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Supplementary Note 1

As a supplement to the annotation protocol in the main text, dataflow and annotation details are

provided here for reference.

1). Dataflow of large-scale phase annotation

To simplify the annotation process, we developed a dataflow to inspect the start and end frames

(Supplementary Figure 1). Given the large dataset size, we initially reduced the video to 1 frame

per second and saved it as a sequence of consecutive images. Subsequently, we created an Excel

file to document the phase annotation frame-by-frame. During the annotation process, annotators

primarily focused on the downsampled images to identify the start and end frames of each phase

(Supplementary Figure 2). They then labeled all frames within this timeframe as corresponding to

the designated phase. Additionally, annotators relied on the original video to interpret visual cues

that helped differentiate between surgical phases. These cues are crucial in identifying changes

in tissue texture, color, or the position of surgical tools because they represent the transition from

one phase to the next. For example, during the Marking phase, the endoscopist inspected the

contact point between the knife and mucosa. While during the Injection phase, they observed the

movement and diffusion of the injected agent inside the tissue. Finally, for the Dissection phase,

the annotator looks for changes in tissue color or texture that indicate the separation of different

tissue layers. This temporal information is critical for the annotators to confirm whether surgical

tools were hovering in the air, denoting the ending of a phase segment.
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Supplementary Figure 1: The workflow of phase annotation. Blue lines represent the stages we
prepared data for annotation, and yellow lines denote the annotation process.
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Supplementary Figure 2: The annotation examples of start and end frames of phases Marking,
Injection, and Dissection at 1 fps.

2). Three-step annotation schedule

Our work adopted a three-step annotation schedule to annotate developmental and external datasets.

The entire annotation process is as follows:
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Supplementary Figure 3: Annotation examples of two raters.

(1) To ensure the quality of the annotation process, we first randomly selected approximately

10% (5 cases, 20,446 frames) of developmental dataset and assigned two annotators to indi-

vidually annotate the data using the dataflow outlined in Supplementary Figure 1, following

predefined protocols. This step served as a quality control measure for the annotations, as

well as allowing annotators to become familiar with the annotation workflow. To quanti-

tatively evaluate the interobserver agreement between the two raters, we used the Pearson

correlation coefficient (PCC) [1]. The resulting PCC for the selected samples was 0.93,

indicating a high degree of agreement between raters. To visually examine disagreements

between the annotations, we display phase annotation examples of two annotators in Sup-

plementary Figure 3. For the majority of the video, the annotations of the two raters were

nearly identical, with only a small percentage (3.30%) exhibiting ambiguity between the

annotations of different raters.

(2) Considering the high level of consistency in the initial annotation results of the two annota-

tors, we divided all annotation tasks into roughly equal halves, with each rater individually

annotating one part. For instance, in the case of the 47 cases in the expert dataset, we divided

the dataset into two non-overlapping parts of 24 and 23 cases, respectively. The two annota-

tors then individually annotated each part, resulting in 108,286 frames for the first part and

92,740 frames for the second part. Given the high level of agreement between the annota-
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tors, we treated the two parts of annotations as the final annotation for the expert dataset. We

employed the same strategy to distribute the datasets to raters for all external datasets.

(3) Following the completion of all annotation tasks by the two annotators, we subjected the

annotations to quality control by two experienced endoscopists with six and three years of

experience. Their focus was on correcting challenging annotations that even trained an-

notators may struggle with. Both endoscopists relied on visual cues and practical surgical

experience to determine the appropriate surgical phase in complex surgical sites or when

key anatomical landmarks were obscured. To facilitate the verification process, we provided

synchronized information by overlaying the annotation results from the second step onto the

raw video. The endoscopists reviewed the video and corrected any errors as needed. In the

case of any discrepancies, the two experienced endoscopists discussed for a consensus label,

while with more respect to the relatively senior one who has conducted more ESD cases.

This step yielded the final phase annotation dataset.
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Supplementary Note 2

The orderliness metric is derived from the Youden index’s optimal cut-off and measures the sepa-

rability between the target phase and the other phases. We named this metric orderliness to differ-

entiate it from the commonly used accuracy metric, which employs a fixed threshold of 0.5. The

optimal threshold of the Youden index is determined by maximizing the summarization of sensi-

tivity and specificity [2], resulting in a more accurate measurement of how well the positive and

negative samples are separated relative to the optimal threshold on the probability scale bar [0, 1].

The Youden index has been extensively discussed in previous research as a means of characterizing

the class-wise performance of a model on a multi-class classification problem [3, 4].

The model outputs the probability of each frame belonging to one of four distinct phases:

Marking, Injection, Dissection, and Idle. This allows us to evaluate the model’s performance both

overall and for each individual phase. To help clarify the phase-wise metric orderliness presented

in Figure 2b, we will use the example of the Dissection phase to illustrate how orderliness captures

the order of frames within a phase. We begin by taking the probability of each frame x being

Dissection, denoted as p(Dissection|x). Using the sklearn.metrics.roc curve package,

we generated a ROC curve that plots the true positive rate (TPR) against the false positive rate

(FPR) for thresholds uniformly sampled in the range [0, 1]. We then calculated the optimal

threshold t∗ = 0.4 from the Youden Index, Jmax = maxt{sensitivity + specificity − 1} =

TPR + (1− FPR)− 1 = TPR− FPR. With the optimal threshold t∗, we divided the samples

into four groups: ˆTP , ˆTN, F̂P , and ˆFN . Finally, we defined orderliness =
ˆTP+ ˆTN

ˆTP+ ˆTN+F̂P+ ˆFN
to

measure the proportion of frames that were correctly sorted relative to the threshold t∗.

6



0.0 0.2 0.4 0.6 0.8 1.0

False positive rate (FPR)

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
p
o
si

ti
ve

ra
te

(T
P

R
)

0.0 0.2 0.4 0.6 0.8 1.0

The output probability of developmental data

0.000

0.002

0.004

0.006

0.008

0.010

0.012

T
h
e

d
is

tr
ib

u
ti
o
n

of
fr

am
es

0.0 0.2 0.4 0.6 0.8 1.0

False positive rate (FPR)

0.0

0.2

0.4

0.6

0.8

1.0
T
ru

e
p
o
si

ti
ve

ra
te

(T
P

R
)

0.0 0.2 0.4 0.6 0.8 1.0

The output probability of developmental data

0.000

0.002

0.004

0.006

0.008

0.010

0.012

T
h
e

d
is

tr
ib

u
ti
o
n

of
fr

am
es

Optimized threshold

̂T N

̂FN ̂FP

̂T P

Dissection
non-Dissection

t* = 0.4

̂T P

̂T N

̂F N

̂F P

: True Positive

: True Negative

: False Positive

: False Negative

t * = a r g max
t

{sensitivity + speci!city − 1}

O r d e r l i n e s s = ̂T P + ̂T N
̂T P + ̂T N + ̂F P + ̂F N

t* = 0.4

= a r g max
t

{T PR − F PR}

a b

False positive rate (FPR)
0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0
Tr

ue
 p

os
iti

ve
 ra

te
 (T

P
R

)
0.012

0.010

0.008

0.006

0.004

0.002

0.000

Th
e 

di
st

rib
ut

io
n 

of
 fr

am
es

The output probability of developmental data
0.0 0.2 0.4 0.6 0.8 1.0

Supplementary Figure 4: Definition of metrics Orderliness. a The steps for calculating Orderliness;
b The distributions of output probabilities corresponding to Dissection (in red) and non-Dissection
(in purple) frames.

We have visualized the steps involved in calculating the orderliness metric of phase Dissection

in Supplementary Figure 4. In Supplementary Figure 4a, we obtained the optimized threshold t∗

from the ROC, and the inset illustrates the specific process we used to calculate orderliness, as

described above. Additionally, we have depicted the relationship between the threshold t∗ and

the probability distributions of Dissection and non-Dissection frames in Supplementary Figure 4b.

Ideally, t∗ would be able to perfectly discriminate between the boundaries of these two distri-

butions, which means the output probability of Dissection frames should be higher than that of

non-Dissection frames. However the AI model may fail to recognize challenging scenarios, such

as a blurry view or obscured surgical tools. This can result in prediction errors, i.e., F̂P and ˆFN ,

consequently dividing all samples into four groups, as shown in the figure. To assess the per-

formance of the AI model with respect to each phase, we define the orderliness to calculate the

proportion of frames that are correctly classified, i.e., ˆTP and ˆTN .
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Supplementary Table 1: Statistical analysis on the diversity of developmental dataset.

Group Varity Percentage

Exception Bleeding 25.53%

Location
Rectum 6.38%
Stomach 87.23%
Esophagus 6.38%

Date
2008∼2012 25.53%
2012∼2016 38.30%
2016∼2020 36.17%

Dissection tool
Dual knife 72.34%
Isolation-tipped knife 10.64%
Triangle-tipped knife 17.02%
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Supplementary Table 2: Performance metrics on external dataset from different surgeons and skills. Source data are provided as a
Source Data file.

Phase-wise metric AUROC Specificity Sensitivity Orderliness
Marking 97.30 (94.45, 100.0) 93.23 (88.35, 98.12) 94.09 (89.79, 98.40) 93.23 (88.36, 98.11)
Injection 98.87 (98.06, 99.68) 96.53 (95.19, 97.87) 96.69 (95.16, 98.23) 96.53 (95.20, 97.86)
Dissection 95.69 (92.34, 99.05) 93.10 (91.01, 95.19) 90.16 (85.96, 94.36) 92.36 (90.47, 94.24)
Idle 96.68 (95.82, 97.55) 90.82 (88.55, 93.09) 92.07 (90.41, 93.73) 91.67 (90.11, 93.22)
Average 97.14 (95.17, 99.07) 93.42 (90.78, 96.07) 93.25 (90.33, 96.18) 93.20 (91.04, 95.86)

Supplementary Table 3: Performance metrics on ex-vivo animal trial dataset. Source data are provided as a Source Data file.

Phase-wise metric AUROC Specificity Sensitivity Orderliness
Marking 57.87 (0.000, 100.0) 35.65 (0.000, 100.0) 86.17 (53.94, 100.0) 36.23 (0.000, 100.0)
Injection 96.97 (92.16, 100.0) 94.11 (80.66, 100.0) 96.44 (91.64, 100.0) 94.14 (81.01, 100.0)
Dissection 95.67 (90.65, 100.0) 89.32 (82.48, 96.15) 90.81 (83.64, 97.98) 90.34 (83.47, 97.21)
Idle 94.74 (88.68, 100.0) 88.13 (78.03, 98.22) 90.13 (84.09, 96.18) 89.08 (81.19, 96.96)
Average 86.31 (67.87, 100.0) 76.80 (60.29, 98.34) 90.89 (78.33, 98.54) 77.45 (61.42, 98.54)

Supplementary Table 4: Performance metrics on in-vivo animal trial dataset. Source data are provided as a source data file.

Phase-wise metric AUROC Specificity Sensitivity Orderliness
Marking 69.02 (56.35, 81.69) 53.98 (39.08, 68.89) 90.58 (83.52, 97.64) 54.61 (39.93, 69.29)
Injection 96.58 (95.03, 98.12) 91.64 (89.11, 94.17) 91.82 (86.51, 97.13) 91.72 (89.43, 94.00)
Dissection 94.93 (92.97, 96.89) 91.57 (89.89, 93.24) 86.68 (83.22, 90.14) 88.95 (87.11, 90.79)
Idle 93.27 (92.12, 94.43) 81.62 (78.62, 84.63) 91.24 (89.75, 92.72) 85.47 (83.63, 87.31)
Average 88.45 (84.12, 92.78) 79.70 (74.18, 85.23) 90.08 (85.75, 94.41) 80.19 (75.03, 85.35)
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Supplementary Figure 5: The curves of the training loss of (a) ResNet50 module in the 1st stage
and (b) Fusion and Transformer modules in the 2nd stage. The dashed line indicates the number of
iterations we actually trained with.
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