Supporting Information

Difluoromethyl-1,3,4-oxadiazoles are selective, mechanism-based, and essentially irreversible inhibitors of histone deacetylase 6

Beate König,^{1,2} Paris R. Watson,² Nina Reßing,¹ Abigail D. Cragin,² Linda Schäker-Hübner,¹ David W. Christianson^{*2} and Finn K. Hansen^{*1}

¹ Department of Pharmaceutical and Cell Biological Chemistry, Pharmaceutical Institute, University of Bonn, 53121 Bonn, Germany.

² Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States.

Corresponding authors: F.K.H.: E-mail, finn.hansen@uni-bonn.de D.W.C: E-Mail: chris@sas.upenn.edu

Content

1 Supplementary Schemes, Figures, Equations and Tables	
2 NMR Data of synthesized compounds	
3 HPLC Chromatograms	S39
4 References	S44

1 Supplementary Schemes, Figures, Equations and Tables

Scheme S1. Synthesis of HDAC6 inhibitor fragments. a) i: NaN₃, NH₄Cl, LiCl·H₂O, DMF, 100 °C, 150 W, 24 h; ii: DFAA, DCM, rt., 24 h (1, 3); b) i: NaN₃, NH₄Cl, LiCl, DMF, 100 °C, 18 h; ii: difluoroacetic anhydride (DFAA), toluene, 70 °C, 18 h (2).

Scheme S2. Synthesis of the acylhydrazide **13**. a) Methyl 2-chlorpyrimidine-5-carboxylate, DIPEA, EtOH, 90 °C, 18 h; b) i: hydrazine monohydrate, MeOH, 70 °C, 3 h; ii: DFAA, DMF, 70 °C, 1 h.

Scheme S3. Synthesis of the trifluoromethyl-1,3,4-oxadiazole (17) and methyl-1,3,4-oxadiazole (15) analogs. a) i: NaN₃, NH₄Cl, LiCl, DMF, 100 °C, 18 h; ii: trifluoroacetic anhydride, toluene, 70 °C, 18 h (14); b) i: NaN₃, NH₄Cl, LiCl, DMF, 100 °C, 18 h; ii: acetic anhydride, toluene, 70 °C, 18 h; iii: K₂CO₃, MeOH/H₂O (15).

Scheme S4. Synthesis of hydrazide **14** and monofluoromethyl-1,3,4-oxadiazole **16**. a) hydrazine monohydrate, MeOH, 70 °C, 3 h; b) i: monofluroacetic acid, DMF, 70 °C, 3 h; ii: Burgess reagent, THF, 60 °C, 18 h.

Figure S1. Representative examples of different kinetic mechanisms of enzyme inhibition, including the relationships between the respective association and dissociation rate constants (e. g., $k_1 \& k_{-1}$) and the related equilibrium dissociation constant K_i . **A**) Fast-on/fast-off binding kinetics. For competitive fast-on/fast-off inhibitors the half maximum inhibitory concentration (IC₅₀) and the K_i are directly related by the Cheng-Prusoff equation¹; **B**) slow-binding Mechanism I: single-step slow binding, $k_1 \& k_{-1}$ are inherently slow; **C**) slow-binding Mechanism II: two-step slow binding. Initially, inhibitor and enzyme form an encounter complex [EI] that subsequently slowly undergoes isomerization to a binary enzyme inhibitor complex [E*I].²

Figure S2. Michaelis-Menten constant K_M determination for HDAC6 using a series of substrate concentrations. Steady-state velocities $[\mu M^*s^{-1}]$ (mean \pm SD) were plotted against the corresponding substrate concentrations $[\mu M]$ and fitted to the Michaelis-Menten equation yielding the Michaelis-Menten constant: K_M HDAC6 = 19.27 μ M. Experiment was performed in triplicates.

Figure S3. Quantified hydrolysis products from LC-UV-MS analysis after over night incubation of the respective compound (100 μ M) with HDAC6. Experiments were performed in triplicates. DFMO: difluoromethyl-1,3,4-oxadiazole; TFMO: trifluoromethyl-1,3,4-oxadiazole. n.d.: not determined.

Figure S4. Representative UV and related mass traces from two independent LC-UV-MS experiments. **A**: Compound **6** was incubated with HDAC6 overnight; **B**: Compound **17** was incubated with HDAC6 overnight; x axis: retention time in mins (chromatogram), m/z ration (mass spectras), y axis: intensity in Absorbance Units (AU). Experiments were performed in triplicates.

Figure S5. Representative UV and related mass traces of LC-UV-MS experiments. **A**: Compound **6** was incubated with HDAC6 overnight in $H_2^{16}O$ water; **B**: Compound **6** incubated with HDAC6 overnight in $H_2^{18}O$ water; x axis: retention time in mins (chromatogram), m/z ration (mass spectras), y axis: intensity in Absorbance Units (AU). Experiments were performed in triplicates.

HDACC	Hydrolysis products from compound 6									
HDACO	Acylhydrazide 13	Hydrazide 14								
WT	22.5 ± 1.11 μM	9.0 ± 1.3 μM								
H573A	10.2 ± 3.2 μM	n.o.								
H574A	6.9 ± 2.3 μM	n.o.								
Y745F	14.9 ± 1.9 μM	26.2 ± 6.8 μM								
	1	1								

HDACE	Hydrolysis products from compound 17								
HDAC6	Acylhydrazide 20	Hydrazide 14							
WT	n.d.	18.6 μM ± 1.2 μM							
H573A	n.d.	n.o.							
H574A	n.d.	n.o.							
Y745F	n.d.	64.4 ± 8.9 μM							

Figure S6. Quantified hydrolysis products from LC-UV-MS analysis after over night incubation of the respective compound (100 μ M) with various HDAC6 mutants (wild-type (WT), H573A, H574A, Y745F). Experiments were performed in triplicates. n.d.: not determined; n.o.: not observed.

$$[P] = v_{ss}t + \frac{v_{in} - v_{ss}}{k_{obs}} (1 - e^{-k_{obs}t})$$
(Eq. 1)

Equation 1. Time-dependent product formation for inhibitors showing slow-binding Mechanism I&II. [P]: amount of generated AMC; v_{ss} : steady-state velocity (product formation); t: time; v_{in} : initial velocity (product formation); k_{obs} : apparent first-order rate constant for the conversion from v_{in} to v_{ss} .

$$k_{obs} = k_{-1} + k_1 \left(1 + \frac{[S]}{K_M} \right) [I]$$
 (Eq. 2)

Equation 2. The single-step slow-binding Mechanism I results in a linear relationship between k_{obs} and inhibitor concentration. k_{-1} : dissociation rate constant; k_1 : association rate constant; [S]: substrate concentration; K_M : Michelis-Menten constant; [I]: inhibitor concentration.

$$k_{obs} = k_{-2} + \frac{k_2}{[I] + K_{i,1} \left(1 + \frac{[S]}{K_M}\right)} [I]$$
(Eq. 3)

Equation 3. The two-step slow-binding Mechanism II results in a hyperbolic relationship between k_{obs} and inhibitor concentration. k_{-2} : secondary dissociation rate constant; k_2 : secondary association rate constant; $K_{i,1}$: equilibrium dissociation constant of the enzyme inhibitor encounter complex [EI].

	HDAC6 CD2– 13 Complex
Space group	$P2_{1}2_{1}2_{1}$
a,b,c (Å)	74.60, 92.30, 96.60
α, β, γ (°)	90.00, 90.00, 90.00
R _{merge} ^b	0.210 (0.706)
$\mathbf{R}_{\mathrm{pim}}^{\mathrm{c}}$	0.084(0.289)
$CC_{1/2}^{d}$	0.993(0.851)
Redundancy	1.9
Completeness (%)	99.5(94.3)
I/σ	7.3(2.5)
Re	efinement
Resolution (Å)	36.216-2.00 (2.07-2.00)
No. reflections	90179 (8857)
R _{work} /R _{free} ^e	0.185/0.223
	(0.228/0.0.266)
Numb	per of Atoms ^f
Protein	5469
Ligand	52
Solvent	424
Average	e B factors (Å ²)
Protein	15
Ligand	20
Solvent	20
RMS	5 Deviations
Bond lengths (Å)	0.03
Bond angles (°)	1.4
Ramac	chandran Plot ^g
Favored	97.01
Allowed	2.99
Outliers	0.00

Table S1: Data collection	and refinement	statistics
---------------------------	----------------	------------

^aValues in parentheses refer to the highestresolution shell of data.

^bR_{merge} = $\sum_{h}\sum_{i}/I_{i,h} - \langle I \rangle_{h} | / \sum_{h}\sum_{i}I_{i,h}$, where $\langle I \rangle_{h}$ is the average intensity calculated for reflection *h* from *i* replicate measurements.

^c**R**_{p.i.m.} = $(\sum_{h}(1/(N-1))^{1/2}\sum_{i}|\mathbf{I}_{i,h}-\langle \mathbf{I}\rangle_{h}|)/\sum_{h}\sum_{i}\mathbf{I}_{i,h}$, where N is the number of reflections and $\langle \mathbf{I}\rangle_{h}$ is the average intensity calculated for reflection *h* from replicate measurements.

^dPearson correlation coefficient between random half-datasets.

 ${}^{e}R_{work} = \sum ||F_o| - |F_c|| / \sum |F_o|$ for reflections contained in the working set. $|F_o|$ and $|F_c|$ are the observed and calculated structure factor amplitudes, respectively. R_{free} is calculated using the same expression for reflections contained in the test set held aside during refinement.

^fPer asymmetric unit.

^gCalculated with MolProbity.

2 NMR Data of synthesized compounds

¹H NMR spectrum of 1 (300 MHz, CDCl₃)

¹⁹F NMR spectrum of 1 (377 MHz, CDCl₃)

70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240 -250 -250 -270

-127.0 -127.1

¹**H NMR** spectrum of **2** (600 MHz, DMSO- d_6)

¹⁹F NMR spectrum of 2 (565 MHz, DMSO- d_6)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210

¹H NMR spectrum of **3** (400 MHz, CDCl₃)

¹⁹F NMR spectrum of **3** (377 MHz, CDCl₃)

	_				_	_		 					 _	 			· · ·		-					 _				 _				
70	60	50	40	30	20	10	0	-20	-4	ю	-	50	-80	-100	-1	20		140		-16	0	- 1	180	-200)	-2	20	-240)	-2	260	

¹**H NMR** spectrum of **4** (600 MHz, DMSO- d_6)

¹H NMR spectrum of **5** (600 MHz, CDCl₃)

¹H NMR spectrum of 6 (600 MHz, DMSO-*d*₆)

¹⁹F NMR spectrum of 6 (565 MHz, DMSO-*d*₆)

 $<^{^{121.1}}_{^{-121.2}}$

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210

¹**H NMR** spectrum of **7** (600 MHz, DMSO- d_6)

¹⁹**F NMR** spectrum of **7** (565 MHz, DMSO-*d*₆)

 $<^{^{121.1}}_{^{-121.2}}$

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210

¹**H NMR** spectrum of **8** (600 MHz, DMSO-*d*₆)

¹**H NMR** spectrum of **9** (600 MHz, DMSO-*d*₆)

¹⁹F NMR spectrum of 9 (565 MHz, DMSO-*d*₆)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210

¹H NMR spectrum of **10** (600 MHz, CDCl₃)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210

¹**H NMR** spectrum of **12** (600 MHz, DMSO-*d*₆)

¹⁹F NMR spectrum of **12** (565 MHz, DMSO-*d*₆)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210

¹**H NMR** spectrum of **13** (600 MHz, DMSO-*d*₆)

¹⁹F NMR spectrum of **13** (565 MHz, DMSO-*d*₆)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210

 $<^{^{-127.1}}_{^{-127.2}}$

¹**H NMR** spectrum of **14** (600 MHz, DMSO-*d*₆)

¹**H NMR** spectrum of **15** (600 MHz, DMSO-*d*₆)

¹³C NMR spectrum of 15 (126 MHz, DMSO-*d*₆)

¹H NMR spectrum of 16 (500 MHz, DMSO-*d*₆)

¹⁹**F NMR** spectrum of **16** (471 MHz, DMSO-*d*₆)

 60
 50
 40
 30
 20
 10
 0
 -10
 -20
 -30
 -40
 -50
 -60
 -70
 -80
 -90
 -100
 -110
 -120
 -130
 -140
 -150
 -160
 -17

¹**H NMR** spectrum of **17** (600 MHz, DMSO-*d*₆)

¹⁹F NMR spectrum of **17** (565 MHz, DMSO-*d*₆)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210

¹**H NMR** spectrum of **18** (600 MHz, DMSO-*d*₆)

¹H NMR spectrum of **19** (600 MHz, CDCl₃)

3 HPLC Chromatograms

HPLC chromatogram of **6**.

HPLC chromatogram of 9.

HPLC chromatogram of 12.

HPLC chromatogram of 14.

HPLC chromatogram of 16.

4 References

- Yung-Chi, C.; Prusoff, W. H. Relationship between the Inhibition Constant (KI) and the Concentration of Inhibitor which causes 50 per cent Inhibition (I50) of an Enzymatic Reaction. *Biochem. Pharmacol.* 1973, 22, 3099–3108.
- Schäker-Hübner, L.; Haschemi, R.; Büch, T.; Kraft, F. B.; Brumme, B.; Schöler, A.; Jenke, R.; Meiler, J.; Aigner, A.; Bendas, G.; Hansen, F. K. Balancing Histone Deacetylase (HDAC) Inhibition and Drug-Likeness: Biological and Physicochemical Evaluation of Class I Selective HDAC Inhibitors. *ChemMedChem* 2022, *17*, e202100755.