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Reviewer 1

Were you able to assess all statistics in the manuscript, including the appropriateness of statistical 
tests used? Yes: Statistics look good to me. 

Were you able to directly test the methods? Yes. 

Comments to author:
The authors present the development of a workflow for ancient metagenomics, aMeta. The aim 
of this pipeline is to overcome the disadvantages of the most used tools for taxonomic screening 
of aDNA sequences and to allow a more robust identification of ancient microorganisms. To 
achieve this, the authors combine two different approaches, a k-mer-based taxonomic 
classification performed with KrakenUniq, and a subsequent alignment-based classification 
approach with MALT, which is done using a dynamically built database within the same 
workflow. Seven additional validation metrics are included to reduce detection and 
authentication errors. The authors show that their workflow has a better computational 
performance and higher specificity and detection accuracy than the commonly used tools. 

aMeta is proposed to be a memory-efficient and highly specific taxonomic classification 
workflow. This workflow is implemented in Snakemake, which improves its reproducibility and 
optimizes its performance in HPC environments. A main improvement of aMeta is the creation 
of project-specific databases based on the presence of certain candidate species. This step, 
together with additional validation metrics commonly used in taxonomic profiling analyses, 
improves the specificity of the classification while optimizing the computational resources 
needed. 

I believe that this workflow is a good contribution to the aDNA field which will be well 
welcomed by the aDNA community. Although there is space for further improvements, some of 
which are also acknowledged by the authors in the manuscript, their proposed workflow is a 
valuable tool to be considered. 

Points of consideration. 

I think that it would be a good idea to add more explicit remarks and examples of the 
performance of aMeta in function of the number of microbial reads detected. Figure 3 and 5 
provide some hints about it, but the real example shown in Figure 4 corresponds to a rather 
atypical case (Gok2) in which almost the whole genome of the pathogen was covered in the 
sequencing data. How will this look like, for instance, for the Gok4 individual that contains only 
~2000 mapping reads (compared to the ~200K reads in Gok2)? 

The authors explored 18 ancient microbial species, but I believe that some additional pathogens 
that have been already successfully recovered in ancient DNA studies could be also included and 
tested too. I have then a following question regarding the detection and authentication capacity 
of aMeta for all these different ancient species when the number of target reads is limiting? (i.e., 



when the number of hits is closer to the 300 reads & 1000 k-mers threshold used by aMeta). Y. 
pestis is easy to detect and authenticate, but what about the other microbial species? 

I think this detection and authentication threshold is very important to report more clearly 
because in the majority of cases the conservation of ancient pathogen genomes is very poor, so 
screenings must be performed on a very limited number of target reads, and decisions must be 
made on this limiting information to move into further sequencing or targeted enrichment 
strategies. 

One of the main strengths of aMeta is the use of a dynamically generated database based on a 
subset of selected species. These species are selected based on seven validation parameters such 
as breadth of coverage and postmortem damage. However, during the benchmarking process, 
aMeta reported a slightly higher number of false positive hits, 14, compared to HOPS, 11 (supp 
fig 11). My main concern regarding this result, is that even after applying the filters proposed by 
the authors, HOPS, which doesn't use these filters, has a higher sensitivity for this type of errors. 
How do authors explain this? 

The authors mention that the k-mers unique to each taxa could be considered equivalent to the 
breadth of coverage information. I think it will be nice if they could develop this concept a bit 
further in the manuscript. For instance, how it conceptually relates to the breadth of coverage 
that can be calculated by SAMtools from a BAM file? Also, if I understand well, regions that are 
conserved among taxa are thus not counted because they are not unique to each taxa, right? Do 
the authors believe that masking such non-unique k-mers could have come confounding effects? 

Some additional Minor comments: 

Introduction: The use of the term "endogenous" microbial communities. Does the definition of 
"endogenous" work well with the context in which it is used in the text? I've seen other terms, 
such as "targeted", or "of interest", or "host-associated", I would just double check that the term 
endogenous is ok here. 

Intro, page 4, line35: I would not say that authentication error is specific of ancient 
metagenomics. This can be also an issue with modern samples, e.g., when detecting pathogens in 
clinical samples. 

Supplementary information Page 3, line 8; Suppl Fig 2. The authors show that the Jaccard 
similarity reached a plateau starting with the Microbial NCBI NT database comprising around 
110 billion characters. As one normally considers the numbers of genomes at the moment of 
creating a database instead of the number of characters, I think it would be nice to provide 
information regarding the number of genomes from each type were included in this database: 
bacteria, viruses, archea, fungi, protozoa and parasitic worms. 

Supplementary information Page 4, line 11; Suppl Fig 3. When analyzing the impact of the 
database size, the authors observed that concatenating the hg38 human genome did not have an 
impact in the number of misaligned reads. As they mentioned in the manuscript, it is expected 
that with bigger databases the number of misaligned reads would get closer to zero. If possible, it 



would be interesting to see it this hold true after removing the hg38 genome and increasing the 
number of microbial genomes from the Microbial NCBI NT, keeping it in a reasonable amount 
of genomes to be able to run witht he same amount of resources. 

Page 12, first line - Typo ".." Instead of "." 

Figure 3. Use of "kmers" instead of "k-mers" as in the rest of the manuscript. 

Reviewer 2
Were you able to assess all statistics in the manuscript, including the appropriateness of statistical 
tests used? Yes: All statistics and metrics used (e.g. IoU and F1 scores) are appropriate. 

Were you able to directly test the methods? Yes. 

Comments to author:

This is an excellent paper that presents a useful workflow for the taxonomic classification of 
ancient metagenomic shotgun reads. While the paper does not present a new program per se, it 
does combine existing software (i.e. krakenuniq, MALT) in a unified profiling workflow that 
minimizes false assignments while reducing memory requirements, which is much needed due to 
the ever increasing size of ancient metagenomic datasets (both in terms of the number of 
samples, as well as the amount of sequencing data). We have been using an earlier version of the 
same workflow in our lab and we agree with the authors that it is much superior to other 
workflows in the field, both in terms of accuracy and computational requirements, and I am 
convinced that it (or permutations of it) will be widely adopted by researchers in the field. 

I have very little, if anything to object to the manuscript as the methods are well described and 
the results presently very clearly. But I do have a few suggestions that I think might improve the 
manuscript (listed in order that they appear in the manuscript): 

1) The authors opted to go for KrakenUniq over other k-mer based classifiers and while I agree 
with that choice (as it has several advantages over say Kraken2) it might be worth pointing out 
what those advantages are. 

2) Similarly, I would be interested to know why the authors opted to go for MALT over other 
mappers (e.g. minimap2 etc)? 

3) A very minor point but on page 6 of the manuscript, the authors discuss why detecting 
microbial organisms solely based on "depth of coverage (or simply coverage)" might lead to 
false positive assignments. While I entirely agree with this point, it might be good to explain 
what exactly is meant by "coverage" (given the amount of confusion that exists in the field 
around terms like depth and breadth of coverage etc.). Simply saying coverage, might be 
unhelpful, I think. For clarity's sake, you could also introduce the term "evenness of coverage" in 
that same paragraph. 



4) On page 7, you briefly discuss the effects of DB size on the rates of false assignments. I think 
this is a very important point to make and I wonder if it might be worth discussing some of the 
results in more detail rather than banning them to the supplemental information. 

5) Again a very minor point, but on page 8 you write that "KrakenUniq ... cannot control the 
authentication error". I know what you mean but I think it could perhaps be phrased a bit more 
clearly, so maybe rephrase or perhaps just drop "cannot control the authentication error 
because"? 

6) On page 9, you write: "that would otherwise be technically impossible for MALT to build". I 
think maybe "handle" might be a better word here? 

7) On page 11, you list the seven metrics you use to validate a true ancient microbe but what 
about others like average nucleotide identity (ANI)? 

8) On page 13, you write that the KrakenUniq and HOPS microbial abundance matrices were 
filtered using different thresholds for the number of assigned reads and later on in the same 
paragraph you write that "the default filtering thresholds were empirically determined from the 
analysis of a number of ancient metagenomic samples". Could provide a bit more detail here? 
What were the thresholds? What and how many samples did you use and how exactly did you 
determine the thresholds? 

9) You start the discussion with what reads more like an introduction and you wanted to save 
space to make space for a more in depth discussion of e.g. the effects of database size, I would 
suggest you cut or condense the first two paragraphs of the discussion or move some of it to the 
introduction. That way I think the paper will be sharper. 

10) On page 19, you conclude that "We believe that the features of aMeta ... make this workflow 
stand out in terms of accuracy and resource usage compared to other alternative analytical 
frameworks in the field." It's just a personal preference and I actually agree with you, but I think 
it might be better if you let the paper speak for itself! 

11) I think it would be helpful if you could add some references for the denovo assembly of 
microbial genomes (page 20). 

12) Again just personal preference, but you chose to end the paper by saying that "aMeta may 
currently not be as fast as HOPS when extensive multi-threading is available" but that you are 
working on several optimization schemes that will improve the speed of aMeta. While I think it's 
great to hear that you will continue to develop aMeta I think it's just not a very strong point to 
end on. So perhaps consider rephrasing that part or come up with a couple of sentences that sum 
up the strong points of your workflow? 

Authors Response

Point-by-point responses to the reviewers’ comments: 



Reviewer 1 

1) I think that it would be a good idea to add more explicit remarks and examples of the 

performance of aMeta in function of the number of microbial reads detected. Figure 3 and 

5 provide some hints about it, but the real example shown in Figure 4 corresponds to a 

rather atypical case (Gok2) in which almost the whole genome of the pathogen was covered 

in the sequencing data. How will this look like, for instance, for the Gok4 individual that 

contains only ~2000 mapping reads (compared to the ~200K reads in Gok2)?

Authors’ comment: to provide more information on performance of aMeta in function 

of the number of microbial reads detected, we included an additional Supplementary 

Figure 11 that compares counts of microbial reads detected by aMeta and HOPS with 

respect to the simulated ground truth. The horizontal dashed line in Supplementary 

Figure 11 marks a reasonable detection threshold of ~100-300 reads that one can 

apply to filter an abundance matrix. As it can be observed in the figure, lowering this 

detection threshold would deteriorate HOPS performance due to its high ”dropout” 

(high false-positive and false-negative counts, i.e. the clouds of points groupping 

along the axes), therefore lowering the read number threshold brings too many false-

positive hits. In contrast, the detection accuracy of aMeta can even slightly improve 

at read numbers as low as ~10-50. However, it is important to keep in mind that ~10-

50 detected reads would be problematic to authenticate with e.g. mapDamage since 

a stable deamination profile can only be computed on a number of reads, at least 

~200 to our experience. Therefore, we generally recommend aMeta users to keep 

filtering within range of ~100-300 reads which provides not only conservative 

detection but also possibility for reliable authentication analysis.

In addition, we explore aMeta performance with respect to the number of detected 

microbial reads in Figure 6 (Figure 5 in the previous version of manuscript) and 

Supplementary Figure 10 using a number of metrics such as Jaccard similarity, F1 

score, detection accuracy and numbers of false-positive and false-negative counts. 

Here we come to a very similar conclusion: aMeta is consistently more accurate than 

HOPS in a wide range numbers of detected reads, and in theory can even be accurate 

for detecting very low-abundant microbes with only ~10-50 detected reads. However, 

we do not recommend this low detection limit due to potential authentication 

problems. We added the discussion about performance of aMeta in function of the 

number of reads detected in the main text, see lines 399-415, 705-719 and 360-376.



We also included a new Supplementary Figure 3 which demonstrates authentication 

output from aMeta for Yersinia pestis found in Gökhem 4 (Gok4) individual, N. 

Rascovan et al., Cell 2018. aMeta was successful in detecting and authenticating 

Y.pestis despite the lower amount of Y.pestis DNA in Gok4 individual. Note that in 

order to reliably detect and authenticate Y.pestis in Gok4 individual for 

Supplementary Figure 3, we had to merge 4 libraries sequenced in our lab, which 

resulted in ~49 mln reads in total, while for the example of Gok2 in Figure 4, only one 

library of ~12 mln reads was used.

2) The authors explored 18 ancient microbial species, but I believe that some additional 

pathogens that have been already successfully recovered in ancient DNA studies could be 

also included and tested too. I have then a following question regarding the detection and 

authentication capacity of aMeta for all these different ancient species when the number of 

target reads is limiting? (i.e., when the number of hits is closer to the 300 reads & 1000 k-

mers threshold used by aMeta). Y. pestis is easy to detect and authenticate, but what about 

the other microbial species?

Authors’ comment: to address this, we have performed two additional pathogen 

focused analyses. First, we simulated a new pathogen-enriched dataset with 5 

pathogenic bacteria, 3 viruses and 1 eukaryotic pathogen, reviewed in Spyrou et al. 

Nat. Rev. Genet. 2019. Second, we evaluated aMeta on 36 ancient metagenomic 

libraries from 4 shotgun metagenomic studies that previously reported pathogens 

(Maixner et al. 2016, Warinner et al. 2014, Guallil et al. 2018 and Kay et al. 2014). The 

additional analyses were summarized in a new sub-section “Results - Replication on 

pathogen-enriched simulated and real datasets”, see lines 540-599, Supplementary 

Figures 18-24 and Supplementary Table 1. We demonstrate that aMeta is more robust 

in discovering ancient pathogens compared to HOPS on simulated dataset, and 

default settings of aMeta are sufficient for confirmation of pathogen presence in real 

ancient metagenomic studies. Importantly, we addressed the limit of low-abundant 

pathogens and low coverage ancient metagenomic data. We demonstrated using the 

pathogen focused simulated dataset that aMeta with default settings was able to 

detect and authenticate most of the pathogens (41 out of 50) when sequencing depth 

was as low as 100 000 – 300 000 reads, Supplementary Figure 23. On real ancient 

shotgun metagenomic data, aMeta was also broadly successful in detecting 

pathogens (34 correct predictions out of 36) in libraries of varying sequencing depth 



with the lowest at ~8 mln sequenced reads, but as simulations suggest, it can likely 

be even lower, Supplementary Figure 24 and Supplementary Table 1.

3) I think this detection and authentication threshold is very important to report more clearly 

because in the majority of cases the conservation of ancient pathogen genomes is very 

poor, so screenings must be performed on a very limited number of target reads, and 

decisions must be made on this limiting information to move into further sequencing or 

targeted enrichment strategies.

Authors’ comment: we completely agree and have now added a paragraph into the 

Discussion section that provides detailed information about the detection and 

authentication thresholds used by aMeta, as well as motivation and intuition for 

using particular default values, see lines 684-719 and 364-370. We also demonstrate 

using simulated, Supplementary Figure 11, and real data, Supplementary Figure 24, 

that aMeta provides satisfactory accuracy of ancient microbiome profiling in a wide 

range of depth and breadth of coverage filters. Regarding sensitivity of aMeta’s 

settings toward very limited number of target reads, please see the response to the 

previous question, as well as lines 573-599, where we provide justification based on 

simulated and read data that default settings of aMeta demonstrate satisfactory 

accuray of detection and authentication even on a very limited number of target 

reads.

4) One of the main strengths of aMeta is the use of a dynamically generated database based 

on a subset of selected species. These species are selected based on seven validation 

parameters such as breadth of coverage and postmortem damage. However, during the 

benchmarking process, aMeta reported a slightly higher number of false positive hits, 14, 

compared to HOPS, 11 (supp fig 11). My main concern regarding this result, is that even 

after applying the filters proposed by the authors, HOPS, which doesn't use these filters, 

has a higher sensitivity for this type of errors. How do authors explain this?

Authors’ comment:  we thank the reviewer for pointing out the slightly higher false 

positive rate of aMeta compared to HOPS. After careful investigation, we found a 

minor error in the script used for producing the confusion matrix for aMeta detection 

which resulted in slight overestimation of aMeta’s false-positive rate. The correct 

false-positive counts for aMeta are 9 compared to 12 for HOPS, which is 

demonstrated in the updated confusion matrix presented in Supplementary Figure 9 

(Supplementary Figure 11 in the previous version of manuscript). We also modified 



and extended the Supplementary Figure 10 (previously Supplementary Figure 12) 

which now explicitly shows both false-positive and false-negative counts of aMeta 

to be consistently lower than the ones for HOPS, as well as the accuracy of aMeta to 

be consistently higher than HOPS accuracy, in the wide range of the read number 

thresholds varying from 0 to 800 assigned reads. In addition, we updated Figure 6 

(Figure 5 in the previous version) and Supplementary Figures 7 and 8 (previously 

Supplementary Figures 9 and 10), and modified the corresponding parts of the main 

text, see lines 345-415, and supplementary text that provide the details of detection 

error analysis. In summary, the additional robust filtering by breadth of coverage 

implemented in aMeta and its computational capacity to utilize a larger reference 

database result in both lower false-positive and lower false-negative detection error 

of aMeta compared to HOPS.

5) The authors mention that the k-mers unique to each taxa could be considered equivalent 

to the breadth of coverage information. I think it will be nice if they could develop this 

concept a bit further in the manuscript. For instance, how it conceptually relates to the 

breadth of coverage that can be calculated by SAMtools from a BAM file? Also, if I 

understand well, regions that are conserved among taxa are thus not counted because they 

are not unique to each taxa, right? Do the authors believe that masking such non-unique k-

mers could have come confounding effects? 

Authors’ comment: to demonstrate that the number of unique k-mers reported by 

KrakenUniq could be considered equivalent to the breadth of coverage reported by 

Samtools, we produced a scatter plot of relation between these two metrics 

computed on the simulated ancient metagenomic dataset, see Supplementary Figure 

1. The plot shows statistically significant correlation between the numbers of unique 

k-mers reported by KrakenUniq and breadth of coverage information computed by 

Samtools. We also added textual explanation for the relation between the two 

concepts to the Results, lines 128-138, and Discussion, lines 690-694, sections.

Regarding ignoring conserved regions and potential confounding effects, we believe 

that conserved regions can not unambiguously contribute to the depth and breadth 

of coverage information, therefore, indeed, one can imagine a hypothetical situation 

where abundance of some taxon is underestimated simply because the lack of 

“uniqueness” in the taxon’s reference genome, e.g. when the reference genome of 

the taxon represents a mosaic of other taxa reference genomes. This would imply 



that genome “uniqueness” can confound the abundance quantification. This 

problem, however, can be solved by considering longer reads and longer k-mers, 

which effectively increases the specificity of the analysis. That is, a longer read is 

less likely to map with the same affinity to multiple positions, and therefore will not 

be ignored when computing abundance and coverage. Similarly, in terms of k-mer-

based analysis, longer k-mers tend to be more specific (unique) to a taxon and 

therefore more likely to contribute to the abundance and coverage information. In 

aMeta we select reads at least 31 bp long, and use KrakenUniq databases built with 

k-mer size k = 31, which is widely accepted to provide sufficient specificity of 

taxonomic assignment across the tree of life. We believe that long enough read 

length and k-mer size minimize the potential problem of confounding abundance and 

coverage by reference genome “uniqueness”. Also, in our opinion, an alternative 

attempt to account for non-unique k-mers that come from conserved regions  may 

potentially result in even higher bias and stronger confounding effects.

Some additional Minor comments: 

6) Introduction: The use of the term "endogenous" microbial communities. Does the definition 

of "endogenous" work well with the context in which it is used in the text? I've seen other 

terms, such as "targeted", or "of interest", or "host-associated", I would just double check 

that the term endogenous is ok here.

Authors’ comment: we thank the reviewer for pointing this out, it has been edited in 

the new version of the manuscript, and the term ”endogenous” has been replaced 

with ”host-associated”.

7) Intro, page 4, line35: I would not say that authentication error is specific of ancient 

metagenomics. This can be also an issue with modern samples, e.g., when detecting 

pathogens in clinical samples.

Authors’ comment: thank you for the comment, we have removed the sentence on 

specificity of authentication error to ancient metagenomics, and rephrased the 

paragraph, see lines 85-95.

8) Supplementary information Page 3, line 8; Suppl Fig 2. The authors show that the Jaccard 

similarity reached a plateau starting with the Microbial NCBI NT database comprising 

around 110 billion characters. As one normally considers the numbers of genomes at the 

moment of creating a database instead of the number of characters, I think it would be nice 



to provide information regarding the number of genomes from each type were included in 

this database: bacteria, viruses, archea, fungi, protozoa and parasitic worms.

Authors’ comment: we have modified the Figure 8 (that was previously 

Supplementary Figure 2, and was moved to the main text following another 

reviewer’s suggestion) and explicitly included the numbers of reference genomes 

used for constructing each database. We also added exact numbers of microbial 

reference genomes (bacteria, viruses, archaea, fungi, protozoa and parasitic worms) 

used for constructing each database in the ”Results – Effect of database size” sub-

section, lines 464-476. 

Although, initially, we, indeed, calculated this figure in terms of numbers of 

genomes, we eventually decided that the number of characters might be a better 

representation of a ”database size” when the range of genomic sizes varies greatly 

across databases. In fact, our smallest NCBI RefSeq database of complete reference 

genomes contains much fewer, i.e. ~1000 times fewer, genomes than our largest 

NCBI NT database. However, the number of characters in the latter is only ~4 times 

greater than in the former. This is because only well curated long (complete) 

reference genomes are included in the NCBI RefSeq database. In contrast, the NCBI 

NT, which is the GenBank database, has a lot of short (partially sequenced) 

genomes, i.e. only pieces of full genomes can be included. This bias might lead to 

an overestimation of “informativity” of NCBI NT and artificial inflation of its 

“database size”, which we wanted to avoid. Nevertheless, we fully agree that both 

numbers, i.e. characters and reference genomes, should be provided, therefore we 

modified the text, lines 464-476, and the Figure 8 accordingly.

9) Supplementary information Page 4, line 11; Suppl Fig 3. When analyzing the impact of the 

database size, the authors observed that concatenating the hg38 human genome did not 

have an impact in the number of misaligned reads. As they mentioned in the manuscript, it 

is expected that with bigger databases the number of misaligned reads would get closer to 

zero. If possible, it would be interesting to see if this holds true after removing the hg38 

genome and increasing the number of microbial genomes from the Microbial NCBI NT, 

keeping it in a reasonable amount of genomes to be able to run with the same amount of 

resources. 

Authors’ comment: we have now included Supplementary Figure 15 which replicates 

the decreasing profile for the number of (misaligned) reads mapped uniquely to 



Y.pestis by sampling random bacteria from the Microbial NCBI NT database, this time 

without hg38 human reference genome, and up to 117 000 random reference 

genomes. We observed not only very similar qualitative behavior, i.e. bigger 

databases result in lower numbers of misaligned reads, but also quantitatively we 

obtained very similar, however slightly higher, numbers as previously reported for 

samping random bacteria from NCBI RefSeq database, Figure 9 (previously 

Supplementary Figure 3, which was moved to the main text following another 

reviewer’s suggestion). We assume that the slightly higher counts of misaligned 

reads observed for Microbial NCBI NT compared to NCBI RefSeq are related to the 

difference in the quality of reference genomes in the two databases, i.e. the same 

number but better quality reference genomes from NCBI RefSeq can “attract” more 

non-Yersinia reads, and thus result in fewer misaligned reads to Y.pestis reference 

genome. We also added a paragraph explaining the replication of misalignment to 

Y.pestis for the case of Microbial NCBI NT, lines 523-534.

10) Page 12, first line - Typo ".." Instead of "." 

Authors’ comment: thank you, it has been corrected. 

11) Figure 3. Use of "kmers" instead of "k-mers" as in the rest of the manuscript. 

Author’s comment: thank you, the Figure 3 label and legend have been corrected. 

Reviewer 2 

1) The authors opted to go for KrakenUniq over other k-mer based classifiers and while I agree 

with that choice (as it has several advantages over say Kraken2) it might be worth pointing out 

what those advantages are. 

Authors’ comment: we decided to implement KrakenUniq within aMeta out of other k-mer 

based taxonomic classifiers because of two reasons. First, KrakenUniq delivers the number 

of unique k-mers metric, which makes microbial identification much more robust and 

represents a good approximation for breadth of coverage, see the new Supplementary 

Figure 1, which was added to the manuscript, we also added textual explanation, see lines 

128-138 and 690-694. Second, the latest development of KrakenUniq [22] can be run in low-

memory computational environments, which is a great advantage for the field of 

metagenomics, where reference databases typically comprise hundreds of thousands of 

reference genomes which are challenging to fit into computer memory. We discuss the 



memory advantages of KrakenUniq in depth in lines 632-647 and Supplementary Figure 16.

2) Similarly, I would be interested to know why the authors opted to go for MALT over other 

mappers (e.g. minimap2 etc)? 

Authors’ comment: The main advantage of MALT and motivation for us to use it, was that 

MALT is a metagenomic-specific aligner which applies the Lowest Common Ancestor (LCA) 

algorithm. To the best of our knowledge, other traditional genomic aligners such as 

Bowtie2, BWA, minimap2 etc. do not perform LCA. The LCA algorithm is particularly 

important when working with heterogeneous metagenomic sequencing data. More 

specifically, when performing competitive mapping to multiple reference genomes, it is 

important to correctly handle the reads mapping with the same affinity to several references 

(multi-mapping reads). Traditional genomic aligners listed above would disregard the multi-

mapping reads as ambiguous and non-informative. In contrast, the LCA algorithm keeps 

the multi-mapping reads within the taxonomic tree of related organisms and assigns the 

reads to the lower ancestor node in the tree. For example, if a read maps with the same 

number of mismatches to two species, the read will be assigned to their common genus 

and kept for the downstream analysis.  We acknowledge that we did not explain the 

motivation well in the first version, and now a new paragraph with more explanation on 

MALT vs. other aligners has been added to the “Results” section of the manuscript, see 

lines 199-223.

3) A very minor point but on page 6 of the manuscript, the authors discuss why detecting microbial 

organisms solely based on "depth of coverage (or simply coverage)" might lead to false positive 

assignments. While I entirely agree with this point, it might be good to explain what exactly is meant 

by "coverage" (given the amount of confusion that exists in the field around terms like depth and 

breadth of coverage etc.). Simply saying coverage, might be unhelpful, I think. For clarity's sake, 

you could also introduce the term "evenness of coverage" in that same paragraph. 

Authors’ comment: We agree that the concept of evenness of coverage should be 

introduced in the same paragraph where we discuss the difference between depth and 

breadth of coverage in Figure 2. We have now modified this paragraph in the Results 

section, made explicit introduction of the concepts (depth, breadth and evenness of 

coverage), and extended the explanation of their difference, see lines 140-159. We hope that 

the distinction between the concepts is more clear now.

4) On page 7, you briefly discuss the effects of DB size on the rates of false assignments. I think 



this is a very important point to make and I wonder if it might be worth discussing some of the 

results in more detail rather than banning them to the supplemental information. 

Authors’ comment: thank you for the suggestion, we share the view that the effect of 

database size is a very important message of the manuscript. The sub-section ”Effect of 

database size” has now been moved from Supplementary to the Results in the main text, 

lines 449-538. In addition, two figures, i.e. Figure 8 and Figure 9, which provide in-depth 

explanation of why limited size databases can bias microbial discovery, have been moved 

from Supplementary to the Results in the main text.

5) Again a very minor point, but on page 8 you write that "KrakenUniq ... cannot control the 

authentication error". I know what you mean but I think it could perhaps be phrased a bit more 

clearly, so maybe rephrase or perhaps just drop "cannot control the authentication error because"? 

Authors’ comment: thank you for the suggestion, the phrase “cannot control the 

authentication error because” has now been removed. 

6) On page 9, you write: "that would otherwise be technically impossible for MALT to build". I think 

maybe "handle" might be a better word here? 

Authors’ comment: we fully agree, the word “build” has been replaced with “handle”, see 

line 233.

7) On page 11, you list the seven metrics you use to validate a true ancient microbe but what about 

others like average nucleotide identity (ANI)? 

Authors’ comment: thank you for this important suggestion, we have now integrated the 

ANI metric into the set of quality filters (this is now the 8th metric) used by aMeta for 

authentication analysis. We have also updated Figure 4 and Supplementary Figure 14 

(Supplementary Figure 15 in the previous version of manuscript), which now report the 

average nucleotide identity (ANI) in addition to the barplot showing the numbers of reads 

mapped to the reference with a certain percent identity. We also added the explanation of 

how ANI is computed to the Supplementary Information S5 explaning aMeta’s 

authentication scoring system. Finally, we recomputed aMeta and HOPS authentication 

scores for the simulated benchmark dataset, now taking the additional ANI metric into 

account, and updated the ROC-curve comparison, see Figure 7 (previously Figure 6), which, 

however, demonstrated very minor changes compared to the previous version without ANI. 

Finally, we introduced ANI in the main text see lines 245, 283 and 678.



8) On page 13, you write that the KrakenUniq and HOPS microbial abundance matrices were 

filtered using different thresholds for the number of assigned reads and later on in the same 

paragraph you write that "the default filtering thresholds were empirically determined from the 

analysis of a number of ancient metagenomic samples". Could provide a bit more detail here? 

What were the thresholds? What and how many samples did you use and how exactly did you 

determine the thresholds? 

Authors’ comment: we agree that this information was not stated clearly, and now we 

mention aMeta’s defaults a few times throughout the manuscript, see e.g. lines 134, 163, 

462, 588. We also added very detailed information about default aMeta filtering thresholds 

to the Discussion section, see lines 684-719 and 364-370, which provides motivation and 

intuition for using particular defaults in aMeta. We also demonstrate using simulated (see 

newly added Supplementary Figure 11), and real data (added Supplementary Figure 24) from 

4 ancient shotgun metagenomic studies, that aMeta provides satisfactory accuracy of 

ancient microbiome profiling in a wide range of depth and breadth of coverage filters. We 

also additionally addressed the sensitivity of aMeta’s settings toward  filtering with respect 

to the number of detected target reads, see lines 573-599 and Supplementary Figure 23, 

where we provide justification based on simulated and read data that default settings of 

aMeta demonstrate satisfactory accuray of detection and authentication even on a very 

limited number of target reads in e.g. shallow sequencing experiments.

9) You start the discussion with what reads more like an introduction and you wanted to save space 

to make space for a more in depth discussion of e.g. the effects of database size, I would suggest 

you cut or condense the first two paragraphs of the discussion or move some of it to the 

introduction. That way I think the paper will be sharper. 

Authors’ comment: thank you for the suggestion, the first two paragraphs in the Discussion 

section were edited and shortened, see lines 602-618.

10) On page 19, you conclude that "We believe that the features of aMeta ... make this workflow 

stand out in terms of accuracy and resource usage compared to other alternative analytical 

frameworks in the field." It's just a personal preference and I actually agree with you, but I think it 

might be better if you let the paper speak for itself! 

Authors’ comment: thank you, we agree and we removed this paragraph. 

11) I think it would be helpful if you could add some references for the denovo assembly of microbial 

genomes (page 20). 



Authors’ comment: the references to de-novo assembly applied to modern, [38-41], and 

ancient metagenomic, [42], studies have been added, see lines 743-744.

12) Again just personal preference, but you chose to end the paper by saying that "aMeta may 

currently not be as fast as HOPS when extensive multi-threading is available" but that you are 

working on several optimization schemes that will improve the speed of aMeta. While I think it's 

great to hear that you will continue to develop aMeta I think it's just not a very strong point to end 

on. So perhaps consider rephrasing that part or come up with a couple of sentences that sum up 

the strong points of your workflow? 

Authors’ comment: thank you for your suggestion, we rephrased the paragraph to sound 

more positive and emphasize the strong sides of aMeta, see lines 783-797.

Second round of review

Reviewer 1

The corrected version of the manuscript addresses the concerns described during the first round 
of revision and pertinent changes have been made, greatly improving the manuscript. I 
appreciate the detailed explanation from the authors, as well as the new additions made in the 
manuscript and the software itself. 

Here I outline my remaining questions and suggestions raised while reading the current version 
of the manuscript. 

1. When the authors compare the specificity and sensitivity of aMeta and HOPS, they show a 
comparable number of false positive discoveries, 9 vs 12, respectively, and a higher rate of false 
negatives in HOPS (96) when compared with aMeta (60). However, it caught my attention that 
most of the false positive (8) were associated to a single sample, Sample 1, which is also the 
sample with the highest number of false negatives. As all datasets were simulated in the same 
way, I would expect the false positives to be equally distributed across all samples. Do you have 
an idea of what could cause this behavior? 

2. Supplementary information, line 153. It Is stated that the abundance matrix was binarized, 
where 0 corresponds to present, and 1 is absent, which is the opposite to what is presented in 
Supplementary Figures 6-8. 

I believe that the revised version of the manuscript has improved the overall clarity of the article. 
The incorporation of the new section “Effect of database size” to the main text, helps to highlight 
the impact of using different databases. Moreover, this addition will likely serve users as guide 
when create their own databases. 

Finally, I would like to also mention that aMeta was successfully tested by our team, thus 
proving that the software is ready to be used by new users. We also validated results that we 



have obtained by other methods, on real data, thus also proving that the software serves the 
purposes for which it was created. 

I have no additional comments to what I have mentioned above. Good job! I am sure aMeta will 
be widely adopted. 

Reviewer #1: The corrected version of the manuscript addresses the concerns described during the first
round of revision and pertinent changes have been made, greatly improving the manuscript. I appreciate
the detailed explanation from the authors, as well as the new additions made in the manuscript and the
software itself. 

Here I outline my remaining questions and suggestions raised while reading the current version of the
manuscript. 

1. When the authors compare the specificity and sensitivity of aMeta and HOPS, they show a comparable
number of false positive discoveries, 9 vs 12, respectively, and a higher rate of false negatives in HOPS
(96) when compared with aMeta (60). However, it caught my attention that most of the false-positives (8)
were associated with a single sample, Sample 1, which is also the sample with the highest number of
false negatives. As all datasets were simulated in the same way, I would expect the false positives to be
equally distributed across all samples. Do you have an idea of what could cause this behavior? 

Authors’ comment: thank you for noticing this, it came as a surprise to us since we did not intend
to simulate Sample 1 differently in any way from the rest of the samples. In fact, all the samples
were   simulated   and   processed   simultaneously,   and   the   gargammel   code   is   available   at
https://github.com/NikolayOskolkov/aMeta/blob/main/gargammel_sim.sh).   However,   we   confirm
that the Sample 1 does seem to stand out in terms of elevated false-positive and false-negative
counts obtained by both aMeta (8 false-positives out of 9 total, and 11 false-negatives out of 60
total) and HOPS (5 false-positives out of 12 total, and 12 false-negatives out of 96 total). After
careful investigation, we believe there are a few reasons why this is the case. The overarching
reason, in our opinion, is ''the curse of small numbers'', i.e. when dealing with only 10 samples
and 35 microbes the  effects  of  outliers  may become profound,  and adding or  removing  one
sample or microbe can influence summary statistics of the dataset. Further, since abundances of
microbial species were simulated randomly per sample (and only constrained by the total library
size), it is possible that the Sample 1 happened by chance to be enriched by a combination of
particular   “hard   case”   microbes   whose   reference   genomes   might   be   contaminated.   More
specifically, Mycobacterium avium and Rhodococcus hoagii were false-positive discoveries by
both aMeta and HOPS for  Sample 1,  which was likely due to the presence of  Mycobacterium
riyadhense and Mycolicibacterium aurum that are closely related to Mycobacterium avium and
Rhodococcus hoagii, and were simulated to be highly abundant in Sample 1, which probably led
to a number of Mycobacterium riyadhense and Mycolicibacterium aurum reads miss-assigned to
Mycobacterium avium and Rhodococcus hoagii. Similarly, a possible explanation for a few other
falsely   detected   microbes   such   as   Burkholderia   mallei,   Pseudomonas   thivervalensis   and 

Authors' response: 



Pseudomonas psychrophila  is  the  presence of  closely  related  Ralstonia  solanacearum in  the
Sample 1.  In addition,  due to stochastic  reasons,  Sample 1  happened to  have (together  with
Sample 6) the lowest median fraction of simulated reads across the microbial species, please see
the figure below. Low-abundant microbes typically have a high error rate associated with their
detection. We believe that part of the high error associated with Sample 1 may be explained by its
enrichment by low-abundant microbial species.

2. Supplementary information, line 153. It Is stated that the abundance matrix was binarized, where 0
corresponds to present, and 1 is absent, which is the opposite to what is presented in Supplementary
Figures 6-8.

Authors’  comment: thank you very much for noticing this, we have now corrected this in the
supplementary information.

I believe that the revised version of the manuscript has improved the overall clarity of the article. The
incorporation of the new section “Effect of database size” to the main text, helps to highlight the impact of
using different databases.

Moreover, this addition will likely serve users as a guide when creating their own databases.

Finally, I would like to also mention that aMeta was successfully tested by our team, thus proving that the
software is ready to be used by new users. We also validated results that we have obtained by other
methods, on real data, thus also proving that the software serves the purposes for which it was created.

--------------------




