n ¼ 980). For similarity pur-

poses, we selected summary statistics of phenotypes that overlap

with the ones tested in PAGE (Table S1). As previously described,

a gene-trait pair association was considered significant if its p

value was less than the Bonferroni-corrected GWAS significance

threshold of 5 3 10�8. Furthermore, we deemed significant

gene-trait pair associations as replicated if they were detected by

the same MESA tissue-population model and had the same direc-

tion of effect in PAGE and the PanUKBB. To assess if the gene-

trait association pairs found in our study had been previously

reported, we compared them with studies found in the GWAS

Catalog1 (all associations v.1.0.2 file was downloaded on

November 9, 2022).
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Results

Increased sample sizes improve gene expression cis-h2

estimation

With the goal of improving transcriptome prediction in

diverse populations, we first determined which gene expres-

sion traits were heritable and thus amenable to genetic pre-

diction using genome-wide genotype and RNA-seq data

from three blood cell types (PBMCs, Monos, T cells) in

TOPMed MESA. We estimated cis-h2 using data from four

different populations (AFA, CHN, EUR, and HIS). Variation

in h2 estimation between populations is expected due to

differences in allele frequencies and LD patterns; however,

we show that larger population sample sizes yield more sig-

nificant (p < 0.05) h2 estimates (Figure 3). Using the PBMC

dataset as an example,with the EURdataset (n¼ 528), we as-

sessed h2 for 10,228 genes; however, we estimated h2 for

8,765 genes using the AFA dataset (n ¼ 334) (Figure 3A).

Moreover, we see a great impact on the CHN population,

which has the smallest sample size. For that population, we

managed to estimate h2 for only 3,448 genes. The same

pattern repeats when analyzing only the heritable

genes (h2 lower bound > 0.01). In EUR, 6,902 genes were

deemed heritable, whereas in AFA and CHN, the amounts

of heritable genes are 5,537 and 1,367, respectively

(Figure 3B). Thus, larger sample sizes are needed to better

pinpoint h2 estimates, especially in non-European popula-

tions. In total, analyzing the union across all populations’ re-

sults, we detected 9,206 heritable genes in PBMCs, 3,804 in

Monos, and 4,053 in T cells.
MASHR models improve cross-population

transcriptome prediction performance

To improve TWAS power for discovery and replication

across all populations, we sought to improve cross-popula-

tion transcriptome prediction accuracy. For this, we used

data from four different populations and built gene expres-

sion prediction models using five different methods (EN,

TIGAR, Matrix eQTL, MASHR, and JTI). We chose EN as a

baseline approach for comparison in our analysis as it has

been previously shown to have better performance than

other common machine-learning methods such as random

forest, K-nearest neighbor, and support vector regression.28

Furthermore, we trained gene expression prediction models

by applying TIGAR’s non-parametric Bayesian DPR pipe-

line.20 Using Matrix eQTL, we estimated univariate effect

sizes for each cis-SNP-gene relationship, and we developed

an algorithm to include top SNPs from each population

but population-estimated effect sizes in each population’s

model (Figure 2). Matrix eQTL effect sizes are the input for

MASHR, which we hypothesized might better estimate

cross-population effect sizes due to its flexibility in allowing

both shared and population-specific effects.19,29 Similarly,

JTI was designed to leverage correlation across different tis-

sues to improve gene expression prediction;17 thus, we also

adapted its pipeline to perform cross-population leveraging.
Human
By filtering our models to include only genes with positive

h2 (h2 lower bound > 0.01) in at least one population, we

saw that among all methods used, we obtained more gene

models in Matrix eQTL and MASHR (Figure 4A). The differ-

ence is especially greater in the CHN population model.

To evaluate model performance in population-matched

and cross-population transcriptome predictions, we used

data from the Geuvadis study, which comprises individuals

of West African or European descent. We defined ‘‘popula-

tion-matched predictions’’ as the scenarios in which the

transcriptome model MESA training data and Geuvadis test

data have the closest genetic distance with available data,

and we defined ‘‘cross-population predictions’’ as any other

pairs (Figure S1). Overall, across all Geuvadis populations,

the methods tested show distinct performances (Figure S2).

This result, however, may be influenced by the fact that

different transcriptome models have a different number of

genes in them (Figure 4A). Thus, we sought to compare per-

formances considering the intersectionof geneswithexpres-

sion predicted by all methods. Focusing on Geuvadis GBR

and YRI populations, which have similar sample sizes and

are of distinct continental ancestries, we observed that

MASHRmodels significantly outperform the other methods

in cross-population transcriptomepredictions, as seen in the

AFA-GBR and EUR-YRI MESA-Geuvadis population pairs

(Figure 4B; Table S2). The only exception is in AFA-GBR, in

whichMASHR andMatrix eQTL have similar performances.

Additionally, inpopulation-matched scenarios (AFA-YRI and

EUR-GBR), prediction performance does not significantly

differ betweenMASHR,Matrix eQTL, andEN.All three afore-

mentionedmethods significantlyoutperform JTI andTIGAR

in population-matched predictions (Table S2).Moreover, we

also performed pairwise comparisons between all methods

using all Geuvadis populations, taking into account the

intersection of genes with expression predicted in each

case. Overall, across all MESA transcriptome models and

Geuvadis populations,MASHRmodels either performedbet-

ter or the same as other methods in both population-

matchedand cross-population transcriptomeprediction sce-

narios (Table S3).

Leveraging effect sizes across different populations

improves discovery rate in multiethnic TWASs

In order to investigate the applicability of the models we

built in multiethnic TWASs, we used S-PrediXcan with

GWAS summary statistics of complex traits from PAGE

and the PanUKBB. We show that across all tissue-popula-

tion models, MASHR identified the highest number of

gene-trait pair associations (208) that replicated in both

PAGE and the PanUKBB (p < 5 3 10�8), followed by Ma-

trix eQTL (173), JTI (131), EN (94), and TIGAR (91)

(Table S3). When analyzing the total number of discov-

eries separately for each population, MASHR had the

highest number of gene-trait pairs in most population

models (Figure 5A). The only exception is with HIS

models, in which both MASHR and Matrix eQTL had

the same number of discoveries. The discovery rate
Genetics and Genomics Advances 4, 100216, October 12, 2023 5



Figure 3. PBMC gene expression cis-heritability estimates across MESA populations
(A) Gene expression cis-heritability (h2) estimated for different genes across different MESA population datasets in PBMCs. Only genes
with significant estimated h2 (p < 0.05) are shown. Gray bars represent the standard errors (2*SE). Genes are ordered on the x axis in
ascending h2 order and colored according to the h2 lower bound (h2 � 2*SE).
(B) Number of significant heritable genes (p < 0.05 and h2 lower bound > 0.01) within each PBMC population dataset by sample size.
AFA, African American; CHN, Chinese; EUR, European; HIS, Hispanic/Latino.
improvement by MASHR is exceptionally high in CHN

models, as it had almost twice the number of discoveries

as the second-highest method (27 by MASHR vs. 14 by

Matrix eQTL).
6 Human Genetics and Genomics Advances 4, 100216, October 12, 2
Additionally, when comparing gene-trait pairs, we saw

that most MASHR hits were shared between population

models, whereas other methods have higher population-

specific discoveries (Figure 5B). Most Matrix eQTL hits
023



Figure 4. Comparison of MESA population transcriptome prediction models
(A) The number of genes in each MESA population model by method and tissue.
(B) Prediction performance (Spearman’s rho) of EN, JTI, MASHR, Matrix eQTL, and TIGAR PBMCMESA population models in Geuvadis
GBR and YRI populations. Only the intersections of genes with expression predicted by all methods for eachMESA-Geuvadis population
pair are shown. MASHR performed better than or the same as all other methods (see Table S2 for all pairwise comparisons).
were also shared by many population models but not to

the same degree as MASHR. Altogether, these findings indi-

cate that MASHR models show high consistency and also

suggest that TWAS results are not as affected by the

MASHR population model used compared with other

methods.

To contextualize our models’ findings, we investigated

whether the discovered gene-trait pairs had been previously

reported in any studies in the GWAS Catalog (https://www.
Human
ebi.ac.uk/gwas/home). We saw that across 105 distinct

gene-trait pairs associations found (totaling 697 across all

models), 38 (36.19%) have not been reported in the

GWAS Catalog and therefore may be unconfirmed associa-

tions that require further investigation (Table S4). Out of

those unreported biological associations, most of them

(13) were discovered with MASHR AFA models (Table S4).

Furthermore, out of the 67 distinct known GWAS Catalog

associations discovered, MASHR models identified most of
Genetics and Genomics Advances 4, 100216, October 12, 2023 7
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Figure 5. Number of significant S-PrediXcan gene-trait pairs in PAGE and PanUKBB GWAS summary statistics
(A) Total number of significant gene-trait pairs discovered by each MESA population model (considering the union of the three tissues)
by method.
(B) Number of significant gene-trait pairs discovered with individual or multiple MESA populations colored by method (considering the
union of the three tissues). Population set intersections are indicated on the x axis in color.
them (Table S3). For instance,MASHR EURmodels found 34

known associations, followed by MASHR AFA with 33, and

Matrix eQTL EUR with 32 (Figure S3).
Discussion

In this work, we sought to build population-based tran-

scriptome prediction models for TWASs using data from

the TOPMed MESA cohort using five distinct approaches.

We saw that although the AFA and HIS populations’ data-

sets contained the highest numbers of SNPs after quality

control, EUR yielded the highest number of gene expres-

sion traits with significant h2 estimates across all tissues

analyzed. This is most likely due to the higher sample

size in EUR compared with AFA and HIS, as larger sample

sizes provide higher statistical power to detect eQTLs

with smaller effects.30 Furthermore, we saw that the num-

ber of genes in each population transcriptomemodel is not

the same across all methods tested. Some transcriptome

prediction models, such as the ones built using EN or JTI,

only contain genes for which the SNPs effect sizes

converged during training, which is not a limiting factor

for MASHR, Matrix eQTL, and TIGAR. One of the factors

that impacts the number of genes for which SNP effect

sizes converge during training is sample size, which ex-

plains the lower number of genes in the EN and JTI CHN
8 Human Genetics and Genomics Advances 4, 100216, October 12, 2
models compared with other population models. Further-

more, although sample size does not impact the number

of gene models trained for TIGAR to the same degree as

EN and JTI, it influences SNP effect size estimation.31

Thus, when we removed SNPs with near-zero effects, there

was a drop in the number of genes in the final population

transcriptome models for TIGAR. Test data sample size has

also been shown to positively correlate with gene expres-

sion prediction accuracy.32

In addition to sample size, gene expression prediction

accuracy is known to be greater when the training and

testing datasets have similar ancestries11,12,32,33; however,

non-European ancestries are vastly underrepresented in

human genetics studies,2,3 which compromises the ability

to build accurate TWAS models for them. Thus, using data

from the Geuvadis cohort, we evaluated the transcriptome

prediction performance of our models and found that

MASHR models either significantly outperformed all

other methods tested or had similar performance. Previous

studies have shown that by borrowing information across

different conditions, such as tissues19 or cell types,34

MASHR identifies shared or condition-specific eQTLs,

which can enhance causal gene identification29 as well as

improve effect size estimation accuracy.19 Similarly, by

leveraging effect size estimates across multiple popula-

tions, MASHR improved cross-population transcriptome

prediction without compromising population-matched
023



prediction accuracy. Interestingly, another method we

tested, JTI, was also originally designed to leverage similar-

ity in gene expression and DNase 1 hypersensitive sites

across tissues in order to improve transcriptome prediction

accuracy.17 However, our results showed that it performed

worse than MASHR and the same as EN in cross-popula-

tion transcriptome prediction. This suggests that distinct

cross-condition leveraging frameworks may have different

performances when applied across populations. One

possible reason for differences in performance is that JTI

uses EN weighted by condition similarity to estimate effect

sizes and select SNPs to be included in the final models,

whereas for MASHR, our pipeline selects one SNP per con-

dition. Since more SNPs with less significant effect sizes

were included in our EN and JTI models, greater uncer-

tainty in effect sizes likely led to lower transcriptome pre-

diction accuracy compared with MASHR. Furthermore,

among the methods evaluated, TIGAR had the lowest pre-

diction performance. Originally, TIGAR was benchmarked

against EN and showed better transcriptome prediction ac-

curacy; however, unlike in our analysis, their analysis

included only genes whose expression h2 was equal or

lower than 0.2.20

Discovery and replication of TWAS associations are also

related to the ancestries of the transcriptome prediction

model training dataset and ancestries of the TWAS sample

dataset.11 Thus, we assessed the applicability of our models

in TWASs using S-PrediXcan on PAGE and PanUKBB GWAS

summary statistics and found that across all tissues and pop-

ulations,MASHRmodels yielded thehighestnumberof total

gene-trait pairs associations, withMASHR AFA reporting the

highest number. In this manner, it seems that although

MASHR improved gene expression prediction accuracy for

all populations analyzed, using transcriptome prediction

models that match the ancestries of the GWAS dataset still

yields the highest number of TWAS discoveries, which is in

agreement with many previous studies.11,35–38 Our results

also showed that although JTI transcriptome prediction

was not as accurate as baseline EN, JTI models had more

TWAS discoveries than EN. This exemplifies how integrating

data from different genetic ancestries may improve TWASs.

By investigating which associations had been previously

reported in the GWAS Catalog, we saw that most unre-

ported discoveries were found by MASHR models. Some

of these discoveries are unique to MASHR models and

have been corroborated previously, such as YJEFN3 (also

known as AIBP2) and triglycerides, whose low expression

in zebrafish increases cellular unesterified cholesterol

levels,39 consistent with our S-PrediXcan effect size direc-

tions (PAGE effect size ¼ �0.52, p ¼ 6.1 3 10�16;

PanUKBB effect size ¼ �0.86, p ¼ 7.1 3 10�86). Addition-

ally, we also saw that MASHR models showed higher con-

sistency across the different population transcriptome pre-

diction models, which means that TWAS results are not as

affected by the population model used as other methods.

One limitation of our TWAS is that we used transcriptome

predictionmodels trained inPBMCs,monocytes, andTcells,
Human
andthose tissuesmightnotbe themost appropriate for some

phenotypes in PAGE or the PanUKBB. Additionally, because

of the smaller sample sizes for some populations in our

training dataset, h2 and eQTL effect size estimates have large

standard errors, which may affect the ability of MASHR to

adjust effect sizes across different conditions based on

correlation patterns present in the data. Regardless of that,

our results mainly demonstrate that we can implement

cross-population effect size leveraging using a method first

applied to do cross-tissue effect size leveraging—and

improve cross-population transcriptome prediction accu-

racy indoing so. Thus, increasing sample size for underrepre-

sented populations will improve current MASHR TWAS

models’ performances as well as increase genetic diversity

in the data. Another TWAS method, multi-ancestry tran-

scriptome-wide analysis (METRO),which implements a like-

lihood-based inference framework to incorporate transcrip-

tome prediction models built on datasets of two different

genetic ancestries, has also shown enhanced TWAS power.40

METRO jointly models gene expression and the phenotype

of interest40 and thus was not directly comparable with the

fivemethodswe testedhere,which all separate the transcrip-

tome prediction step from the association test. Given that

this traditional two-stage TWAS procedure ignores uncer-

tainty in the expression prediction, the joint approach of

METROacrossmore than twopopulations is anareaof future

TWAS method research. Furthermore, while our study

focused on transcriptome prediction, MASHR could also be

adapted to possibly improve cross-population polygenic

risk scores (PRSs). Indeed,othermethods likePRS-CSx jointly

model complex traits effects across populations in order to

improve PRSs.41 MASHR is most useful when population ef-

fects are shared, as demonstrated by the more consistent

S-PrediXcan results, but population-specific effects are also

relevant. For instance, a study in a large African American

and Latino cohort discovered eQTLs only present at appre-

ciable allele frequencies in African ancestry populations.38

Moreover, since our MASHR models focus on the top SNPs,

we might not be including enough eQTLs in the models,

especially for those genes whose expression is genetically

regulated bymultiple eQTLswith small effects. A small num-

ber of SNPs in the models may also contribute to a reduced

degree of SNP overlap between the transcriptome prediction

model and the test dataset. Thus, it is important tomaximize

SNP overlap in the test dataset, such as by performing SNP

imputation with proper reference panels.

In conclusion, our results demonstrate the importance

and the benefits of increasing ancestry diversity in the

field of human genetics, especially regarding association

studies. As shown, sample size is valuable for assessing gene

expressionh2 and for accurately estimatingeQTLeffect sizes,

and thus somepopulations are negatively affected due to the

lack of data. However, by making transcriptome prediction

models that leverage effect size estimates across different

populations using multivariate adaptive shrinkage, we were

able to increase gene expression prediction performance

for scenarios in which the training data and test data have
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distant (‘‘cross-population’’) genetic distances with available

data. Additionally, when applied tomultiethnic TWASs, the

aforementioned models yielded more discoveries across all

methods analyzed, even detecting well-known associations

that were not detected by other methods. Thus, in order to

further improve TWASs in multiethnic or underrepresented

populations and possibly reduce healthcare disparities, it is

necessary to use methods that consider shared and popula-

tion-specific effect sizes, as well as increase available data of

underrepresented populations.
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1. Supplemental Figures 

 

 
Figure S1: Genotype principal component analysis. Plot of the first two principal 

components of TOPMed MESA populations with Geuvadis populations. Proportions of 

variance explained by the first two principal components estimated using the top 1670 principal 

components. AFA = African American (TOPMed), CEU = Utah residents with Northern and 

Western European ancestry (Geuvadis), CHN = Chinese (TOPMed), EUR = European 

(TOPMed), FIN = Finnish in Finland (Geuvadis), GBR = British in England and Scotland 

(Geuvadis), HIS = Hispanic/Latino (TOPMed), TSI = Toscani in Italy (Geuvadis), YRI = 

Yoruba in Ibadan, Nigeria (Geuvadis). 

 



 

     
Figure S2: Overall prediction performance of MESA population models in Geuvadis.      
Prediction performance (median Spearman’s rho) of EN, JTI, MASHR, MatrixeQTL, and 

TIGAR MESA population models in all Geuvadis populations. 
 

 

 

 



 

     
Figure S3: Number of significant S-PrediXcan gene-trait pairs in PAGE and PanUKBB 

GWAS summary statistics that have been reported in the GWAS catalog. Total number of 

significant gene-trait pairs discovered by each MESA population model (considering the union 

of the three tissues), by method.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

2. Supplemental Tables 

 

Table S1: PAGE and PanUKBB summary statistics used in this study.  

 

Table S2: Performance comparisons of PBMC AFA and EUR MESA transcriptome prediction 

models in the GBR and YRI Geuvadis populations between all methods. 
 

Table S3: Pairwise comparisons of the performance of EN, JTI, MASHR, MatrixeQTL, and 

TIGAR MESA transcriptome prediction models in all Geuvadis populations. 

 

Table S4: Compiled S-PrediXcan gene-trait pair discoveries, significant in PAGE and 

PanUKBB GWAS summary statistics with the same direction of effect. 

 

Table S5: List of NHLBI TOPMed consortium members. 
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