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1 Algorithmic details

DIVE operates symmetrically, forming upstream and downstream scores for each an-
chor; we describe the procedure here for downstream targets. For each anchor, DIVE
generates a target dictionary with an online clustering method that collapses targets
within “sequencing error” distance. It then models the number of clusters formed at
each step using a Poisson-Binomial model. An anchor must be observed sufficiently
often (> Nmin times) to have adequate statistical power to call its targets more diverse
than expected by chance. To keep the memory footprint low, for every 100k reads,
DIVE computes the probability that an anchor will be observed at least Nmin times in
the FASTQ file (Nmin = 25). If this probability is < 1%, DIVE does not accept newly
observed anchors into the dictionary. After the FASTQ file is completely traversed,
DIVE uses a Poisson-Binomial model to compute the probability PH0(CN ≥ cN | N)
that the number of clusters CN exceeds the observed value cN under the null hypoth-
esis that the observed target diversity is due to background variability. DIVE uses
the Benjamini-Hochberg (BH) correction to control the false discovery rate (FDR).
Anchors producing significant target diversity are clustered using DBSCAN with the
Levenshtein edit distance as a metric to remove redundancies. Within each anchor
cluster, the anchor with the largest effect size in each direction is picked as the rep-
resentative anchor. The analysis in this paper has been done using the representative
anchors. Representative anchors, the number of clusters (C), the number of times a
target was observed with the anchor (N), the effect size α(cN) = log2(cN/E[CN | N ]),
and corrected p-values are reported. All numbers described above, such as k, 1%, and
100k, are user-adjustable parameters. To facilitate interpretation, DIVE aligns the RAs
(BLAST) to a set of databases provided by the user.

2 Removal of technical artifacts

Artificial sequences such as sequencing adapters will exhibit statistical signatures like
bona fide MGEs (highly variable downstream sequences) and serve as positive controls.
DIVE identified several such sequences, and we removed them before proceeding to the
rest of the downstream analysis. We also discarded representative anchors with low
nucleotide entropy (H < 3) to remove other potential technical artifacts. To that end,
we compute an empirical estimate of the entropy based on 5-mers using
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H =
∑
x∈S5

p(x) log p(x)

where p(x) is estimated from the anchor by partitioning it into overlapping 5-mers
and where we take the convention that 0 log 0 = 0. We require H > 3 for the anchor to
be considered in the downstream analysis.

3 Simulations

In order to test the performance of DIVE in detecting the termini of mobile genetic
elements, we performed two sets of simulations (Fig. S2).

In the first setting, we simulated an ancestral mobile element inserted in the same
position in all the sampled genomes (Fig. S2a). First, a base random genome of length
100 kbp is generated. Then, mutations and indels are randomly introduced to generate
100 different genomes, modeling the strain variation of the organism. This is done
for varying rates MIR= 0.01, 0.025, 0.05, 0.1, 0.2 at each nucleotide in each individual
genome. If the original genome is modified, then with probability 0.8 a substitution is
introduced and with probability 0.2 an insertion or deletion is introduced with equal
probability. This results in a set of 100 genomes with varying degrees of sequence
divergence. Subsequently, a fixed number of copies of a randomly generated sequence
of 100 bp, representing an ancestral mobile element, is introduced into each individual
genome with varying copy number CN= 2, 5, 10, 15, 20. Finally, the individual genomes
are sampled to obtain 100 bp reads producing the desire coverage C= 5, 10, 20, 30, 40, 50.
This results in a set of reads that are used as input for DIVE. The anchors identified by
DIVE are then compared to the termini of the simulated mobile element to determine
the specificity and sensitivity of the algorithm. A true positive consists of a sequence
overlap greater than 10 nt. This procedure is done 250 times for each combination
of mutation/indel rate MIR, copy number CN, and coverage C, which allows us to
calculate the true positive rate and the false positive rate for a given q-value threshold.
Varying the q threshold we obtained the ROC shown in Fig. S3.

In the second setting, we simulated an active mobile element with a single copy
inserted in different positions among the sampled genomes (Fig. S2b). We follow
the same procedure as in the first scenario to generate a set of 100 genomes with
varying degrees of sequence divergence (MIR= 0.01, 0.025, 0.05, 0.1, 0.2). Subsequently,
a single copy of a randomly generated sequence of 100 bp, representing an active mobile
element, is introduced into each individual genome. A new position is selected for each
genome with varying probabilities, emulating different levels of activity of the element
(AL= 0.25, 0.5, 0.75, 1.0). Finally, the individual genomes are sampled to obtain 100 bp
reads producing the desire coverage C= 5, 10, 20, 30, 40, 50. This results in a set of reads
that are used as input for DIVE. The anchors identified by DIVE are then compared to
the termini of the simulated mobile element to determine the specificity and sensitivity
of the algorithm. A true positive consists of a sequence overlap greater than 10 nt. This
procedure is done 250 times for each combination of mutation/indel rate MIR, activity
level AL, and coverage C, which allows us to calculate the true positive rate and the
false positive rate for a given q-value threshold. Varying the q threshold we obtained
the ROC shown in Fig. S4.
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Note that in both cases the performance of DIVE improves with the coverage as
expected. In the ancestral mobile element simulation, the performance also improves
with higher copy number, whereas in the active element simulation the performance
there is an improvement for higher activity levels.

4 Comparison with MGEfinder

MGEfinder [Durrant et al., 2020] is a recently developed tool for de novo discovery of
MGEs that outperformed the state of the art methods for mobile element discovery.
As the rest of the tools, however, MGEfinder requires a reference genome to perform
an alignment step. As a result, the quality of the reference severely conditions the
algorithm’s sensitivity. In parallel, MGEfinder relies on assembly algorithms to assemble
all the available sequencing reads. To detect MGEs, the algorithm searches for clipped
aligned reads to identify putative termini of mobile elements. Since this is the critical
part of the algorithm, we compared the performance of both DIVE and MGEfinder in
the previous simulated scenarios.

We first used the previous simulated data to compare the performance of the two
tools in detecting the termini of mobile elements, emulating the simulations performed
in [Durrant et al., 2020]. To that end, we ran MGEfinder (v1.0.6) on each set of reads
generated during our simulations. Note, however, that MGEfinder does not compute
a p-value, and thus we cannot produce ROC curves and compare the area under the
curve of the two algorithms. Instead, we limited the comparison to the true positive
rate of the algorithms, using a significance threshold of q ≤ 0.1 for DIVE, which we
also use in the rest of the paper. As for MGEfinder, the reference genome used in the
one generated in the first step (see Fig. S2), and the parameters were just set to the
default values.

In the first scenario where we considered an ancient mobile element with multiple
copies in the genome, MGEfinder only outperfomed DIVE when there are only two
copies of the element and when the mutation and indel rate was very low. In the
rest of scenarios, DIVE performed at least as well as MGEfinder. When the mutation
and indel rate is greater than 1%, DIVE consistently shows higher sensitivity than
MGEfinder, which eventually cannot detect the mobile element (TPR=0%) due to the
lack of reliability of the reference genome. In contrast, the performance of DIVE is not
altered by the mutation and indel rate since it does not rely on an alignment step to
a particular reference genome. In the second scenario, where the mobile element has
a single copy found at different loci at different rates, DIVE can detect the termini
with sufficient coverage (20x), whereas MGEfinder cannot do so consistently even at
low mutation and indel rates. Overall, DIVE shows greater sensitivity than MGEfinder
in almost all scenarios in detecting mobile element termini, which is the foundation of
both algorithms.

Nevertheless, to test if the increased theoretical power of DIVE compared to MGEfinder
is born out in real data, we ran DIVE on data highlighted in the MGEfinder study.
We analyzed 200 Neisseria gonorrhoeae isolates used in [Durrant et al., 2020] and com-
pared the detection power of DIVE to reported results by MGEfinder. DIVE reported
81,792 unique RAs mapping to 190 different TEs (BLAST e < 0.01), compared to 28
TEs reported by MGEfinder in the 891 isolates analyzed. TEs detected by DIVE could
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constitute ancestral TEs present in the N. gonorrhoeae genome. To test this, we ran
DIVE on unaligned reads after mapping (bowtie2) to the reference genome as in [Dur-
rant et al., 2020] (overall alignment rate 88%). DIVE called 868 unique RAs mapping
to 107 different TEs (Table S4, Fig. 2). The large effect sizes found in reads failing
to align to the reference genome lead us to hypothesize that these elements are active
TEs in N. gonorrhoeae. Unfortunately, however, the identity of the TEs detected by
DIVE and MGEfinder were not comparable since the latter did not cross-reference their
predicted TEs with any database.

5 Novel CRISPR array in R. bromii

We ran DIVE on human gut metagenomic samples with a Rotavirus infection (Table
S13). DIVE called 133,528 unique RAs mapping to 2,991 MGEs and 575 CRISPR
repeats. Imposing the CRISPR repeat criteria outlined in the main text revealed an
RA that did not perfectly match any known repeat in the CRISPR-Cas++ repeat
database but aligned 15 times (BLAST e < 0.01) to a phage identified in metagenomic
data [Tisza and Buck, 2021]. The RA was not found in any other sequence on the
NCBI nucleotide collection (nr/nt) or the DR database but has 2 mismatches from the
closest DR. We note that BLAST of the RA to the NCBI WGS database restricted to
the bacterium Ruminococcus bromii (taxid:40518) gives perfect matches in a locus with
CRISPR-associated (Cas) genes very similar to that in the phage contig (other parts of
the phage contig also match to R. bromii). 13/43 targets mapped (BLAST e < 0.01)
to Siphoviridae (13/13), Podoviridae(2/13), and Myoviridae (1/13), supporting it as a
CRISPR system. Thus, we hypothesize this RA constitutes a novel functional CRISPR
DR. To the best of our knowledge, no CRISPR system has been previously reported in
R. bromii.

6 Non-coding RNA as magnets of MGEs

In Escherichia coli, DIVE called 712 unique RAs that showed target hyper-variability
mapping to 84 different Rfam accessions annotated as tRNA genes (BLAST e < 0.01).
The target diversity of seven RAs, mapping to four unique tRNA genes, was significantly
associated with the isolation source (Table S7; Fig. S5). These included Met-tRNA, a
known target of retrotransposons [Martinez, 2017], and a valU operon encoding three
tRNA genes. The RAs tended to align to the ends of the gene and accrued up to
3,000 unique targets resulting in 1,400 clusters (Methods). However, no RA mapped
within an individual genome on the NCBI nucleotide database more than eleven times
(BLAST e < 0.01), suggesting the observed target variability cannot be explained
alone by the within-genome variability. Only 2% of the targets mapped tRNA genes
(bowtie2), suggesting the observed variability was not due to subtle modifications in
the tRNA sequence.

Among ncRNA genes showing a significant association with the isolation source, we
identified an E. coli nucleoid-associated noncoding RNA 4 (naRNA4) gene (U00096.3/900752-
900832). naRNA4 genes are encoded in repetitive extragenic palindrome (REP) re-
gions, previously observed at the recombination junctions of lambda phages [Kumagai
and Ikeda, 1991] and described as hotspots for transposition events [Tobes and Pareja,
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2006]. 823 unique RAs mapped (BLAST e < 0.01) to 82 Rfam accessions annotated as
distinct naRNA4 genes, concentrating at the ends of the gene (Table S8). The max-
imum number of times a RA aligned within an individual genome on NCBI was 131
(BLAST e < 0.01), whereas RAs had up to 140,000 distinct targets, comprising over
500 sequence clusters. Furthermore, over 90% of targets did not align to any naRNA4
gene (bowtie2), suggesting the observed variability was not due to subtle modifications
to the naRNA4 sequence. DIVE produced similar results for four tRNA genes in the
Vibrio cholera isolate data (Methods). DIVE also identified 264 RAs mapping (BLAST
e < 0.01) to 26 Rfam accessions annotated as antisense RNA 5 (asRNA5), including
four RAs mapping to two V. cholerae O1 biovar el Tor asRNA5 genes showing a target
diversity significantly associated with available covariates (Table S9). RAs showed no
bias in their alignment position. Although no RA mapped within an individual genome
on NCBI more than 51 times (BLAST e < 0.01), some RAs reached 160 target clusters.
Furthermore, over 75% of targets did not map to any asRNA5 gene (bowtie2), suggest-
ing the observed target diversity was not due to subtle modifications to the asRNA5
sequence.

7 Antibiotic resistance in V. cholerae SXT ICEs

We ran DIVE on 247 V. cholerae isolates and aligned the resulting RAs to six known
SXT ICEs. RAs accumulated nearby antibiotic resistance genes (Fig. 2), which define
cargo gene hotspots. In particular, RAs clustered near known hotspots in SXT ICE vari-
ants ICEVchInd4, ICEVchInd5, ICEVchMO10, ICEVchBan9, and ICEVchChn956. In
addition, we found a unique RA cluster in ICEVchBan8 in a different location, over-
lapping a known transposase. Furthermore, when we aligned the corresponding set of
targets to a TE database (TnCentral) [Ross et al., 2021], we found alignment rates
of 10% (bowtie2), consistent with the fact that cargo genes mobilize via transposons
[Benler et al., 2021]. Only targets derived from RAs aligning to ICEVchBan8, a variant
lacking annotation information on the database, produced an alignment rate of 0.02%.
Nevertheless, in 19% of the targets of RAs aligning to this SXT variant, we observed
[A]n or [T]n homopolymers, with n ≥3, at the ends of the targets, consistent with the
insertion signature of non-LTR transposons. Thus, we hypothesize these RAs point to
a putative hotspot in ICEVchBan8. The percentage of targets among the other SXT
variants enriched in A/T homopolymers ranged from 25 to 31%.

8 Unexplained genetic diversity in E. coli and V.

cholerae

In E. coli, RA CCGCCATATCACCTCCGTGATGGTTGC showed the largest median
effect (α = 4.22, prevalence=5.28%). The RA produced a single match in at least one
hundred NCBI accessions, mainly of E. coli strains. In at least three references, the RA
lies within the coding sequence of the KdsD gene (arabinose-5-phosphate isomerase),
approximately 60 bp from the stop codon (Fig. 3). Only two targets were observed
upstream (n=514), but 1,653 different targets (697 clusters) were observed downstream.
We found strong agreement upstream of the RA across reads (> 99% nucleotide iden-
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tity) and a significant decay downstream in nucleotide identity across reads, with some
positions showing less than 35% agreement (Fig. 3). This diversity was not well repre-
sented on the reference genomes on NCBI, with only 21 targets (1% of different target
sequences) producing hits on the database (BLAST e < 0.5). In addition, sequence
hyper-variability extended well beyond the range of the target sequence, spanning over
100 nt, and the variation included substitutions and indels altering the protein sequence
of KdsD.

In V. cholerae, RA CGACTGGTTAAACCACAACCAAATGCA showed the largest
median effect size (α = 3.47, prevalence=5.17%). The RA produced a single match in
at least one hundred NCBI accessions, all V. cholerae strains, mapping to the intergenic
region between tRNA-Cys and the artP gene (arginine ABC transporter ATPase), with
the former being in the direction of more target diversity (Fig. 3). The RA only had
two upstream targets but 396 different targets (95 clusters) downstream. We found
strong agreement upstream of the RA across reads (> 99% nucleotide identity) and a
significant decay downstream in nucleotide identity across reads, with some positions
showing less than 45% agreement (Fig. 3). This diversity was not well represented
on the reference genomes on NCBI, with only 61 targets (15% of different target se-
quences) producing hits on the database (BLAST e < 0.5). In addition, sequence
hyper-variability extended well beyond the range of the target sequence, spanning over
100 nt, and the variation included substitutions and indels (Fig. 3).
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Supplementary Figures

Fig. S1: DIVE effect size. a. Boxplot of the effect size log2(cN/E[C|N ]) computed
by DIVE as a function of the number of target sequences observed N in E. coli (binned
in intervals of 10). We designed the effect size to remove any dependence on N , as would
happen if we simply looked at the number of clusters C. As the plot shows, the effect size is
not confounded by the number of target sequences observed N (OLS R2 = 0.02). b. Boxplot
of the median effect size (across anchors) of the elements within each category, with anchors
mapping to known CRISPR direct repeats showing the highest median effect size.
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Fig. S2: Ancestral and active mobile element simulations a. An ancestral mobile
element is introduced at the same position in each genome. A random genome of length 100
kbp is generated first. Then, mutations and indels are randomly introduced to generate 100
different genomes. A fixed number of copies of an ancestral mobile element is introduced into
each one of the simulated genomes. Finally, the genomes are sampled to produce 100 bp reads.
The rate of mutations and indels, the reads produced, and the number of copies are varied
throughout the simulations. b. An active mobile element is introduced in different positions
in each genome. A random genome of length 100 kbp is generated first. Then, mutations
and indels are randomly introduced to generate 100 different genomes. A single copy of the
element is introduced in a new position in each genome with some probability. Finally, the
genomes are sampled to produce 100 bp reads. The rate of mutations and indels, the number
of reads produced, and the probability of the insertion in a new locus are varied throughout
the simulations.
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Fig. S3: DIVE ROC in ancestral mobile element simulations. Receiving operating
curve (ROC) of DIVE in detecting the termini of an ancestral mobile genetic element with
varying coverage levels, copy numbers (CN) and varying degrees of genome divergence as
quantified by the mutation and indel rate (MIR).

10



Fig. S4: DIVE ROC in active mobile element simulations. Receiving operating curve
(ROC) of DIVE in detecting the termini of an active mobile genetic element with varying
coverage levels, activity levels (AL) and varying degrees of genome divergence as quantified
by the mutation and indel rate (MIR).
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Fig. S5: True positive rate DIVE vs MGEfinder (ancestral element). True positive
rate (sensitivity) of DIVE (blue) and MGEfinder (orange) in detecting the termini of an
ancestral mobile genetic element with varying coverage levels, copy numbers (CN) and varying
degrees of genome divergence as quantified by the mutation and indel rate (MIR).
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Fig. S6: True positive rate DIVE vs MGEfinder (active element). True positive rate
(sensitivity) of DIVE (blue) and MGEfinder (orange) in detecting the termini of an active
mobile genetic element with varying coverage levels, activity levels (AL) and varying degrees
of genome divergence as quantified by the mutation and indel rate (MIR).
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Fig. S7: De novo discovery of CRISPR repeats. Each row shows the putative CRISPR
repeat identified from DIVE’s output (DIVE R), the closest match in the CRISPR-Cas++
database when found, and a subset of reads showing the repetition of the repeat within single
reads.
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Fig. S8: Median effect size of each element and its prevalence across the E. coli
dataset. a. Median effect size of each element (mapped by at least an anchor flagged by
DIVE) as a function of its prevalence across samples. Elements mapped by an anchor with
target diversity significantly associated with the available covariates are shown larger. b.
Median effect size of each element as a function of its prevalence across samples for those
cases where the target diversity of an anchor was significantly associated with the available
covariates.
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Fig. S9: Spacer turnover in CRISPR arrays is a function of the isolation
source in E. coli isolates. a. Anchor GGTTTATCCCCGCTGGCGCGGGGAACA,
mapping to CRISPR direct repeat LR134141.1, shows an almost 10-fold difference
in target diversity between isolates obtained from blueberry than that of veal. b.
Anchor GTGTTCCCCGCGCCAGCGGGGATAAAC, mapping to CRISPR direct re-
peat CP050198.1—CP053406.1—CP056341.1 shows an almost 10-fold difference in tar-
get diversity between isolates obtained from blueberry than that of flour. c.
Anchor CGGTTTATCCCCGCTGGCGCGGGGAAC, mapping to CRISPR direct re-
peat CP050222.1—CP047576.1 shows an almost 10-fold difference in target diver-
sity between isolates obtained from goat milk formula than that of iceberg lettuce.
d. Anchor CCCGCCGGTGCTGGTGCAGATGCTCGA, mapping to CRISPR spacer
CP000934.1—CP043304.1—CP043305.1—CP043306.1 shows a 5-fold difference in target di-
versity between isolates obtained from all-purpose flour than that of beef steak.
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Fig. S10: Mobile genetic elements showing different mobility levels as a function
of the isolation source in E. coli isolates. a. Anchor ACCAGACGGTTCAGGCT-
GTACGCTTAC, mapping to a known MGE (ACLAME: 163915), shows a 5-fold difference
in target sequence diversity between isolates obtained from beef steak and that of romaine
lettuce. Upon BLAST search, we determined this element to be an IS66-family insertion se-
quence. b. Anchor CCGCCATAACAAGCTGGGTCAGTATTA, mapping to a known MGE
(ACLAME: 468), shows a 4-fold difference in target sequence diversity between isolates ob-
tained from boneless beef and that of cilantro. Upon BLAST search, we determined this
element to be a lambdoid phage. c. Anchor CCGCCGTATCGCACAAATGGAAGCCGA,
mapping to a known MGE (ACLAME: 163920), shows a 6-fold difference in target sequence di-
versity between isolates obtained from meat and that of romaine lettuce. Upon BLAST search,
we determined this element to be a IS66-family insertion sequence. d. Anchor CCGCCAT-
TACGCTGAACCAGCGGTTAC, mapping to a known MGE (ACLAME: 172451), shows a
6-fold difference in target sequence diversity between isolates obtained from raw leafy green
and that of Bos taurus milk. Upon BLAST search, we determined this element to be a IS66-
family insertion sequence.
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Fig. S11: Non-coding RNA show different target variability as a function of the
isolation source in E. coli isolates. a. Anchor CGGTTCAAATCCGGCCCCCGCAAC-
CAA, mapping to a tRNA gene (Rfam: M21681.1/156-228), shows approximately a 6-fold dif-
ference in target diversity between isolates obtained from boneless beef compared to that of red
leaf lettuce. b. Anchor GGTCGGCGGTTCGATCCCGTCATCACC, mapping to a tRNA
gene (Rfam: X17321.1/66-138), shows approximately a 7-fold difference in target diversity be-
tween isolates obtained from kale to that of raw romaine. c. Anchor AGGCCCAGGACAC-
CGCCCTTTCACGGC, mapping to a tRNA gene (Rfam: CP002272.1/1200873-1200945),
shows approximately a 10-fold difference in target diversity between isolates obtained from
romaine leaves to that of soynut butter. d. Anchor CTGATGCGACGCTGGCGCGTCT-
TATCA, mapping to a naRNA4 gene (Rfam: U00096.3/900752-900832), shows approximately
a 5-fold difference in target diversity between isolates obtained from porcine pig milk to that
of brussel sprouts.
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