
Article
Bodily expressed emotion
 understanding through
integrating Laban movement analysis
Graphical abstract
Highlights
d BoME dataset characterized by Laban movement analysis

d Estimating Laban movement analysis motor elements with

deep neural networks

d Jointly training dual-branch, dual-task movement analysis

network

d State-of-the-art performance on both motor element and

emotion recognition tasks
Wu et al., 2023, Patterns 4, 100816
October 13, 2023 ª 2023 The Authors.
https://doi.org/10.1016/j.patter.2023.100816
Authors

Chenyan Wu, Dolzodmaa Davaasuren,

Tal Shafir, Rachelle Tsachor,

James Z. Wang

Correspondence
jwang@ist.psu.edu

In brief

This study uses humanmotor elements to

better understand emotions expressed

through body movements, a key aspect

of human communication. The authors

built a comprehensive BoME dataset and

developed a dual-source model for

automated emotion recognition. This

approach significantly enhancesmachine

perception of emotions, promising

advancements in human-machine

interaction, robotics, and mental health

diagnostics. The integration of insights

from computing, psychology, and

performing arts could revolutionize our

understanding of non-verbal

communication in various professional

and social contexts.
ll

mailto:jwang@ist.psu.�edu
https://doi.org/10.1016/j.patter.2023.100816
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patter.2023.100816&domain=pdf


OPEN ACCESS

ll
Article

Bodily expressed emotion understanding through
integrating Laban movement analysis
Chenyan Wu,1 Dolzodmaa Davaasuren,1 Tal Shafir,2 Rachelle Tsachor,3 and James Z. Wang1,4,5,*
1Data Science and Artificial Intelligence Area, College of Information Sciences and Technology, The Pennsylvania State University, University

Park, PA 16802, USA
2The Emili Sagol Creative Arts Therapies Research Center, University of Haifa, Haifa 3498838, Israel
3School of Theatre and Music, University of Illinois, Chicago, IL 60607, USA
4Human-Computer Interaction Area, College of Information Sciences and Technology, The Pennsylvania State University, University Park, PA

16802, USA
5Lead contact

*Correspondence: jwang@ist.psu.edu
https://doi.org/10.1016/j.patter.2023.100816
THE BIGGER PICTURE Body movements carry important information about a person’s emotions or mental
state and are essential in everyday communication. Enhancing machines’ ability to understand emotions
expressed through body language can improve communication between assistive robots and children or
elderly users, provide psychiatric professionals with quantitative diagnostic and prognostic assistance,
and bolster safety by preventing mishaps in human-machine interactions. This study develops a high-qual-
ity human motor element dataset based on the Laban movement analysis movement coding system and
utilizes that to jointly learn about motor elements and emotions. Our long-term ambition is to integrate
knowledge fromcomputing, psychology, and performing arts to enable automated understanding and anal-
ysis of emotion and mental state through body language. This work serves as a launchpad for further
research into recognizing emotions through the analysis of human movement.

Proof-of-Concept: Data science output has been formulated,
implemented, and tested for one domain/problem
SUMMARY
Bodily expressed emotion understanding (BEEU) aims to automatically recognize human emotional expres-
sions frombodymovements. Psychological research has demonstrated that people oftenmove using specific
motor elements to convey emotions. This work takes three steps to integrate humanmotor elements to study
BEEU. First, we introduce BoME (body motor elements), a highly precise dataset for human motor elements.
Second, we apply baselinemodels to estimate these elements on BoME, showing that deep learningmethods
are capable of learning effective representations of human movement. Finally, we propose a dual-source so-
lution to enhance the BEEUmodel with the BoME dataset, which trains with both motor element and emotion
labels and simultaneously produces predictions for both. Through experiments on the BoLD in-the-wild
emotion understanding benchmark, we showcase the significant benefit of our approach. These results may
inspire further research utilizing humanmotor elements for emotion understanding andmental health analysis.
INTRODUCTION

Recognizinghumanemotionalexpressions from imagesorvideos is

a fundamental area of research in affective computing and com-

puter vision, with numerous applications in robotics and human-

computer interaction.1–5 With the development of the body lan-

guage dataset (BoLD), a large-scale, in-the-wild dataset for bodily

expressedemotion, and thecorrespondingbenchmarkdeepneural
This is an open access article und
networkmodels,6 research on emotion recognition has increasingly

focused on bodily expressed emotion understanding (BEEU).7–9

In contrast to the extensively studied facial expression recogni-

tion,10–14 BEEU aims to automatically recognize emotion expres-

sion from body movements. Emotion recognition through body

movementspresentsseveral advantagesover relianceon facial in-

puts. First, in crowded scenes, a person’s facial area may be

obscured or lack sufficient resolution, but body movements and
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Figure 1. Example video clips from the BoME dataset

Three sample frames are shown for each clip. Instances of interest are

bounded by red boxes. The LMA motor elements annotated based on the

movement of the person in the red box are shown. Subfigures (A) to

(D) incorporate frames from the films ‘‘Wagner’’ (1983, directed by Tony

Palmer), ‘‘Heaven’s Garden’’ (2011, directed by Jong-han Lee), ‘‘REVIVAL -

Nigerian Nollywood Movie’’ (2000), and ‘‘The Priest Must Die 2 - Nigerian

Nollywood Movie’’ (2009), respectively.
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postures can still be reliably detected. Second, research has

shown that the body may be more diagnostic than the face for

emotion recognition.15 Third, facial areas may be inaccessible in

some applications due to privacy and confidentiality concerns.

Fourth, it may be difficult to fake subtle emotions through body

movements, whereas facial expressions can often be manipu-

lated. Finally, using body movements as an additional modality

can lead to more accurate recognition compared with relying

solely on facial images or videos.

Facial expression recognition studies often rely on the facial

action coding system (FACS) as an intermediate representa-

tion.3,10,13 This approach involves detecting action units (AUs),

which are defined as the movements of specific facial muscles

in FACS, and subsequently using these detections to recognize

emotions. This method is based on the fact that certain muscles

(AUs) contract to produce specific facial expressions, such as

the corrugator muscle contracting to frown and express anger.

Similarly, people use particular body muscles and skeletal

parts to communicate their emotions. For instance, individuals

may touch their heads with their hands when feeling sad, as illus-

trated in the first example of Figure 1. By describing specific

movements common to humans and the motor elements that

make up thesemovements, we can establish the relationship be-

tween thesemotor elements and bodily expressed emotion, mir-

roring the role of FACS in facial expression recognition.

Compared with facial muscle movements, motor elements are

often more readily detectable in a video of a person. In addition,

these motor elements are generally more clearly defined,

rendering them simpler for AI to recognize. Consequently, motor

elements can function as a suitable intermediate representation

forBEEU,bridging thegapbetween low-levelmovement features

(e.g., the velocity of human joints) and emotion category labels.

Although some previous studies on BEEU have incorporated

motor elements, there remains a gap in the utilization of deep

learning-based methods to construct the comprehensive repre-

sentation of human motion. One pioneering work by Camurri

et al.16 focused on dance movements and utilized handcrafted

features such as quantity of motion and contraction index to

represent motion descriptors and expressive cues. The ex-

tracted features were then inputted into various classifiers,

including multiple regression and support vector machines

(SVMs). Subsequent studies followed a similar pipeline, with

Luo et al.6 employing only low-level movement features (e.g., ve-

locity and acceleration of human joints) and subsequently using

random forest for emotion classification. Supported by the Euro-

pean Union H2020 Dance Project,17 Niewiadomski et al.18 de-

signed handcrafted features to represent the lightness and

fragility of human movement, while Piana et al.19 constructed

multiple motion features from the 3D coordinates of human joints

and employed linear SVMs for classification. However, these

methods did not utilize deep neural networks to extract profound

learning representations, and handcrafted features often rely on

3D motion data (i.e., 3D coordinates of human joints) as input,

which can only be obtained within a lab-controlled environment,

thereby limiting their potential applications. A recent study20

supported by the European Union H2020 EnTimeMent Project21

employed a neural network for emotion recognition. However,

the method still requires the use of a motion capture system to

collect 3Dmotion data in a lab environment as input. Some other
2 Patterns 4, 100816, October 13, 2023
deep learning-based approaches on BEEU7–9 utilized tech-

niques developed for video or action recognition, directly feeding

human movement videos into a video recognition network and

predicting emotion categories without considering the under-

standing of motor elements.

In thiswork,we introduceanovel paradigm forBEEU that incor-

porates motor element analysis. Our approach leverages deep

neural networks to recognize motor elements, which are subse-

quently used as intermediate features for emotion recognition.

A primary challenge in implementing this approach is the limited

availability of extensive public image or video datasets suitable for

deep learning-based motor element analysis.3,5,22 To tackle this

issue, we created the BoME (body motor elements) dataset,

comprising 1,600 high-quality video clips of human movements.

We consider different human movements within a single video as

distinct clips. Each of these clips is annotated with precise,

expert-provided movement labels. We used the AVA video data-

set23 as the video source and applied the Laban movement anal-

ysis (LMA) system to describe the motor elements. LMA, which

originated within the dance community in the early 20th century,

has evolved into an internationally recognized framework for
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describing and comprehending human bodily motions. It charac-

terizeshumanmovements intofivecategories: body, effort, space,

shape, and phrasing, and includes over 100 detailed motor ele-

ments. To balance the tradeoff between the number of LMA ele-

ments and the cost of annotation, we selectively included 11

emotion-related LMA elements. This decision was guided by pre-

liminary psychological research exploring the relationship be-

tween emotions and motor elements as described by LMA.24–27

We designed a systematic procedure for dataset collection and

invited a certified movement analyst (CMA), an expert in LMA, to

annotate the presence of LMA elements in the human movement

clips. Figure 1 shows some examples of the BoME dataset.

Using the established BoME dataset, we examined whether

deep neural networks can learn an effective representation of hu-

man movement. We deployed several state-of-the-art video

recognition networks on BoME to estimate the LMA elements

and investigated the impact of factors such as video sampling

rate and pretraining datasets on network performance. The re-

sults showed that these methods, particularly the Video Swin

Transformer (V-Swin),28 performed well on the BoME dataset,

indicating that deep neural networks could learn an appropriate

movement representation from BoME.

Finally, we conducted experiments to enhance BEEU by using

the BoME dataset as an additional source of supervision. We de-

signed a dual-branch, dual-task network called movement anal-

ysis network (MANet), whose branches produce predictions for

bodily expressed emotion and LMA labels, respectively. To

effectively utilize themovement representation in emotion recog-

nition, we integrated the LMA branch features into the emotion

branch. We also introduced a new bridge loss that enables

LMA prediction to supervise emotion prediction. Employing a

weak supervision strategy, we trained MANet on both the

BEEU benchmark BoLD and the BoME datasets. The BEEU re-

sults on the BoLD validation and test sets revealed that our

approach significantly outperformed all single-task baselines

(i.e., approaches that only consider BEEU).

RESULTS

Statistical analysis confirms the effectiveness of the
LMA motor elements
To improve the ability of deep neural networks to learn human

movement representation and subsequently enhance emotion

recognition, we created a high-precision motor element dataset

named BoME. This dataset consists of 1,600 human video clips,

each expertly annotated with LMA labels. To achieve a balance

between precision and utility, we annotated each clip with 11

LMA elements. Research has indicated that these elements

are associated with sadness and happiness and are relevant

for emotion elicitation and emotional expression, making them

valuable for understanding bodily expression.24–26 In addition,

annotating 11 elements is not an overly laborious task for LMA

experts, ensuring the quality of the dataset. Table 1 lists the 11

elements and their associated emotions, LMA categories, and

descriptions. The experimental procedures provides a compre-

hensive explanation of our choice of LMA elements and outlines

the methodology employed for dataset collection.

For each LMA element, we assigned a five-level label based on

the element’s duration and intensity in the clip, with level 0 indi-
cating no presence and level 4 signifying maximum presence.

The distribution of the five levels for each LMA element is shown

in Figure 2. The head-drop element is relatively commonly present

in videos,while jumpcasesare rare. Thefive-level label canalsobe

interpretedasabinary label,with level 0 representinganegative la-

bel andnon-zero levelsdenoting apositive label.Onaverage,each

clip in the BoME dataset includes 3.2 positive LMA elements, with

a minimum of 1 and a maximum of 10 positive elements per clip.

To confirm the association of the LMA element labels in BoME

with specific emotions, the annotator assigned an emotion label

to each clip, which was limited to three categories: sadness,

happiness, and other emotions. Although emotion recognition

studies often require a larger number of emotional categories,

we restricted ourselves to these three categories to validate

the effectiveness of the LMA element labels.

For each human clip in BoME, we assigned a binary value (0 or

1) to the sadness and happiness emotion categories based on

the emotion label, as well as a five-level label (ranging from

0 to 4) for each LMA element. Using these values, we calculated

the correlation between LMA elements and the two emotion cat-

egories—sadness and happiness—encompassing all the sam-

ples marked with these two emotions within the dataset. The

correlations are visually depicted in Figure 3. We discovered

that sink and head-drop were strongly positively correlated

with sadness, while light weight, up, and rise exhibited significant

positive correlations with happiness. These results align with

previous psychological studies.24–26 Conversely, jump and rota-

tion did not demonstrate a substantial correlation with either

sadness or happiness, which could be attributed to the relatively

small sample size for these elements. In addition, based on the

emotion labels, we found that instances of sadness accounted

for 59.9% of the BoME dataset, while cases of happiness ac-

counted for only 22.2%. This imbalance may stem from the

fact that sadness is more easily recognizable to human annota-

tors compared with other emotion categories.

Deep neural networks are capable of estimating LMA
motor elements
To examine the potential of deep learning methods to learn an

effective representation of human movement, we applied deep

neural networks to estimate LMA elements on the BoME dataset.

We randomly divided the dataset into a training set consisting of

1,448 samples and a test set containing 152 samples. The original

LMA element labels had five levels, but levels 3 and 4 had limited

sample sizes, as demonstrated in Figure 2. This posed a challenge

formodels to accurately estimate the LMAelements. Furthermore,

deep neural networks may struggle to precisely determine the

duration of each element in a clip, unlike LMA experts. To simplify

the task, we treated the LMA element estimation problem as a

multi-label binary classification task, with level 0 being designated

as a negative label and all non-zero levels as positive labels.

We evaluated the classification performance using two met-

rics: average precision (AP), or the area under the precision-

recall curve, and the area under the receiver operating character-

istic curve (AUC-ROC). We reported the mean average precision

(mAP) and mean AUC-ROC (mRA) across all categories of LMA

elements. Notably, we only used ten elements and excluded the

jump element due to the dataset containing an insufficient num-

ber of samples (only 11) for jump.
Patterns 4, 100816, October 13, 2023 3



Table 1. The 11 LMA elements coded in the BoME dataset

LMA element LMA category Description

Sadness passive weight effort lack of active attitude toward weight,

resulting in sagging, heaviness, limpness,

or dropping

arms-to-upper-body body hands or arms touching any part of the

upper body (head, neck, shoulders,

or chest)

sink shape shortening of the torso and head and letting

the center of gravity drop downward, so the

torso is convex on the front

head-drop body releasing the weight of the head forward

and downward, using the quality of

passive weight; dropping the head down

Happiness jump body any type of jumping

rhythmicity phrasing rhythmic repetition of any aspect of the

movement, like bouncing, rocking,

bobbing, twisting, from side to side, etc.

spread shape when the mover opens his body to

become wider

free flow effort lessening movement control, moving

like you ‘‘go with the flow’’

light weight effort moving with a sense of lightness and

buoyancy of the body or its parts; gentle

or delicate movement with very little

pressure and a sense of letting go upward

up and risea space/shape up means going in the upward direction in

the allocentric space. Rise means raising

the chest up by lengthening the torso

rotation space rotating a body part, or turning the entire

body around itself in space, like in a

Sufi dance

Psychological studies indicate that the first four elements are associated with sadness and the rest with happiness.
aUp and rise are two elements within the space and shape categories, respectively. We follow Shafir et al.24 and Melzer et al.25 to merge them into one

element because these movements are affined, often occurring together.
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As a natural initial attempt, we employed a range of deep

learning-based video recognition algorithms to estimate LMA el-

ements from video clips. These algorithms can be categorized

based on their input modality as either RGB based or skeleton

based. We illustrate the RGB-based and skeleton-based pipe-

line in Figure 4. We selected four representative video recogni-

tion approaches from recent years to benchmark the BoME da-

taset: temporal segment network (TSN),29 SlowFast,30 V-Swin,28

and PoseC3D.31 The first three methods are RGB based, while

PoseC3D is skeleton based.

The performances of these four algorithms are compared in

Table 2. The following outlines the input processing and neural

network for each approach.

d TSN29 partitions a single input clip into multiple sub-clips,

selecting one random frame from each. Table 2 employs

three sampling rates—the input clip is segmented into 8,

16, or 24 sub-clips, resulting in 8, 16, or 24 frames. For

each frame, we cropped the human region from the entire

RGB image and resized the area to 2243224 pixels. Re-

gion detection was facilitated using OpenPose.32 The pro-

cessed frames were subsequently fed into a 2D convolu-

tional neural network. We have chosen the widely used
4 Patterns 4, 100816, October 13, 2023
ResNet-5033 as our 2D convolutional network. Note that

while the original TSN incorporates both optical-flow im-

ages and RGB images as input, we exclusively used the

RGB input without optical-flow to ensure a fair comparison

with other RGB-based methods.

d SlowFast30 samples 32, 48, or 64 frames from the entire

input clip, maintaining a temporal stride of 2 between

consecutive samples. Consistent with the TSN approach,

we cropped the human region from the entire RGB image

and resized the area to 2243224 for each frame. The ex-

tracted and cropped RGB images were then input into a

3D convolutional network. We adopted a variant of the

3D convolutional ResNet-10133 as the network, in accor-

dance with the original paper.

d V-Swin28 employs the same input processing procedure as

SlowFast. However, V-Swin utilizes a 3D Transformer

network, adapted from the 2D Swin Transformer.34 We fol-

lowed thebase-Swinsettingasoutlined in theoriginalpaper.

d PoseC3D31 uniformly samples 48, 72, or 96 frames from the

entire input clip. Subsequently, 2D human pose inputs are

detectedbyOpenPose.32Finally, a3Dconvolutional network

processes the human poses and generates predictions. We

adopted the network structure provided by MMaction2.35



Figure 2. Distribution of the five-level labels for each LMA element
A total of 1,600 video clips have been labeled for 11 LMA motor elements that

are considered closely associated with happiness and sadness emotions.

Each element is annotated on a scale of zero to four, where zero denotes the

absence of the element (represented in blue), and four signifies its maximum

presence (represented in purple).

Figure 3. Correlation among LMA elements and emotions

Emotion categories are written in bold. This confirms the association between

the selected LMA elements and the emotions of happiness and sadness.
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All presented methods can be trained from scratch or pre-

trained using various existing datasets. Pretraining refers to the

process of initially training a model on one dataset before fine-

tuning it on the target dataset, in this case, BoME. In Table 2,

we leveraged the image classification datasets ImageNet-1K/

ImageNet-22K36 and the video recognition dataset Kinetics-

40037 for pretraining purposes. For other aspects, such as the

testing strategy, we followed the implementation guidelines pro-

vided by the MMaction2 codebase.35

Our analysis of Table 2 yields several key insights. Firstly, pre-

training significantly enhances the performances of all four algo-

rithms. Specifically, pretraining with ImageNet leads to a notable

improvement compared with training from scratch, with gains of

5.72 mAP(%) and 6.48 mRA(%) for TSN, and 3.57 mAP(%) and

2.99 mRA(%) for V-Swin. Pretraining on Kinetics-400 produces

even more substantial improvements, with increases of 8.32,

10.07, 14.09, and 5.87 mAP(%) for TSN, SlowFast, V-Swin,

and PoseC3D, respectively. This is expected, as the Kinetics-

400 dataset is specifically designed for human activity classifica-

tion, and some human characteristic features can be transferred

to the LMA estimation task.

Moreover, our results suggest that the sample rate at which

the input clip is extracted into frames may impact performance.

A higher density of frame samples within a clip may allow for

more information to be extracted, but may also hinder the

model’s ability to analyze such densely packed frames, leading

to a decrease in performance. TSN achieves the best perfor-

mance when the clip is split into 16 sub-clips. SlowFast and

V-Swin exhibit worse performance with denser sampling rates

than the default rate. PoseC3D performs optimally with a sam-

pling rate of 72 frames per clip, the densest among the four algo-

rithms. This may be because PoseC3D uses skeleton coordi-

nates as input, which may be easier for the neural network to

interpret compared with images.

Finally, our results show that V-Swin achieves the best perfor-

mance (53.67 mAP(%) and 72.82 mRA(%)) among the four algo-
rithms, with 32 samples per clip and pretraining on Kinetics-400.

Despite using only skeleton input, PoseC3D attains competitive

mAP performance compared with TSN and SlowFast.

Based on themAP values, we have selected the best-perform-

ing model for each algorithm. Some qualitative examples of LMA

element estimation by different models, along with the ground

truth (i.e., the labels provided by the CMA), are shown in Figure 5.

We also conducted a breakdown analysis. Figure 6 presents the

precision-recall curves for various models across all the LMA el-

ements. Notably, V-Swin outperforms the other algorithms on

the light weight and rotation elements. PoseC3D performs

particularly well on the passive weight and arms-to-upper-

body elements, but poorly on the spread and rotation elements.

LMAenhances bodily expressed emotion understanding
In thissubsection,weaim toachieve theultimategoalofenhancing

BEEU by integrating LMA element labels. As aforementioned,

several psychological studies have demonstrated a strong corre-

spondencebetween the11LMAelementsandemotioncategories

sadness and happiness.24–26 Our previous statistical analysis has

confirmed this finding in the BoME dataset. Furthermore, we have

shown that deep neural networks can learn an effective body

movement representation from BoME. The optimal performance

for LMA element estimation on BoME is 53.67 mAP(%) and

72.72 mRA(%), which is significantly higher than the best results

achieved inBEEU(19.30mAP(%)and66.94mRA(%))on thebodily

expressionbenchmarkBoLD.This is likelydue to the fact that LMA

elements have a more objective definition than emotion cate-

gories, as the presence of LMA elements in a human clip depends

solelyon thebodymovement,whereasemotion labelsmayalsobe

influenced by the annotators’ emotional state. In summary,

emotion and LMA element labels are related, and LMA element la-

bels are easier for deep neural networks to learn. Thus, incorpo-

rating the human movement features learned from BoME into

BEEU presents a promising approach.

To achieve our goal of improving BEEU, we need to train and

test on the BEEU benchmark dataset BoLD, using the BoME
Patterns 4, 100816, October 13, 2023 5
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Figure 4. RGB-based and skeleton-based pipelines for estimating the LMA elements

(A) The RGB-based pipeline extracts frames from the input clip, crops the target human, and feeds the resultant frames into a neural network.

(B) The Skeleton-based pipeline leverages the 2D/3D human pose extracted from the frames as the input for a neural network.

This figure incorporates frames from the film ‘‘Wagner’’ (1983, directed by Tony Palmer).
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dataset as an additional training source. In this set of experi-

ments, we jointly trained on the BoLD training set and the entire

BoME dataset, and then evaluated the model on the BoLD vali-

dation and test sets. It is worth noting that BEEU on BoLD, like

LMA estimation, involves multi-label binary classification tasks.

We have also adopted mAP and mRA as evaluation metrics.

Figure 7 illustrates the proposedmethod involving the creation

of a dual-branch, dual-task neural network, named MANet. We

adopt the same input processing technique as SlowFast and

V-Swin from the previous subsection. By sampling 48 frames

from the input clip and subsequently employing OpenPose32 to

detect the human region within these frames, we crop and resize

the area to 2243224 as input, resulting in an input shape of 483

2243 224. The processed frames then fed into the neural

network.

We have implemented two essential design elements in the

neural network to enable LMA annotations to support BEEU.

First, as shown in Figure 7, we designed a dual-branch network

structure that allowed the model to produce LMA and emotion

predictions concurrently. We employed Swin blocks (i.e., archi-

tecture building blocks in V-Swin28) to construct the MANet’s

backbone, followed by the emotion branch and the LMA branch.

The LMA branch extracts LMA features from the backbone’s

output and utilizes a linear classifier to generate the LMA output.

Second, we incorporated a fusion operation by combining the

LMA branch features with the emotion features, enabling the
6 Patterns 4, 100816, October 13, 2023
emotion predictions to be informed by human movement fea-

tures. In the emotion branch, the fused features are fed into a

linear classifier to yield the emotion output. We provide more de-

tails of the model structure in the experimental procedures.

We employed various loss functions to supervise the training

ofMANet. As both emotion and LMApredictions involvemulti-la-

bel binary classification tasks, we utilized the multi-label binary

cross-entropy loss to compute emotion loss and LMA loss by

comparing their respective outputs with ground truth labels.

Furthermore, we introduced the bridge loss to create a connec-

tion between LMA and emotion prediction based on the relation-

ship between LMA and specific emotion categories (i.e.,

sadness and happiness). Importantly, we used a threshold e in

bridge loss to control the extent of LMA prediction supervision

over emotion prediction.

Moreover, we utilized a weakly supervised training approach to

enable joint training despite the fact that someBoLD samples lack

LMA labels and some BoME samples aremissing emotion labels.

Comprehensive information on the loss function design and

training procedure can be found in the experimental procedures.

Table 3 presents the results of the ablation study. The first set

of experiments evaluates the impact of the model structure on

performance. The method without the dual-branch and fusion

components refers to training emotion labels using only the orig-

inal V-Swin architecture. In this case, the performance is 19.97

mAP(%) and 67.16 mRA(%) on the BoLD validation set.



Table 2. Benchmarking the BoME dataset with four deep learning-based methods

Method Type Pretrain mAP (%) mRA (%) Samples FLOPs (3109) Param. (3106)

TSN RGB based Scratch 40.71 60.42 8 3 1 7.3 23.5

TSN RGB based ImageNet-1K 46.43 66.90 8 3 1 7.3 23.5

TSN RGB based Kinetics-400 49.03 68.58 8 3 1 7.3 23.5

TSN RGB based Kinetics-400 51.02 69.91 16 3 1 7.3 23.5

TSN RGB based Kinetics-400 50.58 70.35 24 3 1 7.3 23.5

SlowFast RGB based Scratch 39.20 59.28 1 3 32 174 62.0

SlowFast RGB based Kinetics-400 49.27 69.23 1 3 32 174 62.0

SlowFast RGB based Kinetics-400 48.62 68.19 1 3 48 260 62.0

SlowFast RGB based Kinetics-400 47.70 68.12 1 3 64 347 62.0

V-Swin RGB based Scratch 39.58 59.33 1 3 32 282 88.1

V-Swin RGB based ImageNet-1K 43.15 62.32 1 3 32 282 88.1

V-Swin RGB based ImageNet-21K 48.88 66.49 1 3 32 282 88.1

V-Swin RGB based Kinetics-400 53.67 72.82 1 3 32 282 88.1

V-Swin RGB based Kinetics-400 50.78 69.55 1 3 48 423 88.1

V-Swin RGB based Kinetics-400 46.79 64.42 1 3 64 564 88.1

PoseC3D skeleton based Scratch 38.88 58.45 1 3 48 15 3.0

PoseC3D skeleton based Kinetics-400 44.75 61.75 1 3 48 15 3.0

PoseC3D skeleton based Kinetics-400 50.30 64.72 1 3 72 22 3.0

PoseC3D skeleton based Kinetics-400 46.93 64.93 1 3 96 29 3.0

‘‘Samples’’ means number of sub-clip3 number of frames per sub-clip in training when sampling one input clip. ‘‘FLOPs’’ represent the computational

complexity of a neural network. ‘‘Param.’’ determines the network’s size and capacity to learn. The numbers highlighted in bold represent the best

performance in each method.
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Incorporating the dual-branch structure, but omitting fusion,

does not significantly improve performance compared with the

original V-Swin. However, the fusion operation leads to a 0.46

mAP(%) and 0.60 mRA(%) increase over the original V-Swin.

This suggests that multi-task training and feature fusion are

both necessary for improving BEEU. The effectiveness of the

bridge loss is also analyzed. As detailed in the experimental pro-

cedures, the initial version of the bridge loss does not incorpo-

rate the threshold e, and its performance does not differ signifi-

cantly from the model without the loss. However, by adding e

and setting it to 0.9, the bridge loss leads to a significant

improvement of 0.82 mAP(%) and 0.56 mRA(%). Thus, the final

MANet model consists of the bridge loss, dual-branch structure,

and fusion operation, yielding an overall mAP increase of 6.4%

(from 19.97 to 21.25). Qualitative examples of bodily expression

estimation using the final model and two baselines are shown in

Figure 8.

The central idea of the bridge loss is to use LMA prediction to

supervise the prediction of sadness and happiness. To further

investigate the impact of the bridge loss on these two emotion

categories, we present precision-recall curves for sadness and

happiness in Figure 9 for the final model and two baselines.

These results show that the bridge loss leads to a significant

improvement in sadness, with an increase of 8.75 AP(%) and

9.06 AP(%) over baseline-1 and baseline-2, respectively. There

is also a notable improvement in the happiness category. In

addition, Table S1 provides an analysis across all emotion

categories.

Table 4 presents a comparison of MANet’s performance with

that of previous state-of-the-art methods on the BoLD validation
and test sets. Our study re-implemented the state-of-the-art

emotion work by Beyan et al.20 We achieved this using the public

code they provided, applied specifically to the BoLD dataset. We

collected performance data for other competitive models from

their papers or from the ARBEE work.6 Results from the table

show that MANet outperforms the approach by Pikoulis et al.38

by 1.95 mAP(%) and 1.38 mRA(%) on the BoLD validation set.

On the test set, the single model of MANet delivers comparable

performance with themodel ensembles of Pikoulis et al. Employ-

ing the same ensemble strategy, the mAP of MANet surpasses

the work of Pikoulis et al.38 by 5.6%. The superior performance

of MANet is attributed to its use of BoME as an additional source

of training data, despite its smaller size (approximately one-

sixth of the BoLD training set). Compared with Beyan et al.,20

our method exhibits substantially better performance. The differ-

ence in performance may arise from two factors. First, our study

focuses on in-the-wild data, whereas Beyan et al. concentrates

on lab-collected data, leading to a domain gap. Second, Beyan

et al. relied on 3D motion capture data, which is not available for

the BoLD dataset. Instead, we used OpenPose32 to extract 2D

pose data as input, which may have reduced the performance

of Beyan et al. Despite these differences, Beyan et al.’s state-

of-the-art emotion work still outperforms some other skeleton-

based methods.

DISCUSSION

In this study, we present BoME, an innovative dataset grounded

in LMA for human motor elements. We showcase the effective-

ness of deep neural networks in capturing human movement
Patterns 4, 100816, October 13, 2023 7



Figure 5. Example LMA element estimation results on the BoME dataset

Five frames sampled from each clip are shown. The predicted LMA elements that are also in the ground truth list are shown in green. The figure incorporates

frames from the films, listed from top to bottom, ‘‘Por mi Hermana’’ (2013), ‘‘Town in Danger - Nigerian Nollywood Movie’’ (2003), ‘‘Charly’’ (1968, directed by

Ralph Nelson), and ‘‘The Black Velvet Gown’’ (1991, directed by Norman Stone), respectively.
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representation through the utilization of this dataset. Further-

more, we propose MANet, a cutting-edge dual-branch model

designed for the understanding of bodily expressed emotions.

This model harnesses the supervisory information provided by

BoME, employing a specialized model architecture, a custom

loss function, and a weakly supervised training strategy. As a

result, MANet surpasses existing approaches in the domain

of BEEU.

This study employs 11 distinct LMA elements known to be

related to sadness and happiness to enhance BEEU. With the

LMA system encompassing over 100 elements, there is consid-

erable potential for additional elements to contribute to emotion

recognition. To build upon this work, we suggest two main ave-

nues for future endeavors. First, it is recommended to expand

the dataset and enrich it with more annotations, incorporating

a broader range of LMA element labels and emotion labels. Sec-

ond, we anticipate that further research in the fields of psychol-

ogy and affective computing could reveal valuable insights into

the relationships between LMA elements and emotions. Such

advancements would ultimately enhance BEEU research and

facilitate a deeper understanding of human emotions as ex-

pressed through movement.

This work has established that LMA contributes significantly to

the task of BEEU. LMA could potentially enhance other com-

puter vision tasks as well, such as general human action recog-

nition. It is evident that certain LMA elements are associated with

specific human actions. For instance, in sports activities like ten-

nis, players swing their rackets, and swimmers exhibit distinct

strokes. The LMA system utilizes various labels to describe these

actions. Similarly, in human social activities, certain actions,

such as shaking hands, are characteristic, and the LMA system

can assist in recognizing them. However, as mentioned earlier,

this would necessitate additional LMA element annotation, as

the current 11 elements are not sufficient. In the future, we

may consider expanding the LMA annotation labels to facilitate

the analysis of a broader range of human activities.

Our exploration of LMA and emotion recognition holds signif-

icant potential for practical applications across various domains,
8 Patterns 4, 100816, October 13, 2023
particularly those where explanation and understanding are

crucial or preferred. One such area is the medical field, particu-

larly in the care of mental health patients. By monitoring patients’

body movement patterns, healthcare professionals can be

alerted about a need to directly observe their emotional states

and an explanation can be given. This approach could improve

efficiency in patient care. Another notable application is in ro-

botics and human-computer interaction. Empowering robots

with the ability to recognize human emotions through body

movements, and to adapt their models based on repeated ob-

servations of an individual’s movements, paves the way for

more informed interaction decisions grounded in the individuals’

emotional states. With LMA motor element recognition, a robot

can incorporate different types of movement into its decision-

making process due to the diverse emotional significance each

carries. This advancement fosters a more personalized, natural,

and empathetic human-robot interaction experience. A recent

review article discusses additional example applications of

improved BEEU.3

In summary, incorporating LMA elements has effectively

enhanced BEEU and shows promise for further advancements

in the future.
EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Request for information and resources used in this article should be addressed

to Dr. James Wang (jwang@ist.psu.edu).

Materials availability

This study did not generate new unique reagents.

Data and code availability

The BoME dataset, along with the model training and evaluation code, are

available at Mendeley Data: https://doi.org/10.17632/gbhpdkf8pg.1. They

are also available at GitHub: https://github.com/ChenyanWu/BoME. All the

code used in the experiments was implemented with PyTorch. We developed

the code based on the open-source codebase MMaction2. Part of the code

includes the BoLD dataset as the training set. BoLD is publicly available at

URL: http://cydar.ist.psu.edu/emotionchallenge.
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Figure 6. Precision-recall curves for various models on 10 LMA elements

The x axis represents the recall and the y axis represents the precision. The AP (average precision) score of the corresponding model is indicated in parentheses

after the model name in the legend.
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Selecting motor element labels

To characterize motor elements, we adopted the LMA, the most extensively

developed system for encoding human movement. Rudolf von Laban (1879–

1958), a renowned dance artist, choreographer, and movement theorist,

spearheaded the development of LMA in the early 20th century to analyze

and record body movements in dance, theater, education, and industry. The

LMA system comprises over one hundred motor elements, organized into

four main categories. The body category lists moving body parts (such as

the head and arms) and some basic actions (such as jumping and walking).

The space category represents the body’s spatial direction when moving,

including vertical (up, down), sagittal (forward, backward), and horizontal (right

side/left side). The shape category describes how the body changes its shape,

including whether it encloses or spreads, rises or sinks. The effort category

specifies the mover’s inner attitude toward the movement and is expressed
in the quality of the movement. It is comprised of four factors: weight, space,

time, and flow. Weight-effort refers to the amount of force applied by the

mover, with a spectrum ranging from strong (applying high force) to light

(applying weak force). Space-effort ranges from direct to indirect, indicating

whether the mover moves directly toward a target in space or indirectly.

Time-effort ranges from sudden to sustain, denoting the movement’s acceler-

ation. Flow-effort ranges from bound to free flow, expressing the level of con-

trol exerted over the movement. LMA also includes the phrasing category,

which describes how the motor elements change over time.

Several studies have demonstrated that certain LMA elements are strongly

associated with emotions, particularly sadness and happiness. Shafir et al.24

found that specific LMA elements, when present in a movement, can elicit

four fundamental emotions, including sadness and happiness, among others.

Melzer et al.25 identified LMA elements that allow movements to be classified
Patterns 4, 100816, October 13, 2023 9



Figure 7. The framework of the proposed MANet

MANet takes processed frames from video clips as input. The network is composed of a backbone and two distinctive branches—the LMA and emotion

branches. Both branches ingest the output of the backbone, extract relevant features, and subsequently yield separate LMA and emotion outputs. Of note, within

the emotion branch, a fusion operation takes place, integrating the emotion features with the LMA features. The network training is facilitated by the application of

three loss functions: LMA, bridge, and emotion.
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as expressing one of these four fundamental emotions. The association be-

tween happiness and certain LMA elements was also validated by van Geest

et al.26 Furthermore, another experiment by the Shafir group, conducted byGi-

lor for her Master’s thesis, studied LMA elements used for expressing sadness

and happiness. These studies provide compelling evidence that certain LMA

elements can evoke or be recognized as conveying sadness and happiness.

Our work builds upon these psychological findings and, following Shafir

et al.24 and Melzer et al.,25 we selected 11 LMA elements associated with

sadness and happiness (see Table 1) as the labels for the BoME dataset. All

experiments presented in this paper are based on these motor elements.
The creation of the BoME dataset

To create the BoME dataset, we followed the same process as the BoLD data-

set by using movies from the AVA dataset23 as our data source. This has two

advantages. First, real-world video recordings often have limited body move-

ments, but movies provide a rich variety of visual features. Second, we can

match video clips from the BoLD dataset, which have emotion category labels,

for joint training and emotion modeling.

The films of the AVA dataset are sourced from YouTube, and all associated

copyrights are retained by the original content creators. In addition, the Com-

mon Visual Data Foundation (CVDF) hosts these videos.41 During our research,

we retrieved the videos from the CVDF using their GitHub repository.41 The

CVDF offers a stable and reliable platform for researchers. In adherence to

copyright regulations and the procedures established by the AVA dataset,

our BoME dataset includes only the YouTube IDs of the films. This allows users

to access the corresponding videos from either YouTube or the CVDF using

these identifiers. It should be noted that, while the videos in this dataset are in-

tended to comply with YouTube’s guidelines, which strictly prohibit explicit

content such as violence and nudity, users should remain aware of the poten-
Table 3. Ablation on the architecture and bridge loss

Dual-branch Fusion Bridge loss mAP (%) mRA (%)

– – – 19.97 67.16

U – – 19.94 67.34

U U – 20.43 67.76

U U w/o ε 20.42 66.88

U U ε = 0.7 19.78 67.44

U U ε = 0.8 20.55 67.43

U U ε = 0.9 21.25 68.32

U U ε = 0.99 20.67 67.57

Evaluation is done on the BoLD validation set.
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tial presence of harmful or sensitive material. Despite the diligent oversight

from both YouTube and our team, occasional oversights may occur, resulting

in the inclusion of such content. Users are advised to exercise discretion while

accessing these videos.

To segment the long movies from the AVA dataset into clips, we employed

the kernel temporal segmentation approach,42 consistent with BoLD. The se-

lection of clips was carried out by the LMA annotator, adhering to certain

criteria: (1) the human subject in the clip must display clearly discernable emo-

tions, specifically sadness or happiness, as our study is focused on the 11mo-

tor elements associated with these two emotions according to previous

research. (2) The clip should be brief, with fewer than 300 frames in total, since

longer clipsmay contain expressions of multiple emotions, making it difficult to

attribute each LMA label to the correct emotion. (3) We excluded clips in which

the human subject did not display any movement. After careful screening, we

ultimately chose 1,600 clips to form the BoME dataset. In the BoME dataset,

we supply the initial and terminal frame numbers for each clip, enabling users

to precisely locate these segments within the context of the original film.

Because each video may contain multiple people, we need to identify

which person to annotate. We adopted the method proposed by Luo et al.6

for human identification. Specifically, we leveraged the pose estimation

network OpenPose32 to extract the coordinates of the human joints, which al-

lowed us to determine a bounding box around the person’s body. By imple-

menting a tracker on this bounding box, we assigned a unique identification

number to the same person in all frames of the video clip, enabling consistent

annotation across the entire duration of the clip.

We enlisted the assistance of an LMA expert to provide annotations for the

study. This expert is a member of a team that has received specialized training

in LMA coding for scientific research and has already coded numerous hours

of movements for previous quantitative studies using the same standard anno-

tation pipeline as in our research.

The annotator was instructed to ensure that the sound in the clips was

turned off during annotation to prevent any influence from auditory cues,

such as tone of voice or background music, which could impact the perceived

emotion. Instead, the annotator was to focus solely on the observed move-

ments. Each clip was watched multiple times by the annotator to code all 11

variables, which are the 11 motor elements that have been linked to motor ex-

pressions of sadness and happiness in previous psychological studies. The

annotator coded some of the variables during each viewing and repeated

the process until all variables were coded. The annotator then watched the

clip one last time to verify the accuracy of the annotations. If the LMA expert

was uncertain about the correct coding, she was instructed to move and

match what she saw in the clip with her own body movement and even inten-

sify it when necessary until it became clear which motor elements constituted

the movement.

The LMA expert used a standardized and consistent rating scale of 0–4 to

code each motor element, taking into account both its duration (i.e., the



Figure 8. Example bodily expressed emotion understanding results on the BoLD validation set

Categorical emotion labels are predicted based on a video clip of a person. Five frames sampled from each clip are shown. The predicted emotion labels that are

also in the ground truth list are shown in blue. Baseline-1 is the original V-Swin without dual-branch and fusion. Baseline-2 is the MANet model without the bridge

loss. Ours is the final model of MANet. We also present the predicted LMA elements in green. Baseline-1 does not provide LMA predictions because it only

outputs emotion prediction. The figure incorporates frames from the films, listed from top to bottom, ‘‘Return of the Tiger’’ (1978, directed by Jimmy Shaw),

‘‘Ragin’ Cajun’’ (1990, directed by William Byron Hillman), ‘‘Eye of the Stranger’’ (1993, directed by David Heavener), and ‘‘Teheran Incident’’ (1979, directed by

Leslie H. Martinson).
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percentage of clip duration during which themotor element was observed) and

intensity. To determine the duration score, the following criteria were used.

d 0: the motor element was not observed in the clip.

d 1: the motor element was rarely observed, appearing for up to a quarter

of the clip duration.

d 2: the motor element was observed a few times, appearing for up to half

of the clip duration.

d 3: the motor element was often observed, appearing for up to three-

quarters of the clip duration.

d 4: the motor element was observed for most or all of the clip duration.

If the intensity of the motor element was low, 1 was subtracted from the

duration score. Conversely, if the intensity was high, 1 was added to the dura-

tion score. However, the maximum score could not exceed 4.

Model structure of MANet

As illustrated in Figure 7, the network consists of a single backbone followed

by two branches: the emotion branch and the LMA branch. The backbone is

responsible for extracting image features from the input frames, and it strictly

adheres to the first three stages of V-Swin.28 Each stage comprises multiple

3D Swin Transformer blocks, the structure of which is detailed in the V-Swin

paper.28 We employed the base setting of V-Swin, which includes 2, 2, and

18 blocks in the first three stages, respectively. The LMA branch utilizes two

3D Swin Transformer blocks to process the output from the backbone and

obtain the LMA features. Subsequently, a linear classifier within the LMA

branch generates the LMA prediction. Similarly, the emotion branch employs
A B
two 3D Swin Transformer blocks to extract the emotion features. Following

this, the emotion features and the LMA features are added through a feature

fusion operation. The fused features are then input into a linear classifier, which

ultimately produces the emotion output.

Loss functions of MANet

As depicted in Figure 7, MANet is trained by optimizing three loss functions:

emotion loss, LMA loss, and bridge loss.

The emotion output is represented as a vector y = ½y0;y1;.;yN�, with N de-

noting the number of emotion categories (26 for BoLD). Similarly, the LMA

output is expressed as z = ½z0;z1;.;zM�, with M representing the number of

LMA elements (10 for BoME). We apply the sigmoid function to yi , indicated

as sðyiÞ, to determine the probability that the input sample encompasses the

ith label. The same is applied to zj .

Let the ground truth emotion and LMA labels be by = ½by0; by1;.; byN� and bz =

½bz0; bz1;.; bzN�. For any byi , the value is either 1 or 0, indicating whether the ith

label is true or false for the sample. The same is applied to bzj .
We calculated the emotion loss and LMA loss by computing the cross-en-

tropy between the ground truth and output predictions as follows:

LEmotion
= � 1

N

XN

i = 1
byi ln sðyiÞ+ ð1 � byiÞlnð1 � sðyiÞÞ;

LLMA
= � 1

M

XM

j = 1
bzj ln sðzjÞ+ ð1 � bzjÞlnð1 � sðzjÞÞ :

Previously, we established that the first four LMA elements were associated

with sadness, while the remaining elements were associated with happiness.
Figure 9. Precision-recall curves for sadness

and happiness on the BoLD validation set

Models of baseline-1, baseline-2, and ours are

identical to those in Figure 8.
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Table 4. Comparison with the state of the art on the BoLD

validation and test set

Set Method Year mAP (%) mRA (%)

Validation TSN29 2018 18.55 64.27

Filntisis et al.8 2020 16.56 62.66

Pikoulis et al.38 2021 19.30 66.94

Beyan et al.20,b 2021 15.86 62.63

MANet 2023 21.25 68.32

Test I3D39 2017 15.37 61.24

TSN29 2018 17.02 62.70

ST-GCN40,b 2018 12.63 55.96

Filntisis et al.8 2020 17.96 64.16

random forest6,b 2020 13.59 57.71

Pikoulis et al.38,a 2021 21.87 68.29

Beyan et al.20,b 2021 16.73 62.17

MANet 2023 22.11 67.69

MANeta 2023 23.09 69.23

The numbers highlighted in bold represent the best performance in the

validation or test set.
aRepresents model ensembles.
bRepresents skeleton-based method.
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Utilizing this information, we developed the bridge loss to guide the prediction

of sadness and happiness. Specifically, for z = ½z0;z1;.;zM�, we selected the

maximum predictions among the sadness- and happiness-related LMA ele-

ments, denoted as max fzig4i = 1 and max fzigMi = 5, respectively. By calculating

the softmax of two values, we obtained the probabilities for sadness and

happiness. Formally, we have,

psadness =
emax fzig4i = 1

emax fzig4i = 1+emax fzigMi = 5

;

phappiness =
emax fzigMi = 5

emax fzig4i = 1+emax fzigMi = 5

:

The variables phappiness and psadness are considered as probabilities from the

perspective of LMA predictions. Let the sth and hth elements of vector y denote

sadness and happiness, respectively. By applying the softmax function to yh
and ys, wederived theprobabilities of happiness andsadness from the emotion

output, represented as eyh=ðeyh + eys Þ and eys=ðeyh + eys Þ, respectively. Subse-
quently, we leveraged phappiness and psadness to supervise eyh=ðeyh + eys Þ and
eys =ðeyh + eys Þ through the implementation of the soft cross-entropy loss:

LBridge = � phappiness ln
eyh

eyh+eys
� psadness ln

eys

eyh+eys
:

Occasionally, the happiness-sadness probability from the LMA branch may

notbeaccurate, hindering its ability to supervise yh andys. Toaddress this issue,

we introduced a threshold e. Only when phappiness or psadness exceeded e would

we compute the cross-entropy loss. Formally, this can be represented as:

LBridge = � 1
�
phappiness > e

�
ln

eyh

eyh+eys

� 1ðpsadness > eÞln eys

eyh+eys
;

where 1ðPÞ is the indicator function, equating to 1 if the condition P is true and

0 otherwise. An ablation study was conducted to evaluate the performance of

different LBridge values, as shown in Table 3. The results suggest that the

e-controlled loss function leads to improved performance, with e = 0:9

achieving the best results.

Weakly supervised training for MANet

We have utilized both the BoME and BoLD datasets for the joint training of

MANet to recognize emotion and LMA labels. These datasets share a common
12 Patterns 4, 100816, October 13, 2023
subset of 705 clip samples. The rest of the BoME samples are exclusive to

LMA labels, whereas the remaining samples in the BoLD set contain only

emotion labels. Consequently, drawing inspiration from the work of Wu

et al.,43 we adopted a weakly supervised training methodology, enabling us

to effectively leverage data that lack either emotion or LMA labels.

In particular, we employed the coefficient mEmotion, set to either 0 or 1, to

indicate the presence or absence of an emotion label in a sample. Likewise,

the coefficient mLMA was used for the LMA label. During training, all

datasets were combined and shuffled together. We utilized the coefficients

l1 and l2 to balance the three loss components. The total loss was calculated

as follows:

L = mEmotionLEmotion + l1mLMALLMA + l2LBridge;

in practice, we set l1 = 0:25 and l2 = 0:1.

Throughout the training process, the network was trained for 50 epochs,

with data augmentation techniques such as flipping and scaling applied to

both the BoME and BoLD datasets. The learning rate was set at 5e�3, and

the optimization algorithm employed was SGD. Two NVIDIA Tesla V100

GPUs were used to conduct a single experiment, which took approximately

8 h to complete.
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Table S1
AP values for all emotion categories on the BoLD validation set
To provide a comprehensive view of how LMA improves BEEU across all emotion categories, we present a category-specific
performance analysis of MANet in this table. Consistent with Tables 8 and 9 in the main body of the text, “Baseline-1”
represents the original V-Swin model without the dual-branch and fusion elements, essentially operating without the assistance
of LMA labels. “Baseline-2” refers to the MANet model excluding the Bridge loss. Our final model is denoted as “Ours”. For
each emotion category, the most effective and second most effective approaches are highlighted with color indicators.
The table illustrates that, out of 26 categories, our model outperforms in 16. Even in the remaining categories, our model’s
performance is not substantially inferior to either Baseline-1 or Baseline-2. Consequently, it can be inferred that integrating
LMA labels from the BoME dataset and utilizing our proposed network model not only amplifies the accuracy of predicting
happiness and sadness, as stated in the main text, but also significantly improves the prediction of various other emotions
with negligible adverse effects on the remaining categories.

Emotion Category Baseline-1 Baseline-2 Ours
Peace 27.59 29.73 30.49
Affection 30.69 30.11 33.16
Esteem 17.43 16.08 15.22
Anticipation 29.51 29.59 28.86
Engagement 44.67 46.57 44.35
Confidence 41.22 43.68 44.04
Happiness 44.97 44.41 45.76
Pleasure 28.12 31.56 30.11
Excitement 30.36 28.62 30.77
Surprise 11.53 13.24 14.89
Sympathy 11.49 13.36 16.42
Confusion 23.44 22.93 22.49
Disconnection 10.11 10.22 10.63
Fatigue 16.89 14.61 17.21
Embarrassment 3.22 3.55 3.80
Yearning 7.70 3.49 3.82
Disapproval 14.41 17.33 17.92
Aversion 10.00 10.73 9.54
Annoyance 18.81 20.48 19.44
Anger 14.90 15.15 14.00
Sensitivity 10.75 11.40 14.08
Sadness 17.91 17.60 26.66
Disquietment 21.94 22.53 21.06
Fear 17.09 17.46 18.49
Pain 4.44 4.61 5.97
Suffering 10.00 12.08 13.26
Mean 19.97 20.43 21.25
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