nature metabolism

Article

https://doi.org/10.1038/s42255-023-00896-7

Upregulation of WDR6 drives hepatic de novo lipogenesis in insulin resistance in mice

In the format provided by the authors and unedited

Supplementary Materials and Methods

Serum parameter measurements

FPG and serum levels of lipid profiles, ALT, AST, BUN, and creatinine were determined using enzymatic methods with an Auto Biochemical Analyzer (AU5400, Olympus). Serum insulin levels were measured using Mouse insulin ELISA kit (csb-e05071m; CUSABIO). All steps were performed in strict accordance with the manufacturer's instructions. HOMA-IR = FPG (mmol/L) × fasting insulin levels (mIU/L)/22.5.

TAG contents in liver tissue and primary hepatocytes

TAG in liver tissue and primary hepatocytes was extracted and assayed in strict accordance with the Triglyceride content assay kit (E1013; Applygen Technologies) manufacturer's instructions. The contents of TAG were normalized to those of the protein content or tissue weight in the same sample.

Oil Red O staining

Liver tissues were fixed in the OCT-Freeze medium and then cut into 10 µm thick sections. For oil red O staining, frozen sections or primary hepatocytes were fixed with 4% paraformaldehyde for 30 min before staining with Oil Red O solution (G1015; Servicebio) according to the manufacturer's instructions. Picture acquisition was done using LAS V4.9.

Hematoxylin & eosin (H&E) and Picrosirius red staining

Liver tissues were fixed in 4% paraformaldehyde, dehydrated, embedded in paraffin, cut into 5 µm thick sections. Then, the paraffin sections were stained with hematoxylin (G1004; Servicebio), eosin solution (G1002; Servicebio) or picrosirius red (365548, Sigma-Aldrich) according to the manufacturer's instructions. Picture acquisition was done using LAS V4.9.

Reactome pathway and Gene Ontology (GO) enrichment analysis

Reactome pathway analysis was performed using ReactomePA (1.36.0) and GO analysis was run using clusterProfiler (4.0.5). Pathways with a P value less than 0.05 were defined as enriched with significance.

siRNA transfection

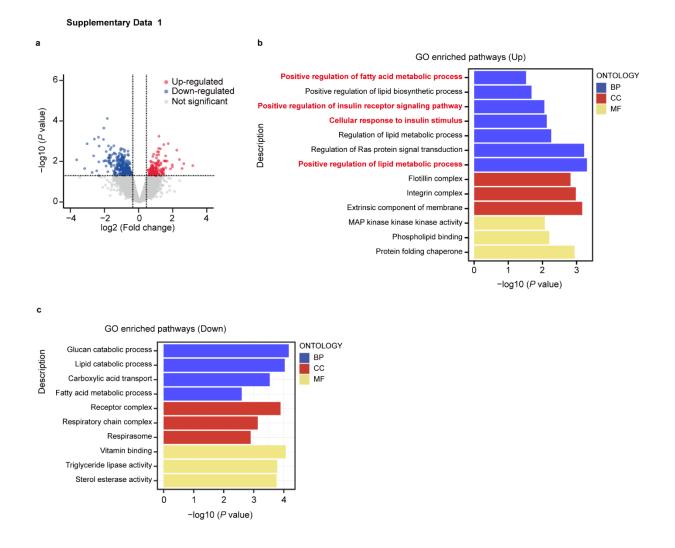
siRNAs targeting INSR, PPP1CA, PPP1CB and PPP1CC were designed according to the common sequences in both humans and mice. The targeting sequence for INSR 5'was GAACAATGTTGTACACTTATT-3'. The targeting sequence for *PPP1CA* 5'was sequence 5'-GAGAAGATACAACATCAAA-3'. The targeting for *PPP1CB* was 5'-GCCTATAGCTGCTATTGTT-3'. The targeting sequence for *PPP1CC* was GCAAGAATGTCCAGCTCCA-3'. Lipofectamine 3000 reagent (L3000015; Invitrogen) was used for transfection according to the manufacturer's instructions. After 48 h, the cells were collected for further analysis.

Plasmid construction

Plasmids encoding full-length, mutant or truncated human PPP1CB-FLAG, HA-PPP1CB, WDR6-FLAG or HA-WDR6 were obtained by cloning the corresponding cDNA into the pcDNA3.1-Flag or pcDNA3.1-HA backbones, respectively. Primer sequences for overexpressing plasmid construction are listed in Supplementary Data 8.

RNA isolation and real-time quantitative RT-PCR

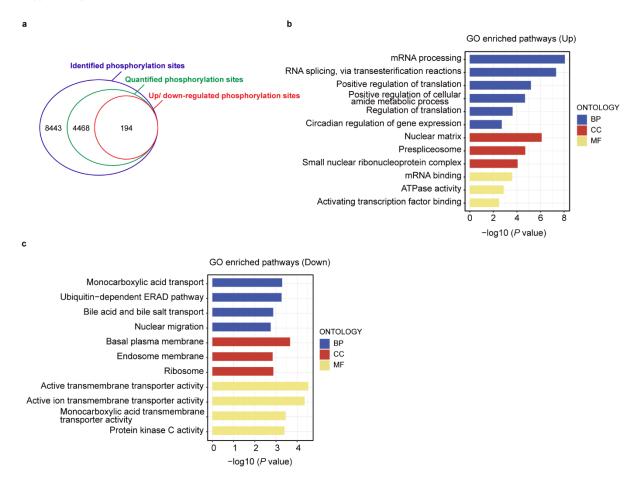
The total RNA extraction procedure has been described previously¹. RNA concentration was determined by Nanodrop2000. The real-time PCR was performed by SYBR Green (11201ES08; Yeasen Biotechnology) on LightCycler480 Software (Roche) according to the manufacturer's instructions. *Actb* or *Acta1* were utilized as internal controls for normalization. Each sample was analyzed in triplicates, and all data were analyzed relative to the controls. Primer sequences for RT-PCR are listed in Supplementary Data 9.


Protein extraction and Western blots

Cells and tissues were solubilized in RIPA buffer (MA0151; Meilunbio) containing phosphatase inhibitor cocktail (B15001; Bimake) and protease inhibitor cocktail (R0092-010; ShenergyBiocolor Bioscience) according to the manufacturer's instructions. The protein concentration was determined using BCA Protein Assay Kit (23225; Thermo Scientific). Equal amounts of protein from different

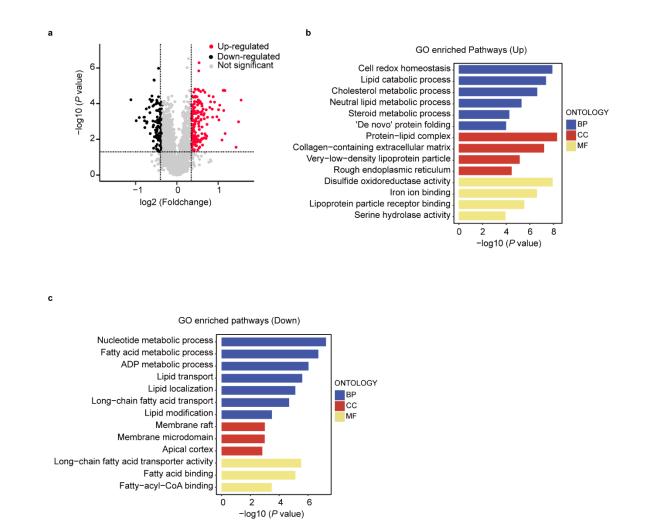
samples were subjected to 6%-12% SDS-PAGE, followed by electro-transfer to polyvinylidene difluoride (PVDF) membranes (IPVH00010; Merck Millipore). β-ACTIN or GAPDH was utilized as an internal control for normalization. Immune complexes were detected using Amersham Imager 680. Protein quantitative analysis was applied by measuring bands densitometry using AlphaView 3.2.2. The phosphorylated protein levels were normalized to the respective 'total' protein levels, while the others were normalized to the internal control. Antibodies for western blot are listed in Supplementary Data 10.

Reference


1. Wang X, et al. Cyclophilin D deficiency attenuates mitochondrial perturbation and ameliorates hepatic steatosis. Hepatology 68, 62-77 (2018).

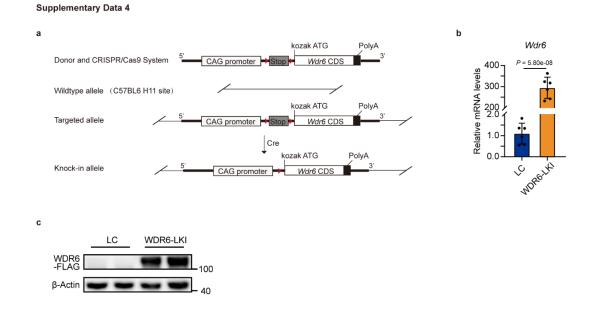
Supplementary Data 1 | Transcriptomic analysis of genes in liversdifferentially expressed in response to insulin stimulation during IR, related to Fig. 1.

a, A volcano plot showing differentially expressed genes (red, upregulated genes; blue, downregulated genes; gray, not significantly changed) in insulin group *vs*. vehicle group. **b**, GO enrichment analysis of up-regulated genes in insulin group *vs*. vehicle group. **c**, GO enrichment analysis of down-regulated genes in insulin group *vs*. vehicle group. For (**a**-**c**), n = 3 biologically independent mice per group.


Supplementary Data 2

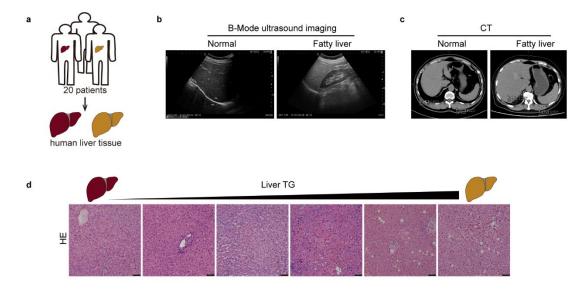
Supplementary Data 2 | Phosphoproteomic analysis of primary hepatocytes from WT and WDR6-WKO mice, related to Fig. 4.

a. The number of identified (blue), quantified (green) and quantitatively different (red)
phosphorylation sites.
b. GO enrichment analysis of proteins with increased levels of
phosphorylation in WDR6-WKO vs. WT groups.
c. GO enrichment analysis of proteins with lower
levels of phosphorylation in WDR6-WKO vs. WT groups.


Supplementary Data 3

Supplementary Data 3 | Proteomic analysis of differentially expressed proteins in primary

hepatocytes from WT and WDR6-WKO mice, related to Fig. 4.


a. A volcano plot showing differentially expressed proteins. Red, increased overall levels; black, lower levels, gray, no significant difference. **b.** GO enrichment analysis of proteins increased in WDR6-WKO *vs*. WT groups. **c.** GO enrichment analysis of proteins decreased in WDR6-WKO *vs*. WT groups.

Supplementary Data 4 | WDR6-LKI mice were created and show liver specific overexpression of Wdr6, related to Fig. 4.

a. A schematic diagram illustrating the strategy for creatingWDR6-LKI mice. **b.** RT-PCR analysis of *Wdr6* mRNA levels in livers of LC and WDR6-LKI mice. Expression of *Wdr6* was normalized to *Actb* mRNA levels. n = 6 biologically independent mice per group. **c.** Western blots of WDR6-FLAG protein levels in livers of LC and WDR6-LKI mice. n = 4 biologically independent mice per group. β -Actin serves as a loading control. Data in (b) are presented as mean \pm SD and analyzed by unpaired two-sided Student's *t*-test.

Supplementary Data 5

Supplementary Data 5 | The correlation of WDR6, FASN and TAG levels in human liver tissue, related to Fig. 7.

a. Schematic diagram illustrating the collection of human liver samples with different degrees of hepatic lipid deposition.
b. Representative liver B-Mode ultrasound imaging of the above patients.
c. Representative liver computed tomography (CT) imaging of the above patients.
d. Representative H&E staining of liver sections of the above patients. Scale bars, 50 μm.

mice/ cells	Forward primer (5'-3')
Wdr6 whole-body	F: CTGTCTAGGCGAGGGGGCCTGAT
knockout mice	R: GTCGAGTATCCTGTGGGGCCACCT
~	F: ATCGGCGCGGAAGCTGGGGTAGCGTCT
Srebp1c whole-body knockout mice	R1: TCTCCAGATTTATGCAGGTCATAAATAGTAC
	R2: GCTCAGTTCGAGGTGCTGTTTCTG
Usf1 whole-body knockout mice	F: CGTTACAGATAGTTGTGAGCCACC
	R: CTCTATCCCTTAGCAGAACACCATG
Hepatocyte-specific Wdr6 knockout mice	F: TCTGTTGAGCCTCAGGGATTAGACTG
	R: ACCTCAACTGCAAAGGCACACT
	F1: ATGCCCACCAAAGTCATCAGTGTAG
Wdr6 knockin flox/flox mice	R1: AGGCGGGCCATTTACCGTAAGTTA
	F2: AGTCTTTCCCTTGCCTCTGCT
	R2: GGGTCTTCCACCTTTCTTCAG
	F: ATCTCTGTTATTGACCAGGCTGTC
WDR6-Flag HepG2 cells	R1: CTTGTCATCGTCATCCTTGTAATC
	R2: CTGTCTTGTCATGGGGGGGGTCG

Supplementary Data 6 | Primer sequences for genotyping the genetically modified mice and cells.

associated viral plasmid construction.			
Gene	Vector	Forward primer (5'-3')	Reverse primer (5'-3')
Ad- mWDR6	CMV-MCS- 3*FLAG-SV40- EGFP	AGGTCGACTCTAG AGGATCCCGCCAC CATGGACGCTTTC GGGGACTATGTCT GG	TCCTTGTAGTCCAT ACCGGTGTCATACC AGTTGTAAACCTCA AGTCC
AAV- mPPP1CB (316D)	TBG-3*FLAG- P2A-ZSGREEN	GCCACCATGGCGG ACGGGGGAGCT	CCTTTTCTTCGGTG GATTAGCTGTTCGA GGCGGATCGACAG GACGT

Supplementary Data 7 | Primer sequences for adenoviral and adenoassociated viral plasmid construction.

Gene	Forward primer (5'-3')	Reverse primer (5'-3')
hWDR6-FLAG	ATGGGCAGCGCGGCG CGCTGG	TTGAGGTTTACAACTGGT ATGAC
	ACGGGCCCTCTAGACT	
	CGAGCGCCACCATGT	TTAAACTTAAGCTTGGTA
hWDR6-HA	ACCCTTATGATGTCCC	CCTCAGTCATACCAGTTG
	AGACTATGCTGG	TAAACCTCAAGC
1.0000	GAAAACCTGTATTTTC	TCGAGGCTGATCAGCGGG
hWDR6	AGGGCATGGACGCTC	TTTCATTACCCTACCAAGT
(1-329aa)	TCGAGGACTACG	GCCACAGCCG
	GAAAACCTGTATTTTC	TCGAGGCTGATCAGCGGG
hWDR6	AGGGCGGATTGGGGG	TTTCATTAGCCACCCAGA
(334-687aa)	TCTCGGCTCTC	GCCCTGTACAGC
	GAAAACCTGTATTTTC	TCGAGGCTGATCAGCGGG
hWDR6	AGGGCGGTCTGCATG	TTTCATTAGTCATACCAGT
(698-1121aa)	GCCGTGAGATCAC	TGTAAACCTC
	GAAAACCTGTATTTTC	TCGAGGCTGATCAGCGGG
hWDR6	AGGGCATGGACGCTC	TTTCATTACAGACCCTCCC
(1-699aa)	TCGAGGACTACG	GGAGAATCACG
hWDR6	GAAAACCTGTATTTTC	TCGAGGCTGATCAGCGGG
(1-311,	AGGGCATGGACGCTC	TTTCATTAGTCATACCAGT
687-1121aa)	TCGAGGACTACG	TGTAAACCTC
	TCTCGGCTCTCTGCGC	TCGAGGCTGATCAGCGGG
hWDR6-mut	TGCATCCGCCAGTGCG	TTTCATTAGCCACCCAGA
(AKSASA)	CCAGGTACACTCAAG	GCCCTGTACAGC
	GCTGTG	decertificade
hPPP1CB-FLAG	GACCCAAGCTGGCTA	TCACTTAAGCTTGGTACC
	GTTGAATTCGCCACC	GAGGATCC
hPPP1CB-HA	TACCCCTATGACGTGC	TGCGTAGTCTGGAACGTC
ПРРЕССИЛА	CAGAC	GTA
hPPP1CB (316A)-	GAATTCGCCACCATG GCGGACGGGGGAGCT	GCGGATTAGCTGTTCGAG
FLAG		GTGGAGCGACAGGACGTC
1 2/10	30001000000000	CAGAATTCAG
hPPP1CB (316D)-	GAATTCGCCACCATG	CGGATTAGCTGTTCGAGG
FLAG	GCGGACGGGGGAGCT	TGGATCGACAGGACGTCC
		AGAATTCAG

Supplementary Data 8 | Primer sequences for constructing overexpression plasmids.

Gene	Species	Forward primer (5'-3')	Reverse primer (5'-3')
landm	moulgo	AGGGTTTAGTTTTGAGT	CCCCGCTTTTGTCATATT
Acadm	mouse	TGACGG	CCG
Accil mana	22 01160	GCTTATTGATCAGTTAT	CTGCAGGTTCTCAATGC
Accl mouse		GTGGCC	AAA
Acoxl	mouse	TAACTTCCTCACTCGAA	AGTTCCATGACCCATCT
ΑζΟλΙ	mouse	GCCA	CTGTC
Acox2	mouse	CCAGCACTTTGAGGAG	GGACTTGGCTTCCTTTA
ΑζΟλ2	mouse	GAGA	GGG
ApoB	mouse	AAGCACCTCCGAAAGT	CTCCAGCTCTACCTTAC
Аров	mouse	ACGTG	AGTTGA
Cd36	mouse	AAGCAAAGTTGCCATA	GGAAAGGAGGCTGCGT
Cuso	mouse	ATTGAGTC	CTG
ChREBP	mouse	AGATGGAGAACCGACG	ACTGAGCGTGCTGACAA
CIILLDI	mouse	TATCA	GTC
Collal	mouse	TGCTAACGTGGTTCGTG	ACATCTTGAGGTCGCGG
Contan	mouse	ACCGT	CATGT
Col3a1	mouse	ACGTAAGCACTGGTGG	CCGGCTGGAAAGAAGT
Corsur	mouse	ACAG	CTGA
Cptla	mouse	TTGGGCCGGTTGCTGAT	GTCTCAGGGCTAGAGAA
Cpila	mouse	11000000011001011	CTTGGAA
Cpt2	mouse	CAGCACAGCATCGTAC	TCCCAATGCCGTTCTCA
Cp12	mouse	CCA	AAAT
Ctgf	mouse	TGACCCCTGCGACCCA	TACACCGACCCACCGAA
Cigj	mouse	CA	GACACAG
Fabpl	mouse	ATGAACTTCTCCGGCA	CTGACACCCCCTTGATG
1 uop1	mouse	AGTACC	TCC
Fasn	mouse	GTCCTGGGAGGAATGT	CGGATCACCTTCTTGAG
1 usn	mouse	AAACAG	AGC
G6pc	mouse	ACTAAAGCCTCTGAAA	AGATTCTGCACCGCAAG
00pe	mouse	CCC	
Glut2	mouse	TCAGAAGACAAGATCA	GCTGGTGTGACTGTAAG
01112	mouse	CCGGA	TGGG
hadha	mouse	TGCATTTGCCGCAGCTT	GTTGGCCCAGATTTCGT
naana	mouse	TAC	TCA
Il-1β	mouse	CCGTGGACCTTCCAGG	GGGAACGTCACACACC
11 - 1 <i>p</i>	1110430	ATGA	AGCA
Il-6	mouse	TAGTCCTTCCTACCCCA	TTGGTCCTTAGCCACTC
	1110430	ATTTCC	CTTC
Insr	mouse	ATGGGCTTCGGGAGAG	GGATGTCCATACCAGGG
1HSF		GAT	CAC

Supplementary Data 9 | Primer sequences for RT-PCR.

Lipe	mouse	CCAGCCTGAGGGCTTA	CTCCATTGACTGTGACA
Lipe mouse		CTG	TCTCG
Mttn m	mouse	CTCTTGGCAGTGCTTTT	GAGCTTGTATAGCCGCT
<i>Mttp</i> mouse		ТСТСТ	CATT
Pckl mou	molico	GCATAACGGTCTGGAC	TGATGACTGTCTTGCTTT
	mouse	TTCT	CG
Pnpla2 mouse	GGATGAAAGAGCAGAC	CGCAAGACAGTGGCAC	
	mouse	GGGTAG	AGAG
Scd1	111 0 11 0 0	AAGATATTCACGACCC	CAGCCGTGCCTTGTAAG
	mouse	CACC	TTC
Sucha la mana	mouse	GCGCTACCGGTCTTCTA	GGATGTAGTCGATGGCC
Srebp1c mouse		TCA	TTG
<i>Tnf-α</i> mouse	mouso	CATCTTCTCAAAATTCG	TGGGAGTAGACAAGGT
	mouse	AGTGACAA	ACAACCC
Wdr6	mouse	GGGATCTCACCACGGC	AAGGTCAGCCGCTGGTC
		AATG	TATG
α-Sma		CCCAGACATCAGGGAG	TCTATCGGATACTTCAG
u-sinu	mouse	TAATGG	CGTCA

Antibodies	Source	
Mouse-anti-phospho-AKT (Ser473),	Cell Signaling	Cat# 12694; RRID
dil:1/1000	Technology	AB_2797994
Rabbit-anti-AKT, dil:1/1000	Cell Signaling	Cat# 9272; RRID
Kabbit-anti-AKT, dil.1/1000	Technology	AB_329827
Rabbit-anti-FASN, dil:1/2000	Cell Signaling	Cat# 3180; RRID
Kabolt-anti-1 ASIN, un.1/2000	Technology	AB_2100796
Rabbit-anti-phospho-ACC (Ser79),	Cell Signaling	Cat# 11818; RRID
dil:1/1000	Technology	_
Rabbit-anti-ACC, dil:1/1000	Cell Signaling	
	Technology	AB_2219397
Rabbit-anti-CPT1A, dil:1/1000	Cell Signaling	
	Technology	AB_2797857
Rabbit-anti-HA, dil:1/1000	Cell Signaling	
	Technology	AB_1549585
		Cat# TA322298;
Rabbit-anti-WDR6, dil:1/1000	Origene	RRID
		AB_2924343
		Cat# NBP1-51600;
Mouse-anti-PPP1CA, dil:1/1000	Novus	RRID
		AB_11027838
		Cat# NBP1-32858;
Rabbit-anti-PPP1CC, dil:1/1000	Novus	RRID
		AB_2168096
Rabbit-anti-phospho-DNA-PK		Cat# NBP1-02456;
(Thr2609), dil:1/500	Novus	RRID
(1		AB_1522176
		Cat# NBP2-22128;
Mouse-anti-DNA-PK, dil:1/500	Novus	RRID
		AB_2910254
		Cat# CL594-
Mouse-anti-βActin, dil:1/7500	Proteintech	66009; RRID
		AB_2883475
	D 1	Cat# 18836-1-ap;
Rabbit-anti-CD36, dil:1/1000	Proteintech	RRID
		AB_10597244
		Cat# 20543-1-AP;
Rabbit-anti-FLAG, dil:1/1000	Proteintech	RRID
		AB_11232216
Marrie and CADDIL 1111/7500	Durtsints 1	Cat# 60004-1-Ig;
Mouse-anti-GAPDH, dil:1/7500	Proteintech	RRID
		AB_2107436

Supplementary Data 10 | Antibodies used for western blots.

Mouse-anti-Lamin B1, dil:1/5000	Proteintech	Cat# 66095-1-Ig; RRID AB 11232208
Mouse-anti-SREBP1, dil:1/500	abcam	Cat# ab3259; RRID AB_303650
Rabbit-anti-PPP1CB, dil:1/2000	abcam	Cat# ab53315; RRID AB_2168274
Rabbit-anti-USF1, dil:1/1000	OriGene	Cat# TA327163; RRID AB 2910255
Mouse-anti-aSMA, dil:1/1000	abcam	Cat# ab7817; RRID AB_262054
Rabbit-anti-phospho-PPP1CB (Thr316), dil:1/500	This paper	N/A
Peroxidase-AffiniPure Goat Anti-	Jackson	Cat# 115-035-003;
Mouse IgG (H + L) antibody, dil:1/5000	ImmunoResearch Labs	RRID AB_10015289
Peroxidase-AffiniPure Goat Anti- Rabbit IgG (H+L) antibody, dil:1/5000	Jackson ImmunoResearch Labs	Cat# 111-035-003; RRID AB_2313567