
Article
Targeting neoadjuvant che
motherapy-induced
metabolic reprogramming in pancreatic cancer
promotes anti-tumor immunity and chemo-response
Graphical abstract
Highlights
d The proteo-transcriptomic differences in chemo-treated and

untreated PDAC are shown

d Analyzing immune and metabolic changes tied to

chemotherapy in PDAC

d Boosting the potency of chemotherapy via CD36 targeting,

with translational potential
Tang et al., 2023, Cell Reports Medicine 4, 101234
October 17, 2023 ª 2023 The Author(s).
https://doi.org/10.1016/j.xcrm.2023.101234
Authors

Rong Tang, Jin Xu, Wei Wang, ...,

Xianjun Yu, Si Shi, Chinese Study Group

for Pancreatic Cancer

Correspondence
yuxianjun@fudan.edu.cn (X.Y.),
shisi@fudanpci.org (S.S.)

In brief

Tang et al. conduct a comprehensive

multi-modal analysis, uncovering that

neoadjuvant chemotherapy has a

profound impact on the immune

microenvironment and metabolic

patterns in pancreatic ductal

adenocarcinoma. Their findings suggest

that targeting CD36 could potentially

enhance the effectiveness of

chemotherapy and bolster the anti-tumor

immune response.
ll

mailto:yuxianjun@fudan.edu.cn
mailto:shisi@fudanpci.org
https://doi.org/10.1016/j.xcrm.2023.101234
http://crossmark.crossref.org/dialog/?doi=10.1016/j.xcrm.2023.101234&domain=pdf


OPEN ACCESS

ll
Article

Targeting neoadjuvant chemotherapy-induced
metabolic reprogramming in pancreatic cancer
promotes anti-tumor immunity and chemo-response
Rong Tang,1,2,11 Jin Xu,1,2,11 Wei Wang,3,4,11 Qingcai Meng,1,2,11 Chenghao Shao,5 Yiyin Zhang,6 Yubin Lei,7

Zifeng Zhang,1,2 Yuan Liu,2,8 Qiong Du,2,9 Xiangjie Sun,2,10 DiWu,3,4 Chen Liang,1,2 Jie Hua,1,2 Bo Zhang,1,2 Xianjun Yu,1,2,*
Si Shi,3,4,12,* and Chinese Study Group for Pancreatic Cancer
1Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
2Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
3Shanghai Pancreatic Cancer Institute, Shanghai, China
4Pancreatic Cancer Institute, Fudan University, Shanghai, China
5Department of Pancreatic-Biliary Surgery, Second Affiliated Hospital of Naval Medical University, Shanghai, China
6Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
7Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University,

Hangzhou, Zhejiang Province, China
8Department of Endoscopy, Fudan University Shanghai Cancer Center, Shanghai, China
9Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai, China
10Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
11These authors contributed equally
12Lead contact
*Correspondence: yuxianjun@fudan.edu.cn (X.Y.), shisi@fudanpci.org (S.S.)

https://doi.org/10.1016/j.xcrm.2023.101234
SUMMARY
The molecular dynamics of pancreatic ductal adenocarcinoma (PDAC) under chemotherapy remain incom-
pletely understood. The widespread use of neoadjuvant chemotherapy (NAC) provides a unique opportunity
to investigate PDAC samples post-chemotherapy. Leveraging a cohort from Fudan University Shanghai Can-
cer Center, encompassing PDAC samples with and without exposure to neoadjuvant albumin-bound pacli-
taxel and gemcitabine (AG), we have compiled data from single-cell and spatial transcriptomes, proteomes,
bulk transcriptomes, and metabolomes, deepening our comprehension of the molecular changes in PDACs
in response to chemotherapy. Metabolic flux analysis reveals that NAC induces a reprogramming of PDAC
metabolic patterns and enhances immunogenicity. Notably, NAC leads to the downregulation of glycolysis
and the upregulation of CD36. Tissue microarray analysis demonstrates that high CD36 expression is linked
to poorer survival in patients receiving postoperative AG. Targeting CD36 synergistically improves the PDAC
response to AG both in vitro and in vivo, including patient-derived preclinical models.
INTRODUCTION

Almost 80% of patients with pancreatic ductal adenocarcinoma

(PDAC) miss the opportunity for upfront resection (UR) and must

undergo chemotherapy.1 Even for resectable PDACs, regular

postoperative adjuvant chemotherapy is highly recommended

by current guidelines, whichmakes chemotherapy a cornerstone

for PDAC clinical management. Nonetheless, PDAC is still one of

the most lethal diseases, with a 5-year overall survival (OS) of

less than 10%,2 which means that additional treatment is war-

ranted to improve the efficacy of chemotherapy for patients

with PDAC.

Asof now, anunderstandingof howPDAC responds tochemo-

therapy remains limited. The adoption of neoadjuvant chemo-

therapy (NAC), administering chemotherapy before surgery,

enables the acquisition of treated PDAC samples for exploring
Cell Repo
This is an open access article under the CC BY-N
novel targets associated with enhancing chemotherapeutic effi-

cacy. NAC presents a valuable opportunity to investigate strate-

gies for improving therapeutic outcomes in PDAC patients.3–5

Recent studies have provided evidence suggesting that some

types of chemotherapy-induced tumor cell death can elicit

immunogenic cell death, thereby activating antitumor immunity

within the tumor microenvironment,6 suggesting that chemo-

therapy may facilitate antitumor immunity and synergistically

promote immunotherapy. However, chemotherapy-induced

damage to bonemarrow homeostasis also leads to systemic im-

mune inhibition, which seems to add difficulties for fueling sus-

tainable antitumor immunity. Notably, a recent study alerted

that NAC may dampen interferon (IFN)-a and IFN-g responses

in cancer, which could support immune evasion.7 As an immuno-

logically cold tumor, most PDAC cases do not show a response

to any common immunotherapy, such as immune checkpoint
rts Medicine 4, 101234, October 17, 2023 ª 2023 The Author(s). 1
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Figure 1. NAC rebuilt a survival-benefitted transcriptome and proteome landscape in PDAC

(A) Heatmap showing that more DEGs related to good prognosis were overexpressed in NAC samples. The hazard ratios (HR) were calculated by batched

univariate Cox regression. Z score referred to relative gene expression level.

(legend continued on next page)
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inhibitors.8Whether NACcan heat PDAC and create novel immu-

noregulatory targets deserves to be investigated.

Here, we performed multiple complementary approaches to

explore the differences in molecular characteristics between

PDAC treated with preoperative chemotherapy versus UR tumor

samples. We observed that NAC significantly reprogrammed

themetabolic pattern of PDAC and reshaped the tumormicroen-

vironment. Furthermore, systematic upregulation of CD36, a

metabolic receptor, was found to be a side effect at the molec-

ular level, attributed to chemotherapy based on our data, whose

blockade synergistically improved the efficacy of albumin-bound

paclitaxel and gemcitabine (AG) on PDAC in vivo.

RESULTS

NAC triggered broad alterations in the transcriptome
and proteome of PDAC samples to achieve survival
benefits
To study PDAC’s molecular response to NAC, we analyzed tran-

scriptome and proteome in resected human tumor tissues from

patients treated with or without NAC. Patient characteristics are

summarized in Table S1. Prior trials have reported NAC’s survival

benefits by enabling timely surgical resection after chemo-

therapy-induced tumor size reduction,9,10 visible in decreased

Ki67-positive malignant cells (Figure S1A). Our analysis revealed

4473 differentially expressed genes (DEGs) between PDAC sam-

ples treated with NAC andUR samples at the transcriptome level

based on DESEQ2 algorithms (Figures 1A and S1B). Among

these DEGs, 3,603 genes were upregulated and 870 genes

were downregulated in the NAC samples (Table S2). Hence,

we wondered whether NAC conferred a survival benefit by

affecting gene expression. To explore this hypothesis, we as-

sessed the effect of identified DEGs on patient OS using three

large PDAC cohorts (Figures 1A and 1B). Among the downregu-

lated genes, 69 genes were significantly associated with patient

OS, and 68 (98.6%) of these genes were related to poor OS in

The Cancer Genome Atlas cohort. In contrast, among the upre-

gulated genes after NAC, 120 genes were significantly associ-

ated with patient OS, and 109 (90.8%) of these were associated

with prolonged OS.

In theGSE71729 cohort, 92.7%of downregulated genes asso-

ciated with prognosis correlated with worse OS, while 57.0% of

upregulated genes associated with prognosis correlated with

better OS. Similar trends were observed in the E-MTAB-6134

cohort, where 84.2% of downregulated genes associated with

prognosis correlated with worse OS, and 65.8% of upregulated

genes associated with prognosis correlated with better OS.

Using the single-sample gene set enrichment analysis (ssGSEA)
(B) Kaplan-Meier curve indicating that NAC-upregulated genes were associated w

poor prognoses in E-MTAB-6134, The Cancer Genome Atlas (TCGA), and GSE71

log rank test.

(C) The genes that were downregulated in NAC samples were mostly associate

statistical significance of percentages difference was detected by chi-square tes

(D) Higher percentages of metabolic quiescent and less immune-cold and fibrotic

percentages difference was detected by chi-square test. RR, relative risk.

(E) A complex heatmap showing the DEPs and the distribution of clinical parame

(F) A high proportion of DEPs were immunity or metabolism associated.
algorithm, we identified enriched gene sets (NeoHsig and

NeoLsig) in the NAC group and examined their relationship with

patient OS. NeoHsig was associated with prolonged OS, while

NeoLsig predicted poorer survival across the three independent

PDAC cohorts (Figure 1B). Additionally, the Wilcoxon test,

another statistical method, was applied to identify DEGs and

evaluate their association with patient prognoses. The results

were consistent with the aforementioned findings (Figures S1C

and S1D).

Furthermore, a CRISPR-based screening method was used

to analyze the effects of upregulated and downregulated genes

in pancreatic cancer cell lines. The results indicated that most

downregulated genes after NAC potentially contributed to the

proliferative phenotype of pancreatic cancer cells, and vice

versa (Figure 1C). Previous studies have divided PDAC into

many molecular subtypes based on their different molecular

characteristics, including Moffitt subtypes,11 Collisson sub-

types,12 microenvironment subtypes,13 and metabolic sub-

types.14 To explore whether NAC promoted the transition of mo-

lecular subtypes in PDACs, we analyzed the percentage of each

subtype between PDAC samples with and without NAC using

chi-square test. We found that the Moffitt subtype percentages

were similar between the two groups, while fewer immune-cold

and -fibrotic and more metabolic-quiescent subtypes were

observed in NAC samples, suggesting that stringent immune

and metabolic reprogramming occurred within PDAC during

NAC (Figure 1D). In this study, data-independent acquisition

proteome analysis identified a total of 478 differentially

expressed proteins (DEPs) (Table S3). Among them, approxi-

mately 29.7% of these DEPs belonged to immune or metabolic

protein categories. This suggests that significant immune and

metabolic rewiring occurred in the PDAC microenvironment

after NAC treatment (Figures 1E and 1F). Then, we performed

functional annotations and enrichment analyses (Figures S2A–

S2G and Tables S4–S9). The results showed a significant

enrichment of DEPs and DEGs in various metabolic pathways.

Notably, proteins associated with cholesterol metabolism and

fatty acid absorption were enriched among the upregulated

proteins in NAC samples (Figure S2C). In contrast, genes

related to central carbon metabolism, such as glycolysis, were

enriched among the downregulated genes in NAC samples

(Figure S2F). GSEA analysis further revealed the universal atten-

uation of mitotic cytokinesis, basal transcription factor activity,

nucleotide salvage, and nucleosome positioning activity in

NAC samples, potentially triggering downstream reactions

(Figure S2I). Overall, the integrated analysis demonstrated an

intermediate correlation between gene expression in the tran-

scriptome and proteome (Figure S2J).
ith a prolonged survival period and downregulated genes were associated with

729 cohorts. The statistical significance of survival difference was detected by

d with the proliferative phenotype in pancreatic cell lines (DepMap data). The

t.

PDAC subtypes were found in the NAC groups. The statistical significance of

ters between NAC and UR groups.
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NAC shaped an immunogenic antitumor
microenvironment in PDAC
Single cell RNA-sequencing (sc-RNA-seq) was performed on

fresh PDAC samples to delineate the molecular alterations asso-

ciated with chemotherapy in the microenvironment. The basic

clinical information for each sample is presented in Table S10.

After appropriate quality control, a total of 46,993 cells, including

37,626 cells originating from NAC samples and 9,367 cells from

UR tumor tissues, were analyzed (Figures S3A and S3B). Cells

were further clustered into eight subgroups based on their

unique molecular markers (Figures 2A–2C). Then, we refined

T cell subclusters and found that the percentage of CD8+

T cells, an essential antitumor component in the tumor microen-

vironment, was significantly increased in PDACs that received

NAC (Figures 2D, 2E, and S3C). In addition, we conducted

T cell receptor (TCR) sequencing analysis, revealing that the

clonotype of TCRs was increasingly expanded in PDAC samples

with NAC, which indicated enhanced reactivity of intratumoral

immune components to eliminate tumor cells after chemo-

therapy (Figures 2F, 2G, and S3D).

To evaluate the global alteration of immune infiltrates, we

calculated the relative abundance of immune cells within the

PDAC microenvironment using two bioinformatic algorithms,

ssGSEA and CIBERSORT, which were based on the bulk tran-

scriptome. As expected, we found that the level of infiltrating

CD8+ T cells was increased in the NAC group compared with

the UR group (Figures 2H, 2I, and S3E). We also generated a

spatial transcriptomic source for PDACs with and without

NAC (Figure S3F). The spatial transcriptome, three additional

transcriptome-based algorithms (QUANTISEQ, TIMER, and

XCELL), and immunohistochemistry (IHC) results also sup-

ported the enrichment of CD8+ T cells in tumors after NAC

(Figures 2J, 2K, and S4A). Subsequently, we conducted a com-

parison of the activity of 49 knowledge-based immune signa-

tures between the two cohorts. Our analysis revealed that

both CD8+ T cells and the cytolytic activity signature exhibited

a trend toward enrichment in NAC samples (Figure S4B). Gran-

zyme was the main substance released by cytotoxic T cells

mediating the killing of tumor cells through apoptotic or immu-

nogenic cell death, as we previously summarized.15 The prote-

ome data generated in the present study also revealed an upre-
Figure 2. NAC reprogrammed the immune microenvironment in PDAC

(A) UMAP plot revealed cell clusters in PDACs with or without NAC. NK, natural

(B) The distribution of marker genes among different cell clusters. Red dots refer

(C) The percentage of different cell clusters in PDAC samples with and without N

(D) UMAP plot revealing subclusters for NK and T cells.

(E) More CD8+ T cells were enriched in PDACs with AG treatment, which was sh

(F) PDACs that received NAC showed higher TCR clonotype expansion. n, mean

(G) The Gini index for TCR clonotype was increased in PDACs with NAC (mean w

(H) Correlation network for immune cells in either the NAC or UR group. The size

(I) Comparison of immune cell constitution between the UR and NAC groups.

(J) IHC analysis revealed increasedCD8+ T cells in PDACs treatedwith NAC (n = 54

T cells.

(K) The spatial transcriptome showed that more CD8+ T cells were enriched in th

(L) mIF showed that an increase in GZMB+ CD8+ T cells was enriched in PDACs tr

the representative graph for GZMB+ CD8+ T cells in PDACs.

(M) More patients who had received NAC were predicted to be responders to im

significance shown in this figure was detected using t test.
gulation trend for granzymes A, B, and K in tumor tissues with

NAC, exhibiting marginal significance (Figure S4C). Further-

more, we found that the infiltration level of granzyme B+ CD8+

T cells within the tumor microenvironment was elevated in pre-

treated PDACs (Figure 2L). Then, we investigated whether the

levels of infiltrating regulatory T cells (Tregs) in the PDAC micro-

environment after NAC were different from those in UR samples,

given that Tregs played a notorious immunosuppressive func-

tion in tumors. To our surprise, no distinct difference in either

Treg infiltration or FOXP3+ cell density was found between the

NAC and UR groups (Figure S4D) (p = 0.42 and 0.87, respec-

tively), while another immunosuppressive cell,16–18 the infiltrated

CD163+ macrophages, potentially decreased in PDACs treated

with NAC (Figure S4E). TIMER and EPIC algorithms respectively

indicated that NAC increased the abundance of B cells and

CD4+ T cells based on the t-test, which are important compo-

nents of tertiary lymphoid structures (TLS) (Figures S4F and

S4G). Recent studies have shown that TLSs could be a sensitive

biomarker for predicting immunotherapy response and patient

prognosis. Notably, our results also demonstrated that TLS

density was significantly increased in the NAC group

(p=0.003) (Figures S4H and S4I). In addition, we calculated

the immunophenoscore for each PDAC sample to evaluate

the comprehensive immunogenic status of the tumor. The re-

sults showed that samples collected from patients who under-

went NAC had a higher immunophenoscore (Figure S4J,

p=0.008). All these results reflected enhanced immune activity

and the potential benefit from immunotherapy after NAC in sam-

ples of PDAC. Using the ImmuCellAI algorithm, a method used

to predict the response to immunotherapy, we found that only

the NAC group included potential responders to immuno-

therapy (response rate 12.8% in the NAC group vs. 0.0% in

the UR group), which indicated that NAC could be an effective

method to boost the efficacy of subsequent immunotherapy

(Figure 2M). Interestingly, the expression levels of programmed

cell death 1, programmed cell death 1 ligand (PDL1), and CTLA4

were comparable between NAC and UR samples (Figure S4K),

suggesting that traditional immune checkpoints may not be the

optimal target of immunotherapy for PDAC patients who receive

chemotherapy, and novel targets associated with chemothera-

peutic exposure for immunotherapy may be required.
killer.

to enriched gene expression.

AC.

owed by chi-square test.

s the number of expanded clonotypes.

ith standard deviation).

of circles reflected the infiltration level for cells.

). The upper panel shows the representative graph for positive staining of CD8+

e tissue slices of PDAC samples with NAC.

eated with NAC (n = 20) (mean with standard deviation). The Left) panel showed

munotherapy, which analyzed using ImmuneCellAI algorithm. The statistical
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Figure 3. Single-cell and spatial transcriptome analyses revealed that metabolic enzyme alterationsmay contribute to immune infiltration in

a treatment-associated background

(A) UMAP analysis showed subclusters for ductal cells in PDACs with or without NAC treatment. The lower right panel presented the percentage of c10 ductal

cluster was lower in PDAC samples treated with NAC.

(legend continued on next page)
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Chemotherapy-induced metabolic heterogeneity in
PDAC is linked to immune microenvironment
remodeling
Clustering analysis classified PDAC cells into two major clusters

(Figure S5A), which is consistent with a previous report.19 Further

analysis annotated 11 subclusters for PDAC cells, of which a

FXYD3+TFF1– subtype was significantly decreased in NAC sam-

ples (Figures 3A and S5B). Metabolic reprogramming in cancer

cells has been regarded as the hallmark of cancers and plays

an important role in immune evasion. Through single-cell-level

analysis of metabolic enzyme expression, we found that lipid

and glutamine metabolism were significantly upregulated in

malignant cells that survived chemotherapy. In contrast, as the

core metabolic approach of tumor cells to generate energy,

glycolysis was apparently lower in PDACs treated with NAC

(Figure 3B). Fructose metabolism, which shared many metabo-

lites and enzymes with glycolytic flux, also showed a decrease

in the NAC samples (Figure 3B). Then, we showed a broad down-

regulation of glycolytic enzymes by analyzing the differential

expression of metabolic enzymes along the glycolytic axis

(Figure 3C). In addition, through gene list-based annotation, we

found that the percentage of glycolytic malignant cells was

significantly decreased in NAC samples (Figure 3D), while meta-

bolic pathways such as cholesterol synthesis, fatty acid meta-

bolism, sialic acid metabolism, and tryptophan metabolism

were significantly upregulated (Figure S5C).

Furthermore, we classified PDAC cells into four subtypes using

an unsupervised clustering algorithm based on the activities of

metabolic pathways, which are referred to as C1–C4 (Figures 3E

and S5D). We next compared the distribution of each ductal

subtypebetweenPDACsampleswith andwithoutNACand found

that C4, characterized by high cholesterol biosynthesis, was

significantly enriched in PDACs with NAC, while another subtype

C1 was enriched in samples without chemotherapeutic exposure

(Figures 3F and 3G). Here, we also generated a subtype-specific

gene signature for each ductal cell subtype based on the tran-

scriptome at the single-cell level and projected it to the slices

coded by sequenced spatial transcriptome data. The results vali-

dated that C1 was the dominant ductal cell subtype in PDAC

without NAC; in contrast, the distribution of C4 ductal cells was

more enriched in treated PDACs (Figures 3H and S5E). All these

results suggested that PDAC cells under chemotherapeutic pres-

sure experienced stringent metabolic reprogramming compared

with treatment-naı̈ve cells, which may influence other cells in the

tumormicroenvironment. In this context, we explored the correla-
(B) Single-cell metabolism analysis showed differentially activated metabolic pat

(C) Transcriptome analysis at the single-cell level revealed differentially expresse

(D) The percentage of glycolytic ductal cells was lower in PDACs with NAC treatm

square test.

(E) Consensus clustering distinguished four types of ductal cells based on the si

(F) Heatmap showing the distribution of metabolic pathway activity in distinct du

(G) C4 ductal cells were more enriched in the NAC group, while C1 ductal cells w

difference was detected by chi-square test.

(H) Spatial transcriptome visualized the distribution of subtype-associated signat

pancreas area; SA, stroma area.

(I) Most genes downregulated in treated PDACs were negatively correlated with t

(J) CellChat algorithm showed PDACs with or without NAC were featured with d

(K) CellChat algorithm deregulated communication signaling from ductal cells to
tion between upregulated/downregulated metabolic genes and

cytotoxic signatures/CD8+ T cell infiltration at the bulk level.

Notably, all the genes upregulated in the NAC group were posi-

tively associated with CD8+ T cell infiltration and/or cytotoxic

signatures, while almost all the genes that were downregulated

in the NAC samples showed an inverse trend (Figures 3I and

Table S11). Similarly, based on sc-RNA-seq, 71%of the downre-

gulated genes in the NAC group were negatively associated with

CD8+ T cell infiltration, which was calculated by integrating nine

algorithms for microenvironment estimation (Figure S5F).

Then, we compared the differences in cell-cell interactions

between NAC and UR samples. Interestingly, both the number

and strength of the ductal-T cell interaction were significantly

increased in PDAC samples after NAC (Figure 3J). In detail, inter-

actions including HLA-CD8s, SPP1-CD44 and SPP1-(ITGA4+

ITGB1) were more frequently seen in the microenvironment after

chemotherapeutic exposure, while interactions such as LAMB1-

CD44 were reduced in the NAC group (Figure 3K).

PDACs with chemotherapeutic exposure captured
chemoresistance potentially by promoting the
accumulation of oleic acid
Comparedwith single-cell analysis, bulk-level metabolic analysis

via transcriptome,proteome,andmetabolomehadadvantages in

reflecting the global metabolic landscape of PDAC. The expres-

sion of metabolic enzymes either at the protein or transcription

level experienced significant alterations after NAC, which is the

same as in the single-cell analysis. All the core enzymes along

the glycolytic pathway were downregulated at the protein and/

or transcriptional level, such as HKs, ALDOs, PGK1, LDHA, and

the transporter of lactic acid SLC16A1 (Figure 4A). In contrast,

many enzymes in othermetabolic pathways, including lipidmeta-

bolism,glutamineutilization, andoxidativephosphorylation,were

universally upregulatedafterNAC,potentially for energycompen-

sation (Figure 4A). As an essential enzyme for lactic acid produc-

tion, LDHA was significantly decreased after NAC at the mRNA

level. In addition, proteome data showed a downregulation trend

of LDHA with marginal significance, which was further validated

by IHC (Figures S5G and S5H). Furthermore, the expression

pattern of LDHA and CD8 showed an inverse trend in samples

with and without NAC (Figure S5I). Through analysis of bulk

transcriptomic data, we found that the negative correlation be-

tween LDHA and CD8 was more significant in PDAC samples

with NAC than in treatment-naı̈ve samples (Figure S5J). In

addition, we found no correlation between LDHA and CD8 in
hways between NAC and UR groups.

d glycolytic enzymes in pancreatic ductal cells.

ent. The statistical significance of percentage difference was detected by chi-

ngle-cell level activity of metabolic pathways.

ctal subtypes and treatment cohorts.

ere more enriched in the UR group. The statistical significance of percentage

ures in PDACs with or without NAC treatment. MA, malignant area; NA, normal

he high level of cytotoxic signature and CD8+ T cell infiltration, and vice versa.

ifferent communication patterns.

T cells in PDACs with or without NAC treatment.
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treatment-naı̈ve samples (Figure S5K). To better monitor glyco-

lytic activity before and after NAC, we generated PDX models

and administered chemotherapy or placebo to PDX mice with

comparable xenograft volumes. Next, we established PDXOs us-

ing dissociated xenografts with or without chemotherapeutic

exposure and cultivated them in vitro (Figures 4B and 4C). To

explore whether glycolytic addiction varied in surviving PDAC

cells after NAC, we performed glucose metabolism flux analysis

with uniformly labeled C13-glucose by using PDXOs derived

from treated or naive mice. The results revealed a significant in-

crease in C13-glucose-derived tricarboxylic acid cycle metabo-

lites (e.g., m+2 citrate) in PDXOs with previous chemotherapy,

while the C13-labeled glycolytic metabolites (e.g., m+3 lactate)

were dramatically decreased (Figure 4D). Although most the

tricarboxylic acid (TCA) carbon in pancreatic cancer was noted

as being derived from glutamine,20 the decreases in C13-labeled

glycolyticmetabolites could still indicate that PDACcells that sur-

vived NAC exhibited reduced dependency on glycolysis; none-

theless, how metabolic compensation works remained unclear.

To systematically investigate the perturbance of metabolic flux

in PDACs during chemotherapeutic exposure, we estimated the

metabolic flux in both NAC and UR samples and revealed that

the flux to acetyl-coenzyme A (CoA) and succinyl-CoA, the

products of fatty acid beta-oxidation, was significantly increased

in chemotherapy-treated samples, which could either enter the

TCA cycle or generate ketone bodies for energy preservation.

Meanwhile, PDACs with NAC upregulated cholesterol use, while

treatment-naı̈ve tumors featured more active nucleic acid flux

(Figure 4E). Furthermore, we performed untargeted metabolome

analysis to screenNAC-specificmetabolites. A total of 270 differ-

entialmetabolites (DMs)weredetectedbetween theNACandUR

groups (Figure S6A and Table S12). Bray-Curtis NMDS, PCoA

and PCA confirmed the capability of these DMs in distinguishing

theNACandURsamples (Figures S6B–S6D). Notably, lactic acid

abundance was dramatically decreased in NAC samples, while

many metabolites involved in fatty acid metabolism, oxidative

phosphorylation, and glutamine metabolism were significantly

increased (Figure S6E), which supported the metabolic

enzyme-based findings of chemotherapy-associated metabolic

reprogramming. We further conducted energy metabolism-tar-
Figure 4. Multiomics analysis supported that NAC decreased glycolys

(A) Transcriptome and proteome analysis revealed alterations in metabolic enzym

alteration is shown in yellow, while proteome alteration is shown in black.

(B) Construct PDXO models from PDX mice with and without AG treatment.

(C) A representative graph for PDXO in bright fields of microscope.

(D) Metabolic flux experiments validated that PDXO separated from PDX mice tr

isoforms of metabolites in glycolysis and TCA cycle. The heatmap reflects the

number of C13 in the metabolite structure (n = 4).

(E) Comparison of metabolic flux between the AG and control groups based on

(F) Targeted metabolomics analysis showed the differences of lactic acids, 3-PD

and without NAC, which implied NAC is associated with downregulated glycolyt

(G) Cell-Counting-Kit-8 (CCK-8) results showed oleic acid (50 mM) promoted the

contrary (the upper panel), palmitic acid (50 mM) had no effect on the proliferatio

(H and I) Oleic acid, as opposed to palmitic acid, was found to enhance the gro

displaysRepresentatives of PDOs cultured under the indicated conditions for 7

different groups, measured using the CellTiter-Glo 3D Cell Viability Assay (n = 5)

(J) EdU assay showed oleic acidmay fuel the drug resistance to AG but could be b

was detected using t test.
geted metabolome for samples with NAC and UR. The results

validated that the glycolytic products lactic acid and 3-P-

glycerate were decreased in samples treated with NAC, while

alpha-ketoglutarate was increased (Figure 4F). In addition, we

conducted spatial metabolome analysis for a slice of resected

PDACwith NAC.Overall, regional differences inmetabolite distri-

butionwereobservedandcouldbeclassified intoseveral clusters

(Figure S6F). Some metabolites were specifically abundant in

CD8+ T cell-enriched regions; for example, PG_38:5 was signifi-

cantly upregulated in cluster_7 regions (Figures S6G and S6H).

To explore the impact of metabolites that were upregulated in

NAC tissues, we stimulated human T cells isolated from PBMCs

with the top ten available upregulated metabolites or their syn-

thetic substitutions (Figures S6I and S6J). Then, we measured

the secretion of IL-2 and IFN-g by T cells after metabolite treat-

ment, which showed that most of these metabolites are capable

of promoting the secretion of cytokines, while only oleic acid

showed an inverse trend, suggesting that oleic acid might be

a chemotherapy-associated unfavorable factor for T cell func-

tion (Figure S6K). Oleic acid treatment significantly enhanced

the growth of pancreatic cells, as demonstrated by the Cell-

Counting-Kit-8 assay. Instead, palmitic acid, which has also

been reported to enter tumor cells via CD36, did not show effect

on the growth of pancreatic cancer cells. Furthermore, our

investigation using the 3D cell viability assay revealed that

PDO exhibited accelerated growth in a medium supplemented

with oleic acid, compared with the normal control. These effects

could be further rescued by blocking oleic acid absorption using

an anti-CD36 neutralizing antibody (Figures 4G–4I). Through

EdU experiments, we further revealed that panc-1 cells with

oleic acid treatment showed higher proliferative rate compared

with the control group, which could be mitigated by blocking

oleic acid absorption (Figures 4J and S6L), indicating that

increased use of oleic acid may render PDAC cells resistant

to AG.

Additionally, we performed CD36 knockdown in Panc-1 cells

to investigate its impact on cell proliferation and chemothera-

peutic resistance (Figure S6M). The results demonstrated that,

under normal conditions, CD36 knockdown did not affect cell

proliferation. However, it blocked the stimulatory effects of oleic
is but developed compensatory approaches

es associated with AG treatment. The log fold-change value of transcriptome

eated with AG showed less glycolytic activity. The upper panel showsfocused

relative abundance of isoforms shown in the ideographs. ‘‘m’’ referred to the

RNA-seq data (scFEA algorithm).

, phosphoenolpyruvate, and alpha-ketoglutarate between PDAC samples with

ic activity in PDAC (n= 44) (mean with standard deviation).

proliferation of panc-1 cells and could be blocked by targeting CD36, on the

n of panc-1 cells (the lower panel) (n = 5).

wth of PDOs according to the viability assay. The upper section of the figure

days. The lower section features a bar plot illustrating the relative viability of

.

locked by targeting CD36 (n = 4). The statistical significance shown in this figure
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acid on cell proliferation (Figure S6N). Similarly, when we treated

panc-1 cells with AG in vitro, we observed that oleic acid signif-

icantly enhanced chemoresistance in CD36-intact cells, but not

in CD36-knockdown cells (Figure S6O). These findings further

confirm that oleic acid may exert pro-tumoral effects through

its interaction with CD36.

NAC triggered systematic upregulation of CD36 in both
the PDAC microenvironment and circulation
Notably, CD36, a transporter of oxidized lipids and free fatty acids

such as oleic acid,was also significantly overexpressed in PDACs

after NAC, as shown by both proteome sequencing and IHC vali-

dation (Figures 5A and S7A). Among all metabolism-related mol-

ecules upregulated in the NAC group, CD36 was the only protein

distributed on the membrane, which made it easier to target (Fig-

ure S7B). To ensure the upregulated oleic acid-CD36 axis after

NAC, we compared the oleic acid uptake ability between

PDXOs derived from PDX mice with and without AG treatment.

Based on tracing 13C-labeled oleic acid, we found that the abun-

dance of 13C-labeled oleic acid was significantly increased in

PDXOs derived from AG-treated mice, confirming the enhanced

capability of PDAC cells to absorb oleic acid after chemotherapy

(Figure 5B). As shown in the last section, targeting CD36 over-

comes oleic acid-mediated tumor growth and chemoresistance

in vitro. Given that chemotherapy is a systematic and unselected

treatment, we further investigated whether CD36 was only

induced in tumor cells. To our surprise, through analysis of re-

sected PDAC tissues, we found that CD36 was also overex-

pressed on tumor-infiltrating CD8+ T cells and widely distributed

in TLSs (Figures 5C and 5D). Then, we performed a large-scale

correlational analysis between CD36 expression and 112 cell-

specific signatures. As expected, CD36 was highly correlated

with signatures of endothelial cells because of its constitutive

expression on many types of vascular structures. However,

CD36 also showed a high correlation with many signatures of

immune cells, especially CD8+ T cells, only in the NAC group,
Figure 5. CD36 was systematically upregulated in tumor cells and resi

(A) Immunohistochemical staining indicated that CD36 expression is increased

standard deviation). Representative graphs are shown on the left.

(B) Metabolic flux experiments showed that PDXOs derived from PDXs treated w

(C) The percentages of CD36+CD8+ T cells and CD36+GZMB+CD8+ T cells wer

Representative graphs are shown on the left.

(D) Representative graph by mIF showed co-localization of CD36 and TLS in PD

(E) Heatmap showing the correlation between CD36 expression and infiltration of

CD8+ T cell abundance only in PDACs treated with NAC.

(F) Flow cytometry for PBMCs from PDAC patients showed CD36 was upregulate

t-Distributed stochastic neighbor embedding (TSNE) analysis for labeled cell clus

of both CD36+ CD8+ T cells and CD36+ CD45+ immune cells in samples with NA

(G) Flow cytometry showed that oleic acid decreased the percentage of IFN-g+

(H) T cells treated with lysates from different PDAC samples manifested distinct

(I) T cells treated with lysates from CD36-low NAC samples showed significantly

(J) Caspase3/7 detection indicated that targeting CD36 synergistically enhanced t

panel shows the representative graph of caspase3/7-positive organoids at the tim

each group, which was evaluated through flow cytometry.

(K) mIF showed CD36 blockage enhanced the killing effect of AG, which was sh

(L) Successful construction of ovalbumin (OVA+) murine KPC organoids.

(M) The OVA+organoid/OT-1-cell coculture system validated the synergistic effec

representative graph of caspase3/7-positive organoids. Right panel shows the p

flow cytometry. The statistical significance shown in this figure was detected us
which meant that CD36 could be induced in immune cells when

encountered with chemotherapeutic exposure (Figure 5E).

Beyond tumor-infiltrating immune cells, we detected CD36

expression on circulatory immune cells in patients with and

without NAC. Through an analysis of immune cells with myeloid

linkage, we found that, although the percentage of immunosup-

pressive CD11b+ CD45+ cells was decreased in NAC samples,

the distribution of CD36 was significantly expanded in CD11b+

CD45+ cells, especially for CD11b+ CD14+ cells, which are mono-

cyte-like myeloid-derived suppressor cells (Figure S7C). Overall,

increased CD36 expression was found on CD45+ cells with

NAC, of which the trend for CD45+ CD8+ T cells was the most

significant (Figure 5F). To further explore the impact of the upre-

gulated oleic-CD36 axis on the function of CD8+ T cells, we

measured the IFN-g secretion with the intended treatment. Flow

cytometry results revealed that oleic acid accumulation may

dampen the secreting ability of CD8+ T cells, and this effect could

be rescued by blocking CD36 (Figure 5G).

While CD8+ T cells were more highly enriched in the PDAC

microenvironment with NAC, the percentage of CD36+ CD8+

T cells also increased,whichmaymitigate the immunogenic effect

of preoperative chemotherapy. In this context, we treated CD8+

T cells with PDAC tissue lysates with different levels of CD36

expression and further detected the cytotoxicity and IFN-g secre-

tion of the treated cells. Overall, both the cytotoxicity and IFN-g

release of CD8+ T cells were increased in the group treated with

the tissue lysates from NAC samples; notably, that increase was

more obvious in the cases from CD36-low NAC samples

(Figures 5H, 5I, and S7D–S7F). In samples treated with NAC,

CD36 expression in lysate was significantly negatively correlated

with the LDH-releasing level (Figure S7G). In this context, we

generated an oleic acid-containing patient-derived organoid-pe-

ripheral blood mononuclear cell (PDO-PBMC) coculture system

with the indicated treatment and detected the percentage of

apoptotic organoids. We observed a synergistic effect of CD36

blockade and AG treatment on PBMC-mediated tumor killing,
dent and circulating immune cells

in PDACs treated with NAC compared with UR samples (n= 54) (mean with

ith AG had increased capability to uptake oleic acid (n = 3).

e significantly upregulated in PDACs treated with NAC (n = 10) (mean ± SD).

AC.

immune cells, which indicated that CD36 expression was highly correlated with

d in circulating CD8+ T cells from patients treated with NAC. Left panel displays

ters (mean with standard deviation). Right panel displays the higher percentage

C.

CD8+ T cells and could be rescued by CD36 blockage (n = 3).

tumor-killing ability, which is showed by LDH-releasing experiments (n= 5).

higher IFN-g secretion compared with UR samples.

he killing effect of AG based on a PDAC organoid/PBMC coculture system. Left

e points 0 and 48 h. Right panel shows the percentage of apoptotic organoids in

owed by detecting Ki67+ organoids via mIF technology.

t of CD36 blockade on AG-mediated tumor killing (n= 3). Left panel shows the

ercentage of apoptotic organoids in each group, which was evaluated through

ing t test.
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suggesting the potential clinical value of combining CD36

blockade with AG agents in NAC or adjuvant treatment for

PDAC patients (Figures 5J and 5K). Moreover, we constructed

ovalbumin-expressingKPC organoids to achieve antigen-specific

immune responses mediated by OT-1 cells (Figure 5L). Based on

this experimental design, we observed similar results to those re-

flected in the PDO-PBMC coculture system. These findings

further confirmed the synergistic effect of combining CD36 target-

ing with AG treatment (Figure 5M).

Targeting CD36 synergistically promoted AG efficacy
for PDAC in preclinical models
Next, we investigated whether anti-CD36 therapy could improve

the efficacy of AG in vivo based on several preclinical animal

models. Tumor xenografts that received AG combined with the

neutralizing antibodyofCD36grewsignificantly slower than those

treated with either single AG or anti-CD36 therapy, suggesting

that additional anti-CD36 treatmentwithAGmayoptimizeNACef-

ficacy (Figures 6A–6D). Further analyses validated that AG expo-

sure increasedboth the intratumoral infiltrationofCD8+Tcells and

the percentage of granzyme B+ CD8+ T cells (Figures 6E and 6F).

Likewise,we found thatAG treatment increasedCD36expression

on CD8+ T cells but not CD4+ T cells, which was consistent with

what we found in the previous sections (Figure 6F). Interestingly,

AG treatment also increased the percentages of CD36+ myeloid

cells in PDAC (Figures S7H and S7I). The combination of anti-

CD36 therapy with AG effectively increased the expression of

cytotoxic signatures and the levels of IFN-g and tumor necrosis

factor a in tumor xenografts, further revealing that anti-CD36

was a targetable immunoregulatory molecule during AG treat-

ment (Figures 6G and S7J). Subsequently, we generated ortho-

topic murine models of pancreatic cancer and grouped them

into different treatment arms (Figure 6H). The group treated with

AG and anti-CD36 antibody had the longest survival interval

(combination vs. AG alone, p=0.042; combination vs. anti-CD36

antibody alone, p < 0.0001; log rank test) (Figure 6I). Moreover,

we generated a huPBMC-PDX model to test whether the combi-

nation of anti-CD36 and AG under an immunocompetent back-

ground had a synergistic effect. During follow-up, we found that

humanized PDX mice treated with the combination of CD36

blockade and AG significantly slowed tumor growth compared

with AG alone, while a single use of CD36 blockade did not

achieve satisfactory efficacy (Figure 6J). The DepMap database

integrated information on drug resistance and data on gene-

dependent tumor growth. By analyzing gemcitabine sensitivity

and CD36 dependency in pancreatic cancer cell lines, we found

that gemcitabine-insensitive pancreatic cancer cell lines are

more dependent on CD36, supporting the importance of CD36

in gemcitabine-based chemoresistance for PDAC (Figure S7K).

Next, we detectedCD36 expression for PDAC samples in a tis-

sue microarray (TMA) cohort (Table S13). After screening partic-

ipants who underwent adjuvant AG treatment after surgery, we

discovered a significant association between upregulated

CD36 expression and poorer prognosis in this specific popula-

tion (Figures 6K and 6L), suggesting that anti-CD36 plus AG

could be a promising strategy not only for the clinical manage-

ment of neoadjuvant PDAC, but also extended to adjuvant

chemotherapy for postoperative patients.
12 Cell Reports Medicine 4, 101234, October 17, 2023
DISCUSSION

Thewide acceptance and use of NACmarks a new treatment era

for PDAC. Beyond the strengths of NAC observed in clinical

practice, the idea of chemotherapy before surgery has made it

possible to investigate human resected PDAC tissues under

chemotherapeutic exposure. Although almost all patients diag-

nosed with PDAC should accept chemotherapy, little is known

about how the molecular landscape of tumors varies under

chemotherapeutic pressure.

A previous study showed that PDAC treated with FOLFIRINOX

regimens exhibited the densest CD8+ cell infiltration, but less

M2 macrophage infiltration compared with a treatment-naı̈ve

group.21 Hwang et al.22 recently applied single-nucleus RNA-

seq to analyze frozen samples treated with NAC or UR, which

also showed CD8+ T cells increased in samples with NAC. In

contrast, Farren et al.23 compared the differences in immune

infiltrates and immune-related markers between PDAC patients

treated with UR or neoadjuvant FOLFIRINOX. Their results indi-

cated that FOLFIRINOX did not alter the infiltration of CD8+

T cells in either the tumor-enriched area or the immune cell-en-

riched area, while the combination of neoadjuvant stereotactic

radiotherapy with FOLFIRINOX even decreased the number of

CD8+ T cells within these regions.23 The regimen for NAC studied

in the present study is AG. Comparedwith FOLFIRINOX, which is

already composed of four chemotherapeutic agents, AG not only

had fewer adverse reactions that could be tolerated by more

patients, but also potentially allowed for additional treatment,

such as immune checkpoint inhibitors or anti-CD36 treatment

we proposed here. Moreover, our previous study showed that

the 4- and 5-year survival probabilities of the two strategies

were comparable.24 Here, based on bulk and single-cell level

sequencing techniques and IHC validation, we showed that

PDAC samples with neoadjuvant AG were enriched with more

CD8+ T cells and TLSs, but fewer M2-polarized macrophages,

indicating that AG could be an immunogenic regimen to trans-

form cold PDAC to an immune cell-enriched state.

Unfortunately, the rate of objective response to AG treatment is

only 23%.25According to another clinical trial, the surgical conver-

sion rate of NACwas only approximately 35.9% (95% confidence

interval, 24.3–48.9).10 Hence, overcoming resistance to AG is still

a huge but significant challenge for improving the prognosis of pa-

tients with PDAC. Our study revealed that broad metabolic re-

programming occurred in PDAC samples treated with NAC by

metabolome and metabolic flux assays. We showed systemic

oleic acid accumulation and the upregulation of its receptor

CD36 in NAC samples. As a targetable metabolic protein, CD36

was broadly upregulated on both tumor and immune cells after

NAC.We proposed that tumor cells could increase the absorption

of oleic acid by CD36 to survive when they are in chemothera-

peutic attack. In contrast, oleic acid exposure and increased

CD36 expression onCD8+ T cells significantly damaged their anti-

tumor capability. Interestingly, we also observed increased CD36

expression on myeloid cells in NAC samples. According to a pre-

vious study, myeloid cells can take up tumor-derived long-chain

fatty acids to fuel themselves and trigger their tumor-

promoting activities, which may also be a side effect of NAC.26

Overall, CD36 upregulation potentially undermined the efficacy



Figure 6. Targeting CD36 synergistically promoted AG-mediated killing of PDAC in preclinical models

(A) Visual presentation of subcutaneous xenograft murine PDAC tumor models (C57 mice) for each group.

(B) Measurement of tumor volumes showed CD36 blockage synergistically promoted AG-mediated killing of PDAC in subcutaneous xenograft murine PDAC

tumor models.

(C) Measurement of tumor weights showed CD36 blockage synergistically promoted AG-mediated killing of PDAC in subcutaneous xenograft murine PDAC

tumor models (n = 5).

(D) Representative IHC staining showed Ki67 expression in subcutaneous xenografts treated with different regimens.

(E) t-Distributed stochastic neighbor embedding (TSNE) analyses showed the clustering for CD36+ CD8+ T cells and GZMB+ CD8+ T cells.

(F) Flow cytometry revealed that more CD8+ T cells infiltrated PDAC with NAC, while the percentage of CD36+ CD8+ T cells also increased (n = 5) (mean with

standard deviation).

(G) ELISA results showed the combination of AG andCD36 blockade significantly improved IFN-g and tumor necrosis factor a (TNF-a) levels intratumorally (n = 5).

(H) Representative image of orthotopic murine models of PDAC.

(I) Kaplan-Meier curve revealed the combination of CD36 blockade and AG significantly prolonged the survival interval of mice that received orthotopic PDAC cell

transplantation (n = 10). Circle or square referred to a happened event (death or censored). Censored event means the mice is still alive at the time point that we

ended follow-up.

(J) CD36 blockade synergistically with AG regimens optimally narrowed the PDAC tumor size in a humanized PDX model (n = 10).

(K) Representative IHC staining image of CD36-high and -low PDAC.

(L) Kaplan-Meier curve showed increased CD36 expression predicted worse prognosis of PDAC patients with adjuvant AG chemotherapy. The statistical sig-

nificance shown in this figure was detected using t test.
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of NAC, which was supported bymultiple preclinical models, sug-

gesting the synergistic value ofCD36blockadewith AG treatment.

In clinical practice, not every pancreatic cancer patient is sen-

sitive toNAC. For instance, somepatients only receive twocycles

of NAC, during which their carbohydrate antigen 19-9 (CA 19-9)
levels increase and/or their tumors enlarge. Nevertheless, some

of these patients may ultimately undergo radical resection, as

their tumors remain anatomically resectable. Because of the

abundant stroma, radiographic findings often do not exhibit clear

shrinkage afterNAC inpancreatic cancer patients, evenwhen the
Cell Reports Medicine 4, 101234, October 17, 2023 13
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tumor responds to NAC. This implies that the majority of pancre-

atic cancer patients have stable disease according toRECIST1.1

after NAC. The NCCN guideline for pancreatic cancer (version 2.

2021) states that "radiographic findings may appear stable

despite dramatic falls in CA 19-9" and "exploration for resection

should be considered if there is a >50% decrease in CA 19-9

level and clinical improvement indicating response to therapy."

Consequently, in the inclusion criteria for this study, we consid-

ered both radiographic and CA 19-9 changes after NAC when

designing the study.

Notably, a highlight of the present study is that CD36 was a

pan-upregulated target in both tumor cells and T effector cells;

meanwhile, the blockage of CD36 not only restrain tumor che-

moresistance but also recover anti-tumor immunity, which en-

dowed with fewer off-target effects and a greater potential for

clinical translation based on CD36 targeting.

In summary, multimodal analysis of PDAC specimens with and

without NAC revealed broad immune and metabolic reprogram-

ming, the findings of which might be extended to advanced

PDACs treated with adjuvant chemotherapy. The combination

of CD36 blockade and AG is expected to increase the surgical

conversion rate in the NAC context and the response rate in

the background of adjuvant chemotherapy.

Limitations of the study
Thepresent studyhassome limitations.On theonehand, although

we performed many metabolic analyses in vitro and in silico, we

did not explore the metabolome disturbance at the single-cell

level. This limitation could not bewell addressed because relevant

techniques are still not defined clearly. In this context, we tried to

use single-cell and bulk-level variations in metabolic enzymes,

bulk-level metabolome detection, and isotope-labeled metabolic

flux evaluation by a patient-derived PDAC model to explore

chemotherapy-associated metabolic changes and support our

findings. On the other hand, the PADC samples with NAC and

UR analyzed in the present study were unpaired. The primary

reason for this limitation is the clinical practice for pancreatic can-

cer patients. When a patient is diagnosed with unresectable dis-

ease based on radiographic evidence, they are typically recom-

mended to undergo chemotherapy. As a result, it becomes

challenging to obtain matched samples because of the treatment

decisions made in the management of pancreatic cancer.
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Software and algorithms

GraphPad Prism software version 9.0.0 GraphPad Software https://www.graphpad.com

R version 3.5.2 R Foundation for Statistical

Computing

https://cran.r-project.org

FlowJo version 10.7.1 FlowJo, LLC https://www.flowjo.com/

FeatureCounts v1.5.0-p3 Liao et al.29 http://subread.sourceforge.net

Proteome Discoverer 2.2 search engines Thermo

DESeq2 Love et al.30 http://www.bioconductor.org/packages/release/

bioc/html/DESeq2.html

Gene Set Enrichment Analysis (GSEA) version 3.0 Liberzon et al.31 http://www.gsea-msigdb.org/gsea/index.jsp

Kyoto Encyclopedia of Genes and Genomes (KEGG) Ogata et al.32 http://www.genome.ad.jp/kegg/

Gene set variation analysis (GSVA) Hanzelmman et al.33 http://www.bioconductor.org/packages/release/

bioc/html/GSVA.html

Pheatmap 1.0.12 Kolde et al. https://cran.r-project.org/web/packages/

pheatmap/index.html

Cibersort Alizadeh Lab and Newman Lab https://cibersortx.stanford.edu/

TIMER Liu XS Lab http://timer.cistrome.org/

Immunedeconv 2.0.4 Gregor and Sturm et al. https://icbi-lab.github.io/immunedeconv

Immunophenoscore TCIA https://tcia.at/home

ImmuneCellAI Guo Lab http://bioinfo.life.hust.edu.cn/ImmuCellAI#!/

ConsensusClusterPlus Wilkerson et al.34 https://doi.org/10.1093/bioinformatics/btq170.

ScFEA Alghamdi et al.35 https://doi.org/10.1101/gr.271205.120

Seurat satijalab https://satijalab.org/seurat/
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be facilitated by the lead contact, Si Shi

(shisi@fudanpci.org).

Materials availability
This study did not generate new unique reagents.

Data and code availability
d Bulk transcriptome, metabolome, proteome and single-cell RNA sequencing data have been deposited in National Omics Data

Encyclopedia (http://www.biosino.org/node):OEP003152 and OER330659.

d This study did not generate original codes. All software and algorithms used in this study are publicly available and listed in the

key resources table.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Sample collection for multimodal analyses
PDAC tissues with neoadjuvant albumin-bound paclitaxel plus gemcitabine and upfront resection were obtained from January 1,

2015, to December 31, 2020, were collected for at least one of transcriptome, proteome and metabolome. Proteome sequencing

was conducted on pancreatic ductal adenocarcinoma (PDAC) samples from 93 patients (56 NAC and 37UR). Of these, 70 samples

underwent transcriptome sequencing (47 NAC and 23UR). To make sure the metabolite landscape we detected could mostly recap-

ture the effect of chemotherapy on PDAC samples, we only detected samples well-conserved within six months. In preparation for
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the untargeted metabolome analysis, we proactively collected 42 NAC PDAC samples and 31 UR PDAC samples. Additionally, we

performed targeted analyses of energymetabolism on 20 NAC PDAC samples and 24 UR PDAC samples. In addition, 11 fresh PDAC

samples (8 for NAC and 3 for UR) were collected for single-cell transcriptome sequencing (scRNA-seq) and TCR sequencing, and 3 of

them (2 for NAC and 1 for UR) were further processed for spatial transcriptome sequencing. We used a tissue microarray (TMA)

obtained from 278 PDAC patients who were diagnosed with PDAC using histopathological tests at the FUSCC from 2015 to

2020. The postoperative adjuvant chemotherapy regimens for the patients were followed-up. Human peripheral blood mononuclear

cells (PBMCs) were isolated from the peripheral blood of patients with NAC or UR preoperatively by Ficoll density gradient centrifu-

gation. For flow cytometry analysis, samples were preserved in liquid nitrogen with cryoprotectant (90% FBS and 10% DMSO) until

use. Only patients with partial response and/or a CA19-9 decreaseR50%after NACwere enrolled in the cohort. All samples enrolled

in the present study were obtained after approval of the study by the Fudan University Shanghai Cancer Center (FUSCC) Ethics

Committee (serial number: 2109243-16), and each patient provided written informed consent.

PDAC cell lines
The murine pancreatic cancer cells used in the present study included KPC-0116 and Panc 02 cells. KPC-0116 cells were derived

from KrasLSL-G12D/+; Trp53LSL-R172H/+; Pdx1-Cre (KPC) mice and cultivated in our laboratory in vitro. Panc-02 cells were pur-

chased from the National Intrastructure of Cell Line Resource. Ovalbumin (OVA)-expressing KPC cells (KPC-OVA) were generated as

target cells with lentiviral vector-OVA, and empty LV was transfected as a control. The human pancreatic cancer cell line Panc-1 was

purchased from the American Type Culture Collection. All these cells were cultured in Dulbecco’s modified Eagle’s medium (DMEM)

supplemented with 10% fetal bovine serum. CD36-KD panc-1 cell-line was constructed using lentivirus plasmid for stable RNA

interference. HEK-293 T cells were transfected with target/control vectors, psPAX2 packaging plasmid and pMD2.G envelope

plasmid with Lipofectamine 3000. After 48h, lentivirus was harvested and transduced into Panc-1 cells, which were then selected

with 3 mg/mL puromycin (Sangon Biotech, Shanghai, China) for 14 days.

Patient- and murine-derived PDAC organoids and in vitro analysis
Human PDAC tissue and spontaneous KPC tumors were collected and digested into single-cell suspensions using PDAC dissoci-

ation reagent. The components of the reagent and procedures for digestion as well as culture media preparation were described in a

previous publication.36 OVA-expressing KPC organoids were constructed using dissociated OVA-expressing KPC cells.

Organoids and PBMCs were cocultured roughly as described previously.37 In brief, PBMCs were stimulated with PDAC organoid

culture media, a T cell Activation/Expansion Kit (Miltenyi Biotec, 130-091-441) and 30 U recombinant IL-2 in 96-well plates for 24 h

before starting coculture. Activated PBMCs and PDAC organoids were directly cocultured at a 5:1 ratio onMatrigel (Corning)-coated

96-well plates and treated with the indicated drugs. For in vitro treatment with gemcitabine, paclitaxel and CD36 neutralizing anti-

body, the final concentrations for these regimens were 100 nM, 10 nM and 8 mg/mL. At the beginning of coculture, a green-fluores-

cent caspase 3/7 probe reagent (R37111, Invitrogen) was added to visualize apoptotic organoids according to the manual. OVA-

specific TCR transgenic (OT-1 cells) were isolated from the spleen of OT-1 mice, and the OVA–derived peptide SIINFEKL was

used to generate cytotoxic T lymphocytes. The coculture of OT-1 cells and OVA-expressing KPC organoids was performed accord-

ing to the mentioned procedures.

The LDH release assay was performed using an LDH Cytotoxicity Assay Kit (Cayman, 601170) according to the manufacturer’s

instructions. When determining the cytotoxicity of PBMCs or OT-1 cells in the organoid coculture system, we performed flow cytom-

etry analysis to determine the percentage of apoptotic CD45-negative cells. In the present study, given that we used a green-fluo-

rescent caspase 3/7 probe reagent to label apoptotic cells, the signal of the FITC channel was set to evaluate the apoptotic situation.

In addition, we performed immunofluorescent staining to detect proliferative organoid cells, where the following antibodies were

used in the experiment: Ki67 (1:1000, Abcam, ab15580) and Panc-CK (1:1000, Abcam ab7753). The ratio of Ki67-positive nuclei

to DAPI could be used to reflect the proliferative activity of organoids. Beyond the coculture system, the viability of organoid cells

was evaluated by a CellTiter-Glo 3D Cell viability assay (Promega, G9683) based on the manufacturer’s instructions. Organoids

were digested into single cells before experiments started, so the numbers of organoids could be accurately counted and seeded

in the same preliminary density for each group. Under this circumstance, the viability of organoids at the timepoint of measurement

would reflect the growth speed of organoid with distinct treatment.

Animal experiments
C57BL/6N mice (female, 6–8 weeks of age, 18–20 g) were housed in ventilated caging units in the Shanghai Cancer Center Specific

Pathogen Free (SPF) facility with standard housing and husbandry and free access to food and water. For subcutaneous transplan-

tation, the left flank of themice was transplanted with 0.53106 cells. Tumor volume wasmeasured every four days using calipers and

calculated using the following formula: length3width3 height. Euthanasia was performed using CO2 inhalation prior to tumor strip-

ping. For orthotopic murine models, we performed a left flank incision and step-by-step dissection until the spleen could be pushed

out from the ventral cavity. The pancreas is hidden behind the spleen but can be turned over by rolling using a sterile cotton swab.

After sufficient exposure of the pancreas, 50 mL volumes of 0.53106 cells were injected along the long axis of the pancreas from the

end near the spleen. A puffy transparent bubble without leakage was regarded as a successful case.
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To acquire an immunologically humanized PDX model, we began by constructing a PDX model according to the procedures

described in our previous study.38 Briefly, surgically resected PDAC samples were cut into five equal blocks of approximately

10 mm3 for subcutaneous transplantation into the flanks of female NPSG mice (6–8 weeks). Then, 2x10̂ 7 isolated human PBMCs

were resuspended in 500 mL PBS and intravenously injected into PDXmice seven days after transplantation. For immune reconstruc-

tion evaluation, the peripheral blood of PDX mice was collected for flow cytometry analysis. PDX mice that had over 25% hCD45+

CD3+ cells in the peripheral blood were considered qualified cases.

Gemcitabine powder (MedChemExpress (MCE), LY 188011) was resuspended in sterile normal saline at 10 mg/mL. The drug was

administered at 50 mg/kg by intraperitoneal injection every four days. nab-paclitaxel was resuspended in sterile normal saline and

intravenously administered at 30 mg/kg at the same time as gemcitabine treatment. Mice in the corresponding groups were treated

with 20 mg CD36monoclonal antibody (Clone JC63.1) (Low Endotoxin) (Cayman, 10009893) and were injected intraperitoneally every

other day. The control group was treated with corresponding IgA (mouse IgA, kappa [S107], Abcam, ab37322).

METHOD DETAILS

High-throughput sequencing
Proteome sequencing

Ninety-three frozen tissue samples (56 NAC and 37 UR) were taken from an�80�C refrigerator. The samples were ground into pow-

der at a low temperature and quickly transferred to centrifuge tubes pre-cooled with liquid nitrogen. An appropriate amount of PASP

protein lysis solution (100 mM ammonium bicarbonate, 8 M urea, pH = 8) was added, and the mixture was shaken and mixed

thoroughly. The samples were then lysed in an ice water bath. Subsequently, the lysates were further processed to construct the

library for DIA (data-independent acquisition) protein identification. Other regents used for preparation of proteome sequencing

are listed as follows: Mass spectrometry-grade trypsin (purchased from Promega/V5280), iRT kit (purchased from Biognosys), Brad-

ford protein quantification kit (purchased from Beyotime), Dithiothreitol (DTT, purchased from Sigma/D9163-25G), Iodoacetamide

(IAM, purchased from Sigma/I6125-25G), Sodium dodecyl sulfate (SDS, purchased from Guoyao), Urea (purchased from Guoyao/

10023218), Ammonium bicarbonate (purchased from Sigma/5330050050), LC-MS grade ultrapure water (purchased from Thermo

Fisher Chemical/W6-4), Triethylammonium bicarbonate buffer (TEAB, purchased from Sigma/T7408-500ML), LC-MS grade aceto-

nitrile (purchased from Thermo Fisher Chemical/A955-4), LC-MS grade formic acid (purchased from Thermo Fisher Scientific/

A117-50), Acetone (purchased from Beijing Chemical Factory/11241203810051), Ammonium hydroxide (purchased from Sigma/

221228-500ML-A), ProteoMiner low-abundance protein enrichment kit (purchased from Bio-Rad/1633007), Trifluoroacetic acid

(TFA, purchased fromSigma/T6508-100ML). The whole scanning range ofmass spectrometry could be divided into several windows

according to the mass charge ratio (m/z) and collect fragment ion information of all parent ions for protein characterization and quan-

tification.39 The separated peptides were analyzed by Q ExactiveTM HF-X mass spectrometer (Thermo Fisher), with ion source of

Nanospray Flex（ESI）, spray voltage of 2.1 kV and ion transport capillary temperature of 320�C. For DIA acquisition, the m/z range

covered from 350 to 1500. MS1 resolution was set to 60000 (at m/z 200), full scan AGC target value was 53 105, the maximum ion

injection time was 20 ms. Peptides were fragmented by HCD in MS2, in which resolution was set to 30000 (at 200 m/z), AGC target

value was 13 106, a normalized collision energy of 27%. The resulting spectra from DDA scan were searched separately against the

‘‘homo_sapiens_uniprot_2020_7_2.fasta (192320 sequences) database’’ by the search engine Proteome Discoverer 2.2 (PD 2.2,

Thermo). The search parameters were set as follows: mass tolerance for precursor ion was 10 ppm and mass tolerance for product

ion was 0.02 Da. Carbamidomethyl was specified as a fixed modification, oxidation of methionine (M) was specified as a dynamic

modification, and acetylation was specified as an N-terminal modification in PD 2.2. A maximum of 2 missed cleavage sites were

allowed. The quality controlled DDA data is imported into a software tool called Spectronaut, where a DDA library is constructed.

The DIA scan data, in the form of raw files, is then analyzed using Spectronaut. The proteins whose quantitation significantly different

between experimental and control groups, (p < 0.05 and |log2FoldChange| > 1), were defined as differentially expressed pro-

teins (DEP).

Transcriptome sequencing
70 frozen tissue samples (47NAC and 23UR) were taken from an�80�C refrigerator. A total amount of 1 mgRNAper sample was used

as inputmaterial for the RNA sample preparations. RNA integrity was assessed using the RNANano 6000 Assay Kit of the Bioanalyzer

2100 system (Agilent Technologies, CA, USA). To preferentially select cDNA fragments 370–420 bp in length, the library fragments

were purified with an AMPure XP system (Beckman Coulter, Beverly, USA). The clustering of the index-coded samples was

performed on a cBot Cluster Generation System using TruSeq PE Cluster Kit v3-cBot-HS (Illumina) according to the manufacturer’s

instructions. After cluster generation, the library preparations were sequenced on an Illumina Novaseq platform, and 150 bp paired-

end reads were generated.

FeatureCounts v1.5.0-p3was used to count the read numbersmapped to each gene. Then, the FPKMof each genewas calculated

based on the length of the gene and read count mapped to this gene. FPKM, the expected number of fragments per kilobase of tran-

script sequence per million base pairs sequenced, considers the effect of sequencing depth and gene length on the read count at the

same time and is currently the most commonly used method for estimating gene expression levels. Differential expression analysis

for transcriptomic profiling was performed using DESeq2 R package. The genes whose quantitation significantly different between
Cell Reports Medicine 4, 101234, October 17, 2023 e5



Article
ll

OPEN ACCESS
experimental and control groups, (fdr <0.05 and |log2FoldChange| > 0.5), were defined as differentially expressed genes (DEG). In

addition, we also performed wilcox test for DEG selection to validate the findings.

Metabolome analysis
42 NAC PDAC samples and 31 UR PDAC samples were accurately weighed and processed for untargeted metabolomics analysis.

Chromatographic separation was performed with an ACQUITY UPLC HSS T3 column (1503 2.1 mm, 1.8 mm,Waters) maintained at

40�C. The ESI-MSn experiments were used with spray voltages of 3.5 kV and �2.5 kV in positive and negative modes, respectively.

Data-dependent acquisition (DDA) MS/MS experiments were performed with an HCD scan. The normalized collision energy was

30 eV. Dynamic exclusion was implemented to remove some unnecessary information in the MS/MS spectra. The main parameters

set in peak identification, filtration and alignment were bw = 2, ppm = 15, peakwidth = c(5,30), mzwid = 0.015, mzdiff = 0.01, and

method = centWave. Then, matrixes including information on the mass-to-charge ratio, retention time and intensity were generated.

Databases includingHumanMetabolome,Metlin, massbank, LipidMaps,mzclound and the self-built database of BioNovoGenewere

used to match the information of metabolites. Metabolites with VIP >1 and false discovery rate (fdr) < 0.05 were considered

significant.

Targeted metabolome for 44 PDAC samples, of which 20 PDAC samples treated with neoadjuvant AG and 24 PDAC samples that

underwent UR, was performed using Selective Reaction Monitoring/Multiple Reaction Monitoring (SRM/MRM) techniques, by refer-

ring to standard products, can specifically and selectively detect and analyze specific metabolite groups. SRM/MRM techniques

selectively collect mass spectrometry signals based on known or assumed reaction ion information, record signals for ions that

meet the rules, and eliminate interference from signals of ions that do not. During the quantitative analysis process, this technique

first screens for the parent ions specific to the target metabolites. It collects mass spectrometry signals only for the selected MS/

MS2 ions, thus achieving more specific, sensitive, and accurate analysis of the target metabolite molecules. Chromatographic

conditions: The samples were separated using the Agilent 1290 Infinity LC ultra-high performance liquid chromatography system.

The samples were placed in an auto-sampler at 4�C, the column temperature was 35�C, the mobile phase A was a 50mM aqueous

solution of ammonium acetate +1.2%ammonium hydroxide, and themobile phase Bwas a 1%acetonitrile solution of acetylacetone.

The flow rate was 300 mL/min, and the injection volume was 2 mL. The related liquid phase gradient was as follows: From 0 to 1min,

70% of phase B; from 1 to 10min, phase B linearly decreased from 70% to 60%; from 10 to 12 min, phase B linearly decreased from

60% to 30%; from 12.1–15min, phase B remained at 30%; from 15 to 15.5min, phase B linearly changed from 30% to 70%; from

15.1–22min, phase B remained at 70%.

In the sample queue, a QC sample was set after a certain number of experimental samples to detect and evaluate the stability and

repeatability of the system. The target substance standard mixture of the sample queue was used for the correction of the chromato-

graphic retention time. Mass spectrometry conditions: Mass spectrometry analysis was performed using a 5500 QTRAP mass

spectrometer (SCIEX) in negative ion mode. The 5500 QTRAP ESI source conditions were as follows: source temperature 450�C,
Ion Source Gas1 (Gas1): 45, Ion Source Gas2 (Gas2): 45, Curtain gas (CUR): 30, Ion Spray Voltage Floating (ISVF) �4500 V.

Single-cell RNA-seq (scRNA-seq)
scRNA-seq data were generated by NovelBio Bio-Pharm Technology Co., Ltd. A single-cell suspension was prepared as follows:

Fresh PDAC tumor samples were obtained immediately after tumor resection and transferred to a 50 mL centrifuge tube filled

with tissue storage solution (Miltenyi, Germany). Specimens were then washed three times with cold 13 PBS and digested with a

Miltenyi Tumor Dissociation Kit and GentleMACS (Miltenyi, Germany) following the manufacturer’s instructions. When the digestion

finished, dissociated cells were subsequently passed through a 70 mm cell-strainer (Miltenyi, Germany) to remove undigested tissue.

After centrifugation (3003 g for 5min), red blood cells were removedwith RBC lysis buffer (Beyotime, China). Then, the cell pellet was

washed three times with MACS buffer (PBS containing 1% FBS, 0.5% EDTA, and 0.05% gentamycin) and resuspended in sorting

buffer (PBS supplemented with 1% FBS). Single-cell RNA sequencing was performed when the single-cell suspensions had viability

>70%. The cell suspension was loaded onto the Chromium Single Cell Controller (10x Genomics) to generate single-cell gel beads in

the emulsion according to the manufacturer’s protocol using a Single-Cell 50 Library and Gel Bead Kit (10x Genomics, 1000006) and

Chromium Single Cell A Chip Kit (10x Genomics, 120236).

Cell Ranger software was obtained from the 10x Genomics website (https://support.10xgenomics.com). Alignment, filtering, bar-

code counting, and UMI counting were performed with the Cell Ranger count module to generate a feature-barcode matrix and

determine clusters. Cells containing over 200 expressed genes and mitochondrial UMI rates below 30% passed the cell quality

filtering, and mitochondrial genes were removed from the expression table.

Spatial transcriptome sequencing (stRNA-seq)
stRNA-seq data were generated by NovelBio Bio-Pharm Technology Co., Ltd.

Tissue section preparation

The tissues were surgically removed and embedded in optimal cutting temperature (OCT) compound (SAKURA). The tissues with

OCT compound were quick-frozen on dry ice immediately and stored at �80�C until cryosectioning. The cryosectioning was placed
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in a cryostat (Leica, CM1950) to cryosect the OCT embedded tissue blocks into appropriately sized sections for Visium Spatial slides

while keeping the samples frozen. Tissue sections were 10 mm thick each. Tissue sections were placed within the frames of capture

areas on Visium Spatial slides (10X Genomics).

Fixation, staining and imaging

Tissue section slides were incubated for 1 min at 37�C and then fixed in methanol at �20�C for 30 min. For staining, the slides were

incubated in hematoxylin for 7 min and in Bluing Buffer for 2 min. Then, eosin was added to the slides and incubated for 1 min. After

each staining step, the slides were washed with DNase and RNase-free water. Stained tissue sections were imaged by amicroscope

(Pannoramic MIDI, 3DHISTECH).

Tissue prepermeabilization

Prepermeabilization was performed to optimize the suitable permeabilization time. Visium Spatial Tissue Optimization Slides & Re-

agent Kits (10XGenomics) were used for prepermeabilization. The tissues were permeabilized in permeabilization enzyme for varying

amounts of time, and then Fluorescent RT Master Mix was added to the tissue sections. For tissue removal, the tissue sections were

incubated in Tissue Removal Mix for 60min at 56�C. The best permeabilization timewas selected through a fluorescencemicroscope

(Pannoramic MIDI, 3DHISTECH).

Tissue permeabilization and spatial transcriptomic sequencing

Tissue permeabilization and spatial transcriptomic sequencing were performed using Visium Spatial Gene Expression Slides &

Reagent Kits. The stained slides were incubated in RT Master Mix for 45 min at 53�C for reverse transcription after permeabilization

for the appropriate time. Next, Second Strand Mix was added to the tissue sections on the slide and incubated for 15 min at 65�C to

initiate second strand synthesis. After transfer of cDNA from the slides, barcoded cDNA was purified and amplified. The amplified

barcoded cDNA was fragmented, A-tailed, ligated with adaptors and index PCR amplified. The final libraries were quantified using

the Qubit High Sensitivity DNA assay (Thermo Fisher Scientific), and the size distribution of the libraries was determined using a High

Sensitivity DNA chip on a Bioanalyzer 2200 (Agilent). All libraries were sequenced by an Illumina sequencer (Illumina, San Diego, CA)

on a 150 bp paired-end run.

Spatial metabolome
Spatial metabolome data were generated by PANOMIX Co., Ltd. To prepare frozen sections, we utilized a freezing microtome

obtained from Fisher Scientific (Loughborough, UK). The process began by activating the Thermo CRYOSTAR NX50 cryostat and

lowering the freezer temperature to�20�C. Tissue samples, initially stored at�80�C, were placed in the freezer for 3 h to equilibrate.

The sample was then affixed to the positionable sample head using an embedding solution, and the orientation was adjusted for

optimal slicing. Sections intended for mass spectrometry imaging were cut to a thickness of 20 mm, while those for HE stains

were sliced to 10 mm.Using a pre-cooled brush, the sections were transferred to a pre-cooled ITO conductive glass slide and allowed

to dry for 20 min.

If immediate testing was not required, the ITO conductive glass slides could be stored at �80�C. For matrix spray, an automatic

matrix spraying instrument from Sun Chrome (SunCollect, Germany) was used. The matrix solution was sprayed onto the tissue sec-

tion surface using this device, with the nozzle temperature set to room temperature and a moving velocity of 1000 mm/min. Twelve

matrix passes were deposited at a gradient flow rate between 15 and 60 mL/min. The matrix a- Cyano-4-neneneba hydroxycinnamic

acid (5 mg/ml) was used for the spatial metabolome analysis.

Mass spectrometry imaging was conducted using Thermo Q Exactive Plus connected AP/MALDI (MassTech, Columbia, MD). An

AP/MALDI (ng) UHR ion source (MassTech, Columbia, USA) was coupled with a Thermo QE Plus mass spectrometer (Thermo Fisher

Scientific, USA) for all data acquisition. The laser energy used ranged from 10 to 30%. The mass spectrometer was operated in full

MSmode with positive polarity, a capillary temperature set to 320�C, and an S-lens RF level of 50%. Full scans utilized a mass range

of m/z 120–1300 with a resolution of 35,000. An automatic gain control (AGC T) target of 1e6 with a 100 ms maximum injection time

was used, and an isolation window of m/z 2 was set.

Bioinformatic analysis, software and computational algorithms
Immune cell infiltration estimation

RNA-seq-based algorithms can predict the relative percentages of various infiltrating immune cells. The R package ‘‘immunedeconv

(2.0.4)’’ was applied to compute quanTIseq,40 CIBERSORT,41 TIMER,42 MCPcounter,43 EPIC44 and xCell45 data. In addition, single-

sample gene set enrichment analysis (ssGSEA) was performed to estimate immune cell infiltration and other immune signatures.46

The immunophenoscore was calculated according to the guidance of The Cancer Immune Atlas (TCIA; https://tcia.at/home).

ImmuneCellAI was used to deduce the therapeutic response of PDAC to immunotherapy.

CRISPR-based gene and drug dependency analysis

To analyze the impact of a specific gene on tumor cell proliferation, the DepMap database (DepMap 21Q4 Public+Score, Chronos)

was used for screening. To analyze the correlation between drug sensitivity and gene dependency in pancreatic cell lines, the data in

PRISM 19Q4 were also analyzed (https://depmap.org/portal/download/).
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Metabolism-related gene list

The metabolism-related gene list consisted of two sections: 1661 genes were originated from the KEGG human metabolic pathway

gene list and 870 genes collected from five metabolism-related Gene Set Enrichment Analysis (GSEA) hallmark gene sets. The two

sections were merged into a single gene list comprising 2041 metabolic genes after duplicates were removed.

Estimation of metabolic activity

The single-cell level metabolic activity of tumor cells was estimated by scMetabolism and AUCell algorithms, which are publicly avail-

able R packages. Glycolytic ductal cells were defined as the top 25% of cells ranked by AUC score for the glycolysis pathway. The

gene list for performing AUCell analysis was downloaded from the Molecular Signature Database – Reactome (https://www.

gsea-msigdb.org/gsea/msigdb/index.jsp). Metabolic flux estimation was performed using Python according to the instruction of

published paper.47

Cell communication analysis

To enable a systematic analysis of cell–cell communicationmolecules, we applied cell communication analysis based on the Cellchat

package, a public repository of ligands, receptors and their interactions. Membrane, secreted and peripheral proteins of the cluster of

different time points were annotated. Significantmean and cell communication significance (p value < 0.05) were calculated based on

the interaction and the normalized cell matrix achieved by Seurat normalization.

Consensus clustering

The clustering of ductal cells was performed via the R package ‘‘ConsensusClusterPlus’’ with the parameters (clusterAlg = "km" and

distance = "euclidean"). The optimal number for clustering was determined by the relative change in the area under the CDF curve.

Preparation of pancreatic lysate
In brief, PDAC tissues were accurately weighed, thoroughly washed, and homogenized in 1 mL of cold sterile PBS. The homogeni-

zation solution was centrifuged at 15,000 3 g for 10 min at 4 �C, followed by passing through a 0.22-mm filter. The supernatant was

collected as the pancreatic lysate as described in a previous study.48 The remaining tumor tissues were homogenized using RIPA

buffer supplemented with proteinase and phosphatase inhibitors, and the protein concentration was determined with BCA reagent

(Beyotime, China). Then, Western blot was conducted according to the procedures as shown in supplementary methods.

Enzyme-linked immunosorbent assay (ELISA)
For the analysis of cytotoxic mediators, we performed ELISA for tumor homogenate or cell supernatant according to the manufac-

turers’ instructions of each ELISA kit. The ELISA kits used in the present study were as follows: Human IFN-gamma ELISA Kit (absin,

abs510007); Human IL-2 ELISA Kit (Boster, EK0397); Mouse TNF alpha ELISA Kit (absin, abs520010) and Mouse IFN- gamma ELISA

Kit (absin, abs520007).

Knowledge-based immune signatures
We integrated three sets of immune signatures into the knowledge-based immune signatures and analyzed their activities for each

sample using RNA-seq data. Signature I, including 29 genes, was widely reported in published studies49; Signature II, including M1-

polarization, M2-polarization and MDSC was summarized from classical reviews and Xiao et al. work.50–52 Signature III consisted of

17 immune signaling pathways from ImmPort database (https://www.immport.org/home).

Flow cytometry
Single-cell suspensions from PDAC or mouse xenograft tissues and PBMCs were obtained as described above. For staining of cell

surface markers, the cells were incubated with fixable viability dye (BD) and Fc block (BD) for 15 min before staining with fluoro-

chrome-conjugated antibodies for 45 min at 4�C. For intracellular staining, the cells were fixed and permeabilized with a BD

Cytofix/CytopermTM Fixation/Permeabilization Kit according to the manufacturer’s protocol and incubated with the indicated anti-

body for 45 min at 4�C. Flow cytometry analysis was performed with a Beckman CytoFlex S or Celesta flow cytometer. The fluoro-

phore-conjugated antibodies and other agents used in the present study are listed as follows:

For flow cytometry targeting mouse tumors, the following antibodies were used: anti-CD45 (BD, 564225); anti-CD36 (BD, 565933);

anti-CD4 (BD, 550954); anti-CD8a (BD, 557654); anti-Gr-1 (BioLegend, 108412); anti-CD11B (Invitrogen, 25-0112-82); anti-CD25

(BD, 564370); and anti-FOXP3 (Invitrogen, 12-4771-82). A tissue digestion kit was purchased from MACS (Miltenyi, 130-096-730).

Fixable viability stain 510 (BD, 564406) and FC blocker (BD, 553141) were also used. For flow cytometry targeting human peripheral

blood mononuclear cells (PBMCs), the following antibodies were used: anti-CD45 (BD, 557833); anti-CD3 (BD, 555339); anti-CD4

(BD, 560650); anti-CD8 (BD, 557746); anti-CD25 (BD, 555432); anti-FOXP3 (EB, MA518160); anti-CD36 (BD, 744766); anti-CD11B

(BD, 557396); anti-CD68 (BD, 565595); anti-CD33 (BD, 555450); anti-CD14 (BD, 555399); anti-CD15 (BD, 560828); fixable viability

stain 700 (BD, 564997); and an FC blocker (BD, 564219). To detect IFN-y+ cells using flow cytometry, the culture system was

supplemented with the following reagents for 4 h prior to detection: 40 ng/mL PMA, 1 mg/mL lonomycin, and 10 mg/mL BFA.

Western blot
Equal amounts of protein were electrophoresed on 10% SDS‒PAGE gels and were then transferred onto PVDF membranes

(Millipore), which were soaked for 2 h in 5% skim milk. Subsequently, the membranes were probed with the indicated primary
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antibodies: CD36 (1:1000, ab133625, Abcam) and b-actin (1:10000, 66,009–1-lg, Proteintech). Then, the PVDF membranes were

incubated with corresponding secondary antibodies (1:1000, CST) for 60 min. After washing three times (15 min each time), the tar-

geted proteins were visualized using enhanced chemiluminescence reagent (Millipore, MA, USA).

T cell extraction, culture, and in vitro analysis
PDAC patient peripheral blood was collected preoperatively under the approval of the Clinical Research Ethics Committee of

FUSCC. For the isolation of T cells, PBMCs were depleted of B cells, monocytes, natural killer cells, dendritic cells, early erythroid

cells, platelets and basophils via magnetic cell sorting (Miltenyi Biotec, 130-096-535). For isolation human CD8+ T cells, we per-

formed positive selection from PBMCs (Miltenyi Biotec, 130-045-201). Activation of T cells was based on a T cell Activation/

Expansion Kit (Miltenyi Biotec, 130-091-441). T cells were cultured in RPMI 1640 (Gibco) supplemented with 20 IU/mL IL-2.

The metabolites used in the present study were as follows: diphenylamine hydrochloride (MCE, HY-N7133); pyridoxine (MCE, HY-

B1328); DL-isocitric acid trisodium salt (MCE, HY-W009362); isovaleric acid (MCE, HY-W012980); cadaverine (Sigma‒Aldrich, 462-
94-2); N-acetylneuraminic acid (MCE, 131-48-6); L-proline (MCE, HY-Y0252); oleic acid (Selleck, 112-80-1); deoxycholic acid (MCE,

HY-N0593); and L�2�hydroxyglutaric acid (MCE, HY-113039). Twenty-four hours after activation, specific metabolites were added

to the T cell medium for stimulation.

Metabolic flux assay
13C-oleic acid and 13C-D-glucose were purchased from Merck Company (490431 and 389374, respectively). 13C-oleic acid was

added to FBS- and glucose-free DMEM at 2 mM for the culture of the indicated PDXOs for 12 h, and 10 mM Y27632 was added

to the culture medium.13C-D-glucose was supplemented to complete organoid culture medium at 2 mg/mL for the indicated

PDXOs for 6 h. Then, the culture medium was removed, and the PDXOs were washed with cold PBS three times. Liquid nitrogen

was added to the dish to quickly terminate the cell viability. Next, cold methyl alcohol was added to the dish when liquid nitrogen

was evaporated. The UHPLC-HRMS platform was used for subsequent metabolic flux analysis. Chromatographic separation was

performed on a ThermoFisher Ultimate 3000 UHPLC system. The eluents were analyzed on a ThermoFisher Q Exactive Hybrid

Quadrupole-Orbitrap mass spectrometer (QE) in heated electrospray ionization negative (HESI-) mode. Natural isotope correction

analysis was performed according to a previous study.53

Immunohistochemistry and multispectral fluorescent immunohistochemistry
Immunohistochemistry (IHC) was performed based on formalin-fixed paraffin-embedded (FFPE) slices from 22 NAC and 32 UR

PDAC samples for LDHA, CD36, Ki67, CD20, CD8 and CD163 staining. Sections (5-mm thick) were stained using a two-step method

as we previously described.54 Protein expression levels were calculated by multiplying the positivity (0, <5% of the total cells; 1, 5–

25% of the total cells; 2, 25–50% of the total cells; 3, 50–75% of the total cells; and 4, 75%–100% of the total cells) and intensity

scores (0, no color; 1, pale yellow; 2, yellow; and 3, clay bank). Evaluation of the Ki67 level in human PDAC tissue slices and animal

models was based on the fraction of Ki67-positive cells. All procedures were performed after obtaining approval from the Clinical

Research Ethics Committee of FUSCC, and informed consent was obtained from each patient prior to the analyses. The cut-off

criteria to distinguish CD36-low and CD36-high samples was IHC score % 4. Two independent pathologists conducted the strict

pathological diagnoses and postoperative follow-ups.

The antibodies used for immunohistochemistry (IHC) analysis in the present study are as follows: anti-CD36 (Proteintech, 18836-1-

AP; dilution 1:300); anti-LDHA (Abcam, ab52488; dilution 1:1500); anti-Ki67 (Abcam, ab15580; dilution 1:1000); anti-CD20 (Abcam,

ab64088; dilution 1:800); and anti-CD163 (Proteintech, 16646-1-AP; dilution 1:1000).

FFPE slides from 10 NAC and 10 UR specimens were subjected to multispectral immunohistochemistry (mIHC) staining using an

Opal color kit (PerkinElmer, Hopkinton, Massachusetts, USA). Various antibodies were used to identify the presence of immune cells

in tumor tissues, including anti-CD4 (Abcam, ab133616; dilution 1:1000), anti-FOXP3 (Abcam, ab215206; dilution 1:200), anti-CD8

(Abcam, ab189926; dilution 1:800), anti-CD36 (Abcam, ab133625; dilution 1:300), and anti-granzyme B (Abcam, ab255598; dilution

1:2500), Ki67 (Abcam, ab15580; dilution 1:1000) and Panc-CK (Abcam ab7753; dilution 1:1000). Cell nuclei were stained with DAPI.

Two independent observers (RT and QM) evaluated the stained sections, and a third observer (SS) verified the numbers of tumor-

infiltrating immune cells in cases of disagreement between the two observers. The details for multispectral fluorescent immunohis-

tochemistry are listed in the supplementary methods.

QUANTIFICATION AND STATISTICAL ANALYSIS

Unpaired Student’s t test, one-way analysis of variance, the Kruskal–Wallis test and the Mann–Whitney–Wilcoxon test were applied

to compare the differences in continuous or ordered categorical variables if required, while the comparison of unordered categorical

variables was based on chi-square test or Fisher’s exact test. Kaplan–Meier curves were generated to show survival differences, and

the log rank test was performed to test the statistical significance of these differences. Statistical tests were two-sided, and statistical

significance was indicated with a p value <0.05. The error bars in the figures represent the standard deviation (SD).
Cell Reports Medicine 4, 101234, October 17, 2023 e9
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 31 
Figure S1. NAC promoted the expression of genes associated with prolonged survival. Related to Figure 1. 32 

(A) IHC staining showed the percentage of Ki67+ malignant cells were significantly decreased in PDAC samples 33 

that treated with NAC, analyzed by unpaired t test (Mean with standard deviation) (N=54). (B) Three dimensional 34 

PCA for NAC and UR PDAC samples based on the differentially expressed genes. (C) Genes upregulated in NAC 35 

samples (screened by Wilcoxon test) were associated with prolonged survival interval. (D) The percentage of 36 

deregulated genes associated with better or poor prognosis of PDAC.  37 
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Figure S2. Functional annotations and enrichment analysis for genes differentially expressed between NAC 39 

and UR samples. Related to Figure 1 and Table S4-9. 40 

(A-B) Functional enrichment analyses for all detected proteins in PDAC samples, GO and KEGG annotation, 41 

respectively. (C) KEGG analysis for proteins upregulated in NAC group (D) IPR enrichment predicted the function 42 

of proteins upregulated in NAC group based on the domain structure. (E) GO enrichment for genes upregulated in 43 

NAC group. (F) KEGG enrichment for genes downregulated in NAC group. (G) KEGG enrichment for genes 44 

upregulated in NAC group. (H) GSEA for the activity alteration of mitotic cytokinetic process, basal transcription 45 

factor, nucleotide salvage and nucleosome positioning between NAC and UR groups. (I) Pearson correlational 46 

analysis showed the expression pattern between transcriptome and proteome in PDACs showed high consistency.  47 
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 48 
Figure S3. Single-cell and spatial clustering for PDACs with and without NAC. Related to Figure 2 and 49 

Figure 3. 50 

(A) UMAP plot showed sequenced cells could be divided into 100 subclusters based on initial clustering. (B) UMAP 51 

analysis showed the distribution of cells from samples with and without NAC. (C) The mRNA expression of CD8A 52 

in T cells between NAC and UR groups. (D) T cells are featured more clonotype expansion in samples with NAC 53 

(Mean with standard deviation). (E) ssGSEA algorithm showed increased CD8+T cell infiltration in samples with 54 

NAC based on t test (Mean with standard deviation). (F) Spatially resolved mapping of cell identity markers for 55 
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sequenced cells.  56 
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Figure S4. NAC reshaped PDAC immune microenvironment. Related to Figure 2 and Figure 3.  58 

(A) Three independent algorithms supported more CD8+ T cells infiltrated in PDACs which underwent NAC. (B) 59 

Heatmap showed differentially activated immune signatures between NAC and UR PDAC samples. (C) Scatter plot 60 

showed upregulation trend for protein level of granzymes in PDACs which underwent NAC with marginal 61 

significance. (D) The infiltration of Treg cells had no differences between samples treated with NAC and UR. Left 62 

panel: representative mIF graph showed the positive staining of Treg cell (N=20). (E) IHC staining showed CD163+ 63 

cells infiltrated less in PDACs treated with NAC (N=54). (F-G) B cells and CD4 cells had an increased infiltration 64 

in NAC samples, which were based on TIMER and EPIC algorithm, respectively. (H) Demo picture of TLS 65 

selection using IHC staining. (I) The density of TLSs was higher in PDACs treated with NAC (N=54). (J) PDAC 66 

samples which underwent NAC had an increased immunophenoscore. (K) The expression level of common immune 67 

checkpoints had no significant differences between samples treated with NAC and UR. The statistical significance 68 

shown in this figure was detected using the t test. Error bars manifested Mean with standard deviation. 69 
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 70 

Figure S5. The metabolic reprogramming of PDAC cells is associated with the alteration of immune 71 

parameters. Related to Figure 4. 72 

(A) UMAP analysis showed ductal cells could be divided into two major clusters based on the expression of FXYD2 73 

and FXYD3. (B) The presentation of markers for different subclusters of ductal cells. (C) The activity differences of 74 

metabolic pathways between ductal cells from samples treated with and without NAC (Mean with Mean with 75 

standard deviation). (D) UMAP plot showed that PDAC cells could be classified into four subclusters based on their 76 

metabolic activity. (E) Fold change of intensity for C1 to C4 signatures between the MA of NAC and UR samples. 77 

(F) The correlation between deregulated metabolism-associated genes and CD8+ T cells’ infiltration, which was 78 

estimated by multiple algorithms. The deregulated metabolism-associated genes were identified by analyzing the 79 

differentially expressed genes between pancreatic ductal cells from PDAC samples with and without NAC. (G) IHC 80 

staining showed decreased expression of LDHA in samples received NAC (N=54). Left panel: Representative graph 81 
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for positive staining of LDHA in PDAC. (H) Proteome and transcriptome data validated the downregulation trend of 82 

LDHA in NAC samples. (I) IHC staining showed an inversed trend in terms of the pattern of LDHA expression and 83 

CD8+ T cell infiltration in PDAC samples with and without NAC. (J) The mRNA expression level of LDHA and 84 

CD8A were negatively correlated in NAC samples, instead of UR PDACs (K). The correlation between LDHA and 85 

CD8A was insignificant in UR PDACs of TCGA dataset. The statistical significance shown in this figure was 86 

detected using the t test. Correlational analyses were performed by Pearson approach.  87 

 88 

Figure S6. NAC induced metabolome alteration between PDACs with and without NAC. Related to Figure 4 89 

and Figure 5. 90 

(A) Heatmap showed metabolites’ abundance was distinct between PDACs with and without NAC. VIP is a 91 

statistical measure used to assess the importance of metabolites in multivariate analysis. (B-D) Bray‒Curtis NMDS, 92 

PCoA and PCA algorithms supported that the difference of metabolome could distinguish NAC and UR PDACs. (E) 93 
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A heatmap showed the differences of metabolites in the anaerobic glycolysis, glutamine metabolism, fatty acid 94 

utilization and oxidative phosphorylation pathways between NAC and UR samples, which were identified using 95 

untargeted metabolome. (F) Spatial-resolved metabolome revealed region-specific metabolic patterns in PDAC. (G) 96 

Representative graph of mIF staining showed the distribution of CD8+ T cells in different regions with metabolic 97 

difference. (H) PG_38:5 was significantly upregulated in cluster_7 regions compared to cluster_5 regions. (I) 98 

Ideograph showed the procedures for T cell separation and stimulation of metabolites. (J) Heatmap panel showed the 99 

differentially enriched metabolites and their relevance with treatment states. ROC curves panel showed the accuracy 100 

for the metabolites to distinguish different treatment states. (K) Most NAC-induced metabolites promoted T cell 101 

function except for oleic acid, which impaired the secretion of cytokines of T cells (N=3). (L) Neutralizing CD36 102 

significantly restrained the chemoresistance induced by oleic acid treatment in pancreatic cancer cells. (M) Western 103 

blot validation for the knockdown efficiency of CD36 in panc-1 cells. (N) CCK-8 results showed that knockdown of 104 

CD36 blocked the effect of oleic acid on panc-1 cell proliferation (N=5). (O) Oleic acid addition increased the 105 

viability of panc-1 cell with AG treatment for 24 hours in CD36-intact condition (N=5).  106 
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 107 

Figure S7. PDAC upregulated CD36 expression after NAC. Related to Figure 6. 108 

(A) Proteome sequencing showed CD36 expression was upregulated in PDAC samples that treated with NAC. (B) 109 

Venn plot showed CD36 was the only metabolic membrane protein that upregulated after NAC. (C) Flowcytometry 110 

showed CD36 was upregulated in peripheral myeloid-linkage cells. (D) CD8+ T cells treated with lysate from NAC 111 

samples showed higher IFN-γ secretion compared to UR samples. (E) CD8+ T cells treated with lysate from NAC 112 

samples showed higher cytotoxic performance compared to UR samples, showed by LDH-releasing experiments. 113 
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(F) CD8+ T cells treated with lysate from NAC samples with low CD36 expression showed higher cytotoxic 114 

performance compared to NAC samples with high CD36 expression, showed by LDH-releasing experiments.  (G) 115 

CD36 expression in lysate was negatively correlated with LDH releasing level, showed by spearman correlational 116 

analysis. (H) TSNE analysis for labeled cell clusters of murine PDAC immune infiltrates by flowcytometry. (I) 117 

CD36 had increased distribution on myeloid-linkage cells in harvested murine PDAC after AG treatment. (J) 118 

Combination of CD36 blockage and AG synergistically enhanced the expression level of immune-related molecules 119 

in murine PDAC (N=5). (K) CD36 expression was more important for pancreatic cancer cells that showed resistance 120 

to gemcitabine (based on DepMap database). The statistical significance shown in this figure was detected using t 121 

test. Error bars manifested Mean with standard deviation. 122 

  123 
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Table S1. Characteristics for patients with Proteotranscriptomic sequencing. Related to Figure 1. 124 
  125 

Treatment NAC(N=56) UR(N=37) 
Age at diagnosis (year)   
Mean 58.38 61.22 
Range 39-72 43-77 
Gender   
Female 30 19 
Male 26 18 
Tumor location   
Head 19 19 
Body-tail 36 17 
Multiple site 1 1 
Differentiation   
Well 3 0 
Well-Moderate 7 5 
Moderate 31 22 
Moderate-Poor 12 9 
Poor 3 1 
Lymphovascular invasion   
yes 19 7 
no 37 30 
Perineural invasion   
yes 49 36 
no 7 1 
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Table S10. Clinical information of samples used for scRNA-seq. Related to Figure 2. 126 
 127 

 128 

 129 

Table S13. Summary of clinical information for PDAC samples in tissue microarray. Related to Figure 6. 130 
 131 

 132 

Sample Gender Age Location Perineural 
invasion Vascular invasion Neoadjuvant 

NAC2 Female 66 Neck + + Yes 
UR3 Male 49 Head + + No 
NAC7 Female 67 Body-tail - - Yes 
NAC5 Male 61 Body-tail + + Yes 
NAC1 Male 67 Body-tail - + Yes 
UR1 Female 70 Body-tail - + No 
NAC6 Female 70 Body-tail - + Yes 
NAC4 Male 68 Body-tail + + Yes 
UR2 Female 51 Head + + No 
NAC3 Male 72 Body-tail - + Yes 
NAC8 Female 69 Head - + Yes 

 CD36-Low CD36-high 
Number of patients 128 150 
Age (year)   
<=60 54 61 
>60 74 89 
Gender   
Male 74 89 
Female 54 61 
Tumor location   
Head 72 81 
Body/tail 56 69 
T Stage   
T1-2 115 98 
T3 35 30 
N stage   
N0-1 112 127 
N2 16 23 
Number of patients with adjuvant AG 32 27 
Vascular tumor thrombus   
Yes 40 57 
No 88 93 
Perineural invasion   
Yes 113 141 
No 15 9 
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