Supporting information

Unveiling Alternative Oxidation Pathways and Antioxidant and Cardioprotective
Potential of Amaranthin-Type Betacyanins from Spinach-like *Atriplex hortensis*var. '*Rubra*'

5 Agnieszka Kumorkiewicz-Jamro^{a,b,c*}, Renata Górska^a, Małgorzata Krok-Borkowicz^d,
6 Przemysław Mielczarek^{e,f}, Łukasz Popenda^g, Kateryna Lystvan^h, Elżbieta Pamuła^d, Sławomir
7 Wybraniec^a

^a Department of Chemical Technology and Environmental Analysis, Faculty of Chemical
Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155
Cracow, Poland

^b South Australian Health and Medical Research Institute, Adelaide 5000 SA, Australia

^c Faculty of Health and Medical Sciences, University of Adelaide, Adelaide 5005 SA, Australia

13 ^d Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics,

14 AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Cracow, Poland

15 ^e Department of Analytical Chemistry and Biochemistry, Faculty of Materials Science and

16 Ceramics, AGH University of Science and Technology, Al. Mickiewicza 30, 30059, Cracow,

17 Poland

¹⁸ ^f Laboratory of Proteomics and Mass Spectrometry, Maj Institute of Pharmacology, Polish

19 Academy of Sciences, Smetna 12, 31-343 Cracow, Poland

^g NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, 61-614
 Poznań, Poland

^h Department of Genetic Engineering, Institute of Cell Biology and Genetic Engineering of

23 National Academy of Sciences of Ukraine (NASU), Academika Zabolotnoho, 148, 03143,

24 Kyiv, Ukraine

- 25 * Corresponding author:
- 26 Agnieszka Kumorkiewicz-Jamro
- 27 agnieszka.kumorkiewicz-jamro@pk.edu.pl
- 28 ORCID: 0000-0002-3828-3128

Results

31	Mass spectrometric chromatograms depicting the main products of the oxidation of
32	purified celosianin by 1 mM ABTS radicals. The reaction was carried out in the presence of an
33	acetate buffer at pH 3. Chromatograms were registered after 5, 20, 40, 60, and 80 min of
34	reaction time. Chromatographic separation was conducted using a 150 mm x 4.6 mm, 5.0 μm
35	Kinetex C_{18} column (Phenomenex, Torrance, CA, USA). The mobile phase was composed on
36	2% aqueous formic acid (eluent A) and methanol (eluent B), with a gradient elution as follows:
37	(t [min], %B), (0, 10), (12, 40), (15, 80). Data were recorded in positive ion polarity using
38	selected ion monitoring (SIM). The chemical structures of oxidized celosianins, namely: 17-
39	decarboxy-neocelosianin (m/z 857) and 2,17-bidecarboxyxanneocelosianin (m/z 811), were
40	confirmed through LC-Q-Orbitrap-MS (Table S1) and NMR analyses (Figures S2-S7).

41

Figure S1 LC-MS chromatograms in SIM mode of celosianin (A) and the main products formed
during celosianin oxidation by ABTS radicals at pH 3 registered after 5 (B); 20 (C); 40 (D); 60
(E); and 80 (F) min of reaction.

46 High-resolution mass spectrometric (HRMS) data obtained using LC-Q-

47 Orbitrap-MS

The molecular formulas and the fragmentation patterns of the oxidation products of amaranthin, argentianin, and celosianin were determined through HRMS analyses using the product ion mode, where targeted precursors were isolated and fragmented in the HCD cell. The fragmentation ions (MS²) were analyzed in the Orbitrap analyzer of the Orbitrap ExplorisTM 240 Mass Spectrometer. Based on the obtained results and the elucidation of chemical structures by NMR, a possible mechanism for the oxidation of amaranthin-type betacyanins was proposed.

55 Table S1 High-resolution mass spectrometric data obtained using LC-Q-Orbitrap-MS system

Diamonts and frogmontation ions ^a	[M+H] ⁺ molecular	$[M+H]^+$	$[M+H]^+$	Error	Error
rightents and fragmentation ions	formula	observed	predicted	[mDa]	[ppm]
	Amaranthin oxidation				
2,3-dihydroxy-2-decarboxy-xanamaranthin	$C_{20}H_{25}N_2O_{10}$	715.1831	715.1829	0.2	0.28
1	02911331 (2019				
nl: - Gluc	$C_{23}H_{27}N_2O_{13}$	539.1512	539.1508	0.4	0.74
nl: - Gluc/Glc	$C_{17}H_{17}N_2O_8$	377.0978	377.0979	-0.1	-0.27
nl: - H2O/Gluc/Glc	$C_{17}H_{15}N_2O_7$	359.0877	359.0874	0.3	0.84
amaranthin 2	C30H35N2O19	727.1830	727.1829	0.1	0.14
nl: -Gluc	$C_{24}H_{27}N_2O_{13}$	551.1517	551.1508	0.9	1.63
nl: -Gluc/Glc	$C_{18}H_{17}N_2O_8$	389.0981	389.0979	0.2	0.51
nl: -Gluc/Glc/ CO ₂ /2H	$C_{17}H_{15}N_2O_6$	343.0926	343.0925	0.1	0.29
nl: -Gluc/Glc/ 2CO ₂ /4H	$C_{16}H_{13}N_2O_4$	297.0872	297.0870	0.2	0.67
nl: -Gluc/Glc/ 3CO ₂ /2H	$C_{15}H_{15}N_2O_2$	255.1127	255.1128	-0.1	-0.39
2-decarboxy-xanamaranthin 3	$C_{29}H_{33}N_2O_{17}$	681.1771	681.1774	-0.3	-0.44
nl: -Gluc	$C_{23}H_{25}N_2O_{11}$	505.1452	505.1453	-0.1	-0.20
nl: -Gluc/CO ₂ /2H	C22H23N2O9	459.1395	459.1398	-0.3	-0.65
nl: -Gluc/Glc	$C_{17}H_{15}N_2O_6$	343.0923	343.0925	-0.2	-0.58
nl: -Gluc/Glc/CO ₂ /2H	$C_{16}H_{13}N_2O_4$	297.0869	297.0870	-0.1	-0.34
nl: -Gluc/Glc/2CO ₂	$C_{15}H_{15}N_2O_2$	255.1125	255.1128	-0.3	-1.18
2,17-bidecarboxy-xanamaranthin 4	$C_{28}H_{33}N_2O_{15}$	637.1876	637.1876	0.0	0.00
nl: -Gluc	C22H25N2O9	461.1557	461.1555	0.2	0.43
nl: -Gluc/CO ₂	C21H25N2O7	417.1653	417.1656	-0.3	-0.72
nl: -Gluc/Glc	$C_{16}H_{15}N_2O_4$	299.1027	299.1026	0.1	0.33
nl: -Gluc/Glc/CO ₂ /2H	$C_{15}H_{13}N_2O_2$	253.0972	253.0972	0.0	0.00
17-decarboxy-neoamaranthin 5	C29H33N2O17	681.1772	681.1774	-0.2	-0.29
nl: -Gluc	$C_{23}H_{25}N_2O_{11}$	505.1451	505.1453	-0.2	-0.40

56 for oxidized betacyanins as well as for their fragmentation ions.

nl: -Gluc/CO ₂ /2H	C22H23N2O9	459.1392	459.1398	-0.6	-1.31
nl: -Gluc/Glc	$C_{17}H_{15}N_2O_6$	343.0921	343.0925	-0.4	-1.17
nl: -Gluc/Glc/CO ₂ /2H	$C_{16}H_{13}N_2O_4$	297.0867	297.0870	-0.3	-1.01
nl: -Gluc/Glc/2CO ₂	$C_{15}H_{15}N_2O_2$	255.1124	255.1128	-0.4	-1.57
2,17-bidecarboxy-xanneoamaranthin 6	$C_{28}H_{31}N_2O_{15}$	635.1719	635.1719	0.0	0.00
nl: -Gluc	C22H23N2O9	459.1403	459.1398	0.5	1.09
nl: -Gluc/Glc	$C_{16}H_{13}N_2O_4$	297.0871	297.0870	0.1	0.34
2,17-decarboxy-neoamaranthin 7	C ₂₈ H ₃₃ N ₂ O ₁₅	637.1879	637.1875	0.4	0.63
nl: -Gluc	$C_{22}H_{25}N_2O_9$	461.1556	461.1555	0.1	0.22
nl: -Gluc/Glc	$C_{16}H_{15}N_2O_4$	299.1027	299.1026	0.1	0.33
nl: -Gluc/Glc/CO ₂	$C_{15}H_{15}N_2O_2$	255.1127	255.1128	-0.1	-0.39
nl: -Gluc/Glc/CO ₂ /2H	$C_{15}H_{13}N_2O_2$	253.0972	253.0971	0.1	0.40
2-decarboxy-xanneoamaranthin 8	C29H31N2O17	679.1619	679.1617	0.2	0.29
nl: -Gluc	$C_{23}H_{23}N_2O_{11}$	503.1297	503.1296	0.1	0.20
nl: - Gluc/Glc	$C_{17}H_{13}N_2O_6$	341.0769	341.0786	-1.7	-4.98
nl: - Gluc/Glc/2CO ₂	$C_{15}H_{13}N_2O_2$	253.0978	253.0972	0.6	2.37
	Argentianin ox	idation			
argentianin 10	$C_{39}H_{41}N_2O_{21}$	873.2198	873.2196	0.2	0.23
nl: -Coum/Gluc	$C_{24}H_{27}N_2O_{13}\\$	551.1509	551.1508	0.1	0.24
nl: -Coum/Gluc/Glc	$C_{18}H_{17}N_2O_8$	389.0981	389.0979	0.2	0.41
nl: -Coum/Gluc/Glc/ CO ₂ /2H	$C_{17}H_{15}N_2O_6$	343.0928	343.0925	0.3	0.99
nl: -Coum/Gluc/Glc/ 2CO ₂ /4H	$C_{16}H_{13}N_2O_4$	297.0872	297.0870	0.2	0.74
nl: -Coum/Gluc/Glc/ 3CO ₂ /2H	$C_{15}H_{15}N_2O_2$	255.1131	255.1128	0.3	1.18
2,3-dihydroxy-2-decarboxy-xanargentianin	$C_{38}H_{41}N_2O_{21}$	861.2198	861.2196	0.2	0.23
nl: - Coum/Gluc	$C_{23}H_{27}N_2O_{13}$	539.1512	539.1508	0.4	0.74
nl: - Coum/Gluc/Glc	$C_{17}H_{17}N_2O_8$	377.0977	377.0979	-0.2	-0.53
nl: - H ₂ O/Coum/Gluc/Glc	$C_{17}H_{15}N_2O_7$	359.0872	359.0874	-0.2	-0.56
17-decarboxy-neoargentianin 11	C38H39N2O19	827.2122	827.2142	-2.0	-2.42
nl: -Coum	C29H33N2O17	681.1788	681.1774	1.4	2.10
nl: -Coum/Gluc	C23H25N2O11	505.1461	505.1453	0.8	1.60
nl: -Coum/Gluc/Glc	$C_{17}H_{15}N_2O_6$	343.0927	343.0925	0.2	0.70
nl: -Coum/Gluc/CO ₂ /2H	$C_{16}H_{13}N_2O_4$	297.0872	297.0870	0.2	0.74
2,17-decarboxy-xanargentianin 12	C37H39N2O17	783.2240	783.2243	-0.3	-0.38
nl: -Coum	$C_{28}H_{33}N_2O_{15}$	637.1873	637.1875	-0.2	-0.31
nl: -Coum/Gluc	C22H25N2O9	461.1555	461.1555	0.0	0.00
nl: -Coum/Gluc/Glc	$C_{16}H_{15}N_2O_4$	299.1027	299.1026	0.1	0.33
nl: -Coum/Gluc/Glc/CO ₂	$C_{15}H_{15}N_2O_2$	255.1127	255.1128	-0.1	-0.39
nl: -Coum/Gluc/Glc/CO ₂ /2H	$C_{15}H_{13}N_2O_2$	253.0973	253.0971	0.2	0.79
2,17-bidecarboxy-xanneoargentianin 13	$C_{37}H_{37}N_2O_{17}$	781.2090	781.2087	0.3	0.42
nl: -Coum/Gluc	C22H23N2O9	459.1391	459.1398	-0.7	-1.55

nl: -Coum/Gluc/Glc	C16H13N2O4	297.0871	297.0870	0.1	0.34
nl: -Coum/Gluc/Glu/CO2	$C_{15}H_{13}N_2O_2$	253.0973	253.0972	0.1	0.40
2,17-bidecarboxy-neoargentianin 14	C37H39N2O17	783.2240	783.2243	-0.3	-0.41
nl: -Coum	$C_{28}H_{33}N_2O_{15}$	637.1873	637.1876	-0.2	-0.39
nl: -Coum/Gluc	$C_{22}H_{25}N_2O_9$	461.1555	461.1555	0.0	0.09
nl: -Coum/Gluc/CO ₂	C21H25N2O7	417.1652	417.1656	-0.4	-1.03
nl: -Coum/Gluc/Glc	$C_{16}H_{15}N_2O_4$	299.1027	299.1026	0.1	0.23
nl: -Coum/Gluc/Glc/CO ₂ /2H	$C_{15}H_{13}N_2O_2$	253.0972	253.0972	0.0	0.0
2-decarboxy-xanneoargentianin 15	C38H37N2O19	825.1988	825.1985	0.3	0.36
nl: -Coum	C29H31N2O17	679.1622	679.1617	0.5	0.74
nl: -Coum/Gluc	$C_{23}H_{23}N_2O_{11}$	503.1297	503.1296	0.1	0.20
nl: -Coum/Gluc/Glc	$C_{17}H_{13}N_2O_6$	341.0783	341.0786	-0.3	-0.88
nl: -Coum/Gluc/Glc/CO2	$C_{16}H_{13}N_2O_4$	297.0876	297.0870	0.6	2.02
	Celosianin oxia	lation			
celosianin 17	C40H43N2O22	903.2306	903.2302	0.4	0.44
nl: -Fer/Gluc	C24H27N2O13	551.1523	551.1508	1.5	2.72
nl: -Fer/Gluc/Glc	$C_{18}H_{17}N_2O_8$	389.0983	389.0979	0.4	1.03
nl: -Fer/Gluc/Glc/CO ₂ /2H	$C_{17}H_{15}N_2O_6$	343.0929	343.0925	0.4	1.17
nl: -Fer/Gluc/Glc/2CO ₂ /4H	$C_{16}H_{13}N_2O_4$	297.0874	297.0870	0.4	1.35
nl: -Fer/Gluc/Glc/3CO ₂ /4H	$C_{15}H_{13}N_2O_2$	253.0974	253.0972	0.2	0.79
2,3-dihydroxy-2-decarboxy-xancelosianin	$C_{30}H_{43}N_2O_{22}$	891.2305	891.2302	0.3	0.34
16	C3911431 V2 O 22				
nl: - H ₂ O	$C_{39}H_{41}N_2O_{21}$	873.2192	873.2196	-0.4	-0.46
nl: - H ₂ O/CO ₂	$C_{38}H_{41}N_2O_{19}\\$	829.2292	829.2298	-0.6	-0.72
nl: - Fer/Gluc	C23H27N2O13	539.1511	539.1508	0.3	0.56
nl: - H2O/Fer/Gluc	$C_{23}H_{25}N_2O_{12}$	521.1396	521.1402	-0.6	-1.15
nl: - Fer/Gluc/Glc	$C_{17}H_{17}N_2O_8$	377.0978	377.0979	-0.1	-0.27
nl: - H2O/Fer/Gluc/Glc	C17H15N2O7	359.0875	359.0874	0.1	0.28
17-decarboxy-neocelosianin 18	$C_{39}H_{41}N_2O_{20}$	857.2237	857.2247	-1.0	-1.17
nl: -Fer	C29H33N2O17	681.1777	681.1774	0.3	0.44
nl: -Fer/Gluc	$C_{23}H_{25}N_2O_{11}$	505.1457	505.1453	0.4	0.79
nl: -Fer/Gluc/CO ₂ /2H	$C_{22}H_{23}N_2O_9$	459.1414	459.1398	1.6	3.48
nl: -Fer/Gluc/Glc	$C_{17}H_{15}N_2O_6$	343.0926	343.0925	0.1	0.29
nl: -Fer/Gluc/Glc/CO ₂ /2H	$C_{16}H_{13}N_2O_4$	297.0872	297.0870	0.2	0.67
nl: -Fer/Gluc/Glc/2CO ₂ /2H	$C_{15}H_{13}N_2O_2$	253.0974	253.0972	0.2	0.79
2,17-bidecarboxy-xancelosianin 19	$C_{38}H_{41}N_2O_{18}\\$	813.2353	813.2349	0.4	0.49
nl: -Fer/Gluc	C22H25N2O9	461.1556	461.1555	0.1	0.22
nl: -Fer/Gluc/Glc	$C_{21}H_{25}N_2O_7$	299.1027	299.1026	0.1	0.33
nl: -Fer/Gluc/Glc/CO ₂	$C_{16}H_{15}N_2O_4$	255.1129	255.1128	0.1	0.39
nl: -Fer/Gluc/Glc/CO ₂ /2H	$C_{15}H_{13}N_2O_2$	253.0970	253.0971	-0.1	-0.40
2,17-bidecarboxy-xanneocelosianin 20	C38H39N2O18	811.2197	811.2192	0.5	0.62

nl: -Fer/Gluc	C22H23N2O9	459.1402	459.1398	0.4	0.87	
nl: -Fer/Gluc/Glc	$C_{16}H_{13}N_2O_4$	297.0872	297.0870	0.2	0.67	
nl: -Fer/Gluc/Glc/CO2	$C_{15}H_{13}N_2O_2$	253.0972	253.0972	0.0	0.00	
2,17-bidecarboxy-neocelosianin 21	$C_{38}H_{41}N_2O_{18}\\$	813.2353	813.2349	0.4	0.49	_
nl: -Fer/Gluc	$C_{22}H_{25}N_2O_9$	461.1554	461.1556	-0.2	-0.43	
nl: -Fer/Gluc/CO ₂	$C_{21}H_{25}N_2O_7$	417.1651	417.1656	-0.5	-1.20	
nl: -Fer/Gluc/Glc	$C_{16}H_{15}N_2O_4$	299.1027	299.1026	0.1	0.33	
nl: -Fer/Gluc/Glc/CO ₂ /2H	$C_{15}H_{13}N_2O_2$	253.0973	253.0972	0.1	0.40	
2-decarboxy-xanneocelosianin 22	C39H39N2O20	855.2088	855.2091	-0.3	-0.35	
nl: -Fer/Gluc	$C_{23}H_{23}N_2O_{11}$	503.1301	503.1296	0.5	0.99	
nl: -Fer/Gluc/CO ₂	C22H23N2O9	459.1399	459.1398	0.1	0.22	
nl: -Fer/Gluc/Glc	$C_{17}H_{13}N_2O_6$	341.0769	341.0768	0.1	0.29	
nl: -Fer/Gluc/Glc/CO ₂ /2H	$C_{16}H_{11}N_2O_4$	295.0714	295.0715	-0.1	-0.34	

 $anl - neutral losses from [M + H]^+; Gluc - glucuronosyl, Glc - glucosyl, Coum - coumaroyl, Fer - feruloyl$

59 ¹H NMR and ¹³C NMR spectra for the oxidized celosianins

60 The structure elucidation of 2,17-dXNCel and 2-dXNCel was performed in DMSO-*d6*/TFA-*d*,

- 61 while that for 17-dNCel was carried out in D_2O . Due to the non-destructive effect of D_2O , it
- 62 was chosen as the solvent for prolong NMR measurements of 17-decarboxyneocelosianin. All
- 63 spectra were acquired using an Agilent DD2 800 (18.8 T) spectrometer (Agilent Technologies,
- 64 Santa Clara, CA, USA). Chemical shifts were determined relative to the internal TMSP-d4.

69 Figure S3 ¹³C NMR spectrum of 17-decarboxy-neocelosianin (D₂O, 295 K).

71 Figure S4 ¹H NMR spectrum of 2-decarboxy-xanneocelosianin (d6-DMSO/d-TFA, 295 K).

Figure S6 ¹H NMR spectrum of 2,17-bidecarboxy-xanneocelosianin (*d6-DMSO/d-TFA*, 295
K).

Figure S7 ¹³C NMR spectrum of 2,17-bidecarboxy-xanneocelosianin (d6-DMSO/d-TFA, 295
K).

81 Antioxidant activity of oxidized celosianins compared to the initial pigment

82 and reference compound gallic acid

83 The antioxidant activity of the tested compounds was evaluated using the ABTS, FRAP, and ORAC

84 assays. The ABTS assay results were expressed as the IC₅₀ value (mg/L) (Figure S8, Table S2), and

85 the results for all assays were further expressed as milimoles of Trolox per gram of dry weight of the

- 86 sample (mmol Trolox/g DW in all assays) (Table S2).
- 87

88 Table S2 Antioxidant activity of celosianin and its oxidation products by means of the ABTS, FRAP

and ORAC assays. The results are expressed as IC_{50} in $\mu g/mL$ and TEAC values in mmol Trolox/g

90 DW.

C a seconda	IC ₅₀	TEAC _{ABTS}	TEAC _{FRAP}	TEACORAC
Sample	mg/L		mmol Trolox/g DW	
Cel	$23^{\circ} \pm 1.2$	$2.4^{b} \pm 0.062$	$2.0^{b} \pm 0.10$	$8.1^{b} \pm 0.15$
17-dNCel	$34^{a} \pm 1.4$	$1.8^{c}\pm0.086$	$1.0^{d} \pm 0.051$	$5.9^{c}\pm0.26$
2,17-dXNCel	$29^{b}\pm1.3$	$2.0^{\rm c}{\pm}~0.077$	$1.2^{\text{c}}\pm0.058$	$8.0^b \pm 0.096$
GA	$5.2^{d}\pm0.33$	$7.5^{a}\pm0.093$	$5.5^{a}\pm0.022$	$11.4^{a}\pm0.18$

91 Mean \pm standard deviation (*n*=3). Different letters in columns indicate statistically significant differences ($p \le 0.05$)

92 between samples according to Tuckey's test

Figure S8 IC₅₀ values of celosianin 17, and its oxidation products (17-decarboxy-neocelosianin 18, and 2,17-bidecarboxy-xanneocelosianin 20) as well as standard gallic acid calculated based on
ABTS assay.

99 Determination of H9c2 cells morphology

The cell morphology of rat cardiac myoblasts (H9c2), pretreated with various concentrations of celosianin and its oxidation products, was assessed based on fluorescent live/dead imaging. The cells were imaged using a Zeiss Axiovert 40 fluorescence microscope (magnification 100x) equipped with a HXP 120C metal halide illuminator (Carl Zeiss, Germany).

104

105 Figure S9 Live/dead staining of H9c2 cells incubated in the presence of 2,17-dXNCel, 17-

106 dNCel, Cel and for control without pigments. Scale bare 200 µm.