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Cross-validation and external validation methods 

Cross-validation 

We conducted 10-fold cross-validation of the entire model-building process1,2. In this procedure, 
10 random samples comprising 90% of the data were used to develop the elementary and final 
models with the concatenation of the remaining 10% per fold used to evaluate model fit. In the 
model development stage of the cross-validation, we executed the same three-step process 
described above so the results from the functional forms of elementary model predictors, the 
random survival forest (RSF), and best subset selection were allowed to vary. 

For the 10 folds, model parameters were estimated in each set of 90% of the data and yielded  
𝑆መ௞ as the estimate of the survival function for the kth fold (for k= 1 to 10). For the 10% excluded 
in that fold, standardized times were calculated as 𝑤௞௜ =  −log (𝑆መ௞(𝑡௞௜)) for the ith individual in 
the kth fold. If the prediction is valid, the full concatenation of the excluded data are expected to 
correspond to a sample subjected to censoring from the standard exponential distribution (𝑒ି௧). 
To explore this, we graphically depicted the survival function of 𝑤௞௜ overlayed with the standard 
exponential survival function.3 

External validation 

To externally validate our model, we assessed the calibration and discrimination in previously 
published data from the European Study Consortium for Chronic Kidney Disorders Affecting 
Pediatric Patients (ESCAPE) study4. Among 270 ESCAPE participants, we used the first 
available visit with complete data on U25 eGFR, proteinuria and diagnosis to evaluate the 
elementary model. To account for regional differences in KRT initiation, the outcome was time 
to KRT or U25eGFR of 20 ml/min|1.73m2 which was interpolated between two visits when the 
second visit had U25eGFR < 20 ml/min|1.73m2.  

We conducted the Greenwood-Nam-D’Agostino goodness-of-fit test (calibration) for 5-year risk, 
calculated the c-statistic (discrimination), and evaluated the residual standardized times relative 
to the standard exponential (a measure of calibration) as described in the cross-validation 
methods. 
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Supplementary Table S1. List of variables evaluated in random survival forest analysis to 
identify potential predictive candidates in subsequent parametric survival models to predict time 
to kidney replacement therapy. Continuous time-varying variables denoted by * were included 
as level at study origin (visit 2) and annualized change from the previous year (visit 1 to visit 2). 
Categorical time-varying variables denoted by † are included as presence at study origin (visit 
2) and incident/initiated, persistent/continued, resolved/discontinued from the previous year 
(visit 1 to visit 2). Total time-fixed and time-varying variables included 172 predictors. 

Sociodemographic  Laboratory markers Medications 

Sex Sodium* Any antihypertensive† 

Age Potassium* Diuretic† 

Maternal education Chloride* ACE/ARB† 

Household income CO2* Active vitamin D† 

Family history of kidney 
disease (first, second or third 
degree) 

Acidosis† Inactive vitamin D† 

   

CKD severity Glucose* Phosphate binder† 

U25eGFR* Albumin* Alkali therapy† 

UPCR* Hypoalbuminemia† Growth hormone† 

Years with CKD Calcium* Erythropoietin stimulating 
agent† 

Anemia† Phosphate* Iron supplement† 

change in hemoglobin z-score Calcium-phosphate product* Lipid lowering† 

BP stage* Elevated Ca×P† Potassium binder† 

   

Growth and development Leukocyte count* Corticosteroid† 

Height z-score* Erythrocyte count*  Immunosuppressant† 

Short stature† Platelets* Bladder med† 

BMI z-score* Hematocrit* Laxative† 

Mid-upper arm circumference 
z-score* 

Mean corpuscular hemoglobin 
concentration* 

Antacid†  
 

Mean corpuscular 
hemoglobin* 

Antibiotic† 

Birth history Mean corpuscular volume* Asthma/allergy† 
 

Low birth weight Red cell distribution width* CNS stimulant† 

Premature  Nutrition supplement† 

Small for gestational age Triglycerides Vitamin supplement† 
 

High density lipoprotein (HDL) 
 

 
Low density lipoprotein 

 

 
Total cholesterol 

 

 
Non-HDL 

 

 
Dyslipidemia 
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* For continuous variables, the annualized change of the variable between visit 1 and visit 2 
(study origin) was calculated as calculated as:  

(𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒௩ଶ − 𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒௩ଵ) / (𝑌𝑒𝑎𝑟𝑠 𝑓𝑟𝑜𝑚 𝑉1 𝑡𝑜 𝑉2) 

† For binary variables, including comorbidities (e.g., anemia, metabolic acidosis) and therapies 
(e.g., ACE/ARB, alkali therapy), the time-varying variable was classified by four categories 
defined as: 

Visit 1 Visit 2  
(study origin)  

Comorbidity presence Therapy use 

No No Absent  None 
No Yes Incident Initiated 
Yes No Resolved Discontinued 
Yes Yes Persistent Continued 
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Supplementary Table S2. Distribution of specific chronic kidney disease diagnoses represented in the study population (n= 890).  

Non-glomerular/HUS kidney disease diagnosis n= 704  Glomerular kidney disease diagnosis n= 186 

Aplastic/hypoplastic/dysplastic kidneys 23.4% (165)  Focal segmental glomerulosclerosis  35.0% (65) 

Obstructive uropathy 22.4% (158)  Systemic immunological disease (including  

systemic Lupus erythematosus)  

17.7% (33) 

Reflux nephropathy 16.6% (117)  Chronic glomerulonephritis  10.8% (20) 

Hemolytic uremic syndrome (HUS) 6.8% (48)  IgA Nephropathy (Berger's)  7.5% (14) 

Congenital Urologic Disease (Bilateral Hydronephrosis)  6.0% (42)  Familial nephritis (Alport's)  6.5% (12) 

Non-glomerular Other  5.5% (39)  Membranoproliferative glomerulonephritis type I  5.4% (10) 

Polycystic kidney disease (Autosomal recessive)  4.0% (28)  Glomerular other 4.8% (9) 

Renal infarct  3.3% (23)  Henoch schonlein nephritis  3.8% (7) 

Cystinosis  1.7% (12)  Idiopathic crescentic glomerulonephritis  3.2% (6) 

Pyelonephritis/Interstitial nephritis  1.6% (11)  Membranous nephropathy  2.2% (4) 

Medullary cystic disease/Juvenile nephronophthisis  1.4% (10)  Congenital nephrotic syndrome  1.6% (3) 

Perinatal Asphyxia  1.4% (10)  Membranoproliferative glomerulonephritis type II 1.1% (2) 

Syndrome of agenesis of abdominal musculature  1.1% (8)  Sickle cell nephropathy 0.5% (1) 

VACTERL (VATER) Syndrome  1.0% (7)    

Branchio-oto-Renal Disease/Syndrome  1.0% (7)    

Wilms' tumor  0.9% (6)    

Methylmalonic Acidemia  0.9% (6)    

Polycystic kidney disease (Autosomal dominant)  0.7% (5)    

Oxalosis  0.3% (2)    
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Supplementary Table S3. AIC values as a measure of test error from different functional forms 
of GFR, proteinuria (UPCR) and interactions with diagnosis (glomerular with no HUS vs. non-
glomerular with HUS) as modifiers of the location β parameter in generalized gamma parametric 
survival model. Bold indicated lowest AIC. The AIC of the null model with no covariates (i.e., 
predictors) was 2021.164. 

Functional 
form of GFR 

Functional 
form of UPCR 

Modifiers  
GFR 

UPCR 
GFR×Diagnosis 

UPCR 
GFR 

UPCRxDiagnosis 
GFRxDiagnosis 

UPCRxDiagnosis 
Continuous  
 

Continuous 1492.528 1490.358 1487.446 1488.356 

Natural spline 
(knot at 45) 

Continuous 1486.931 1480.883 1481.642 1480.863 

Linear spline 
(knot at 45) 

Continuous 1486.270 1480.123 1480.768 1480.225 

Continuous Natural spline 
(knot at 0.5) 

1483.722 1483.241 1483.327 1484.559 

Natural spline 
(knot at 45) 

Natural spline 
(knot at 0.5) 

1479.916 1476.965 1479.498 1479.106 

Linear spline 
(knot at 45) 

Natural spline 
(knot at 0.5) 

1479.402 1476.493 1478.753 1478.872 

Continuous Linear spline 
(knot at 0.5) 

1484.409 1483.604 1483.328 1484.608 

Natural spline 
(knot at 45) 

Linear spline 
(knot at 0.5) 

1480.263 1476.778 1479.309 1479.286 

Linear spline 
(knot at 45) 

Linear spline 
(knot at 0.5) 

1479.907 1476.477 1478.661 1479.052 
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Supplementary Table S4. Ranking of variables from random survival forest according to top 20 
minimal depth of maximal subtree classification and top 20 variable importance. 

Variable Min Depth of 
Max Subtree 

Min Depth 
Rank 

Importance Importance 
Rank 

U25eGFR 5.503 #1 0.0532 #1 
UPCR 5.914 #2 0.0273 #2 
Albumin  8.357 #3 0.0041 #6 
Ann change in 
UPCR       

8.465 #4 0.0046 #5 

Persistent anemia 10.582 #12 0.0080 #3 
Potassium    9.095 #6 0.0035 #9 
Anemia   11.299 #14 0.0058 #4 
Ann change in 
U25eGFR   

10.117 #8 0.0037 #7 

Chloride 9.145 #7 0.0036 #8 
Phosphate   8.780 #5 0.0026 #15 
Hematocrit 10.482 #10 0.0033 #10 
Red blood cell 
count 

10.525 #11 0.0027 #13 

CO2      10.325 #9 0.0007 #21 
ESA initiation    11.393 #15 0.0027 #14 
ESA use 12.024 #21 0.0032 #11 
Calcium × 
Phosphate 

11.659 #17 0.0011 #18 

Active Vitamin D 12.717 #28 0.0028 #12 
Hypoalbuminemia 12.427 #23 0.0016 #16 
Non-HDL 11.654 #16 0.0006 #26 
ACE/ARB 
discontinuation  

12.468 #25 0.0014 #17 

Blood pressure 
stage 

12.013 #20 0.0006 #25 

Calcium 10.720 #13 0.0003 #43 
Red cell 
distribution width    

11.680 #18 0.0004 #34 

LDL 12.001 #19 0.0003 #36 
Persistent active 
vitamin D use 

13.238 #41 0.0010 #19 

Persistent 
hypoalbuminemia 

13.356 #48 0.0007 #20 
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Supplementary Table S5. Baseline descriptive characteristics of the ESCAPE cohort (n= 270) 
used for external validation.  

 

Characteristic Median [IQR] or n (%) 
Demographic and height   

Age, years 11.9 [8.6, 14.9] 
Male sex 158 (59%) 
Height, m 1.43 [1.25, 1.61] 

Kidney disease characteristics   
Glomerular non-HUS diagnosis 16 (6%) 
Serum creatinine, mg/dL 1.5 [1.2, 2.0] 
U25eGFR, ml/min|1.73 m² 36 [27, 44] 
Urine protein/creatinine ratio, mg/mg 0.33 [0.10, 0.89] 
Urine protein/creatinine > 2 32 (12%) 

 

  



Page 9 of 21 
 

Supplementary Figure S1. Cohort flow diagram of those with no follow-up time, prevalent kidney 
replacement therapy event prior to time origin, and those with missed visits at the time origin.  
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Supplementary Figure S2. Kaplan-Meier estimates of cumulative incidence of kidney 
replacement therapy in the CKiD cohort with 95% confidence intervals (discontinuous lines) and 
censored observations indicated by vertical ticks.  
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Supplementary Figure S3. Results from best subset selection of top 9 variables identified from 
random survival forest analysis presenting Akaike information criterion (AIC) on best subset 
models with additional variables (29= 512, including the elementary model as the null model). 
Red dots indicate the lowest AIC within each set of additional enrichment variables. The lowest 
AIC of all models was identified in the model with 5 additional enrichment variables and this 
model corresponds to the enriched model in Table 2.  
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Supplementary Figure S4. Kaplan-Meier estimates of cumulative incidence of ESKD in the ESCAPE cohort with 95% confidence 
intervals (discontinuous lines) and censored observations indicated by vertical ticks. 
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Supplementary Figure S5. Results and interpretation from external validation of elementary model using data from the ESCAPE 
study including calibration plot depicting observed risk on predicted risk from at 5-year risk of kidney replacement therapy or eGFR < 
20 ml/min|1.73m2 and survival function of standardized residual times for participants. The calibration plot demonstrates close 
correspondence between observed and predicted 5-year risk and the survival function aligns closely with the expected standard 
exponential for strong model fit. 
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Supplementary Figure S5 presents data from the external validation of the elementary model 

using European ESCAPE data. The left panel presents the Greenwood-Nam-D’Agostino test for 

5-year risk comparing the observed 5-year risk (y-axis) to the predicted 5-year risk (x-axis) using 

bins of participants of similar predicted 5-year risk with at least 5 observed events per bin. There 

were no significant differences between the observed risk and predicted risk (𝜒ସ
ଶ = 6.926; p= 

0.140), the calibration slope was 0.996 (95%CI: 0.903, 1.088, p= 0.90), and the c-statistic was 

0.854 (95%CI: 0.835, 0.873) indicating strong discrimination. The right panel presents the 

standardized times of residuals which were congruent with the standard exponential function 

depicted in green. 



Page 15 of 21 
 

Supplementary Appendix S1. R code to generate 10th, 25th and 50th percentile of kidney 
replacement therapy risk from elementary model, partially enriched models 1 to 4, and 
the fully enriched model using example profile provided in the Results section of the 
paper.  

# Demonstration of CKiD risk prediction calculator 
# install.packages("flexsurv") ## Install flexsurv package if not in library 
already 
library(flexsurv) 
 
### Step 1: Input the profile of a hypothetical patient 
## Necessary components for the Elementary model described in Table 2 of 
paper 
kid.gfr <- 60 # GFR in ml/min|1.73m² 
kid.upc <- 0.8 # Urine protein-creatinine ratio in mg/mgCr; check units 
carefully 
kid.glomdx <- 1 # Glomerular, non-HUS diagnosis = 1; Non-glomerular or HUS 
diagnosis = 0 
 
# Components for the Partially Enriched and Enriched models described in 
Table 2 of paper 
kid.highbp <- 1 # High blood pressure = 1; normal blood pressure = 0 
kid.anemia <- 1 # Anemia as low hemoglobin = 1; normal hemoglobin = 0 
kid.albumin <- 4.5 # Serum albumin in g/dL; check units carefully 
kid.chloride <- 105 # Chloride in mmol/dL; check units carefully 
kid.co2 <- 22 # Bicarbonate in mmol/L; check units carefully 
kid.prevgfr <- 67 # Previous GFR from about one year ago, ml/min|1.73m² 
kid.prevgfryrs <- 1 #GFR was 48 when checked 1 years ago, can be in decimals; 
e.g., a value of 0.95 is 0.95 years earlier than the current GFR input date 
 
### Step 2: Use models described in Table 2 to output the times by which 10%, 
25% and 50% will experience the outcome (KRT) based on the profile in Step 1.  
## Times are expressed as years (note: 1 month= 0.0833 years) 
## Uses the function qgengamma in the flexsurv package which provides values 
of quantiles for the specified generalized gamma distribution 
  # the first argument specifies the desired quantiles (10th, 25th and 50th 
or median) which are measures of predicted risk from the prediction tool 
  # The next three arguments correspond to coefficients reported in the paper 
that modify Beta (mu), sigma (sigma) and kappa (Q) 
percentile.header <- c("10th pctile", "25th pctile", "50th pctile") # To 
improve readability of output, label header of the first three times with 
corresponding percentiles 
 
# Elementary model 
times.elem <- round(qgengamma(c(0.1,0.25,0.5), mu = 2.8624 + 
2.0868*log(kid.gfr/45) - 1.0758*max(c(0,log(kid.gfr/45))) - 0.1532*kid.glomdx 
+ 1.0386*kid.glomdx*log(kid.gfr/45) - 
1.2154*kid.glomdx*max(c(0,log(kid.gfr/45))) - 0.1959*log(kid.upc/0.5) - 
0.3146*max(c(0,log(kid.upc/0.5))), sigma = 0.7440 + 0.2627*kid.glomdx, Q = 
0.4253 - 0.0005*kid.glomdx),3) 
print(as.data.frame(times.elem,row.names=percentile.header)) 
 
# Partially enriched model 1: elementary + hypertension + deltaGFR only 
times.pe1 <- round(qgengamma(c(0.1,0.25,0.5), mu = 2.8993 + 
1.9511*log(kid.gfr/45) - 1.0091*max(c(0,log(kid.gfr/45))) - 0.0718*kid.glomdx 
+ 0.8132*kid.glomdx*log(kid.gfr/45) - 
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1.0010*kid.glomdx*max(c(0,log(kid.gfr/45))) - 0.2123*log(kid.upc/0.5) - 
0.2721*max(c(0,log(kid.upc/0.5))) - 0.2229*kid.highbp + 
0.4349*(log(kid.gfr/kid.prevgfr)/kid.prevgfryrs), sigma = 0.7454 + 
0.1744*kid.glomdx, Q = 0.3888 + 0.2204*kid.glomdx),3) 
print(as.data.frame(times.pe1,row.names=percentile.header)) 
 
# Partially enriched model 2: elementary + hypertension + anemia only 
times.pe2 <- round(qgengamma(c(0.1,0.25,0.5), mu = 2.9967 + 
1.9769*log(kid.gfr/45) - 1.1370*max(c(0,log(kid.gfr/45))) - 0.0511*kid.glomdx 
+ 0.9807*kid.glomdx*log(kid.gfr/45) - 
1.0714*kid.glomdx*max(c(0,log(kid.gfr/45))) - 0.2127*log(kid.upc/0.5) - 
0.2566*max(c(0,log(kid.upc/0.5))) - 0.2337*kid.highbp - 0.3617*kid.anemia, 
sigma = 0.7441 + 0.2521*kid.glomdx, Q = 0.3513 + 0.1023*kid.glomdx),3) 
print(as.data.frame(times.pe2,row.names=percentile.header)) 
 
# Partially enriched model 3: elementary + hypertension + albumin + co2 + 
chloride only 
times.pe3 <- round(qgengamma(c(0.1,0.25,0.5), mu = 3.7450 + 
2.1789*log(kid.gfr/45) - 1.3874*max(c(0,log(kid.gfr/45))) - 0.1071*kid.glomdx 
+ 0.6812*kid.glomdx*log(kid.gfr/45) - 
0.5795*kid.glomdx*max(c(0,log(kid.gfr/45))) - 0.1720*log(kid.upc/0.5) - 
0.2102*max(c(0,log(kid.upc/0.5))) - 0.2242*kid.highbp + 0.3802*kid.albumin + 
0.0005*kid.co2 - 0.0235*kid.chloride, sigma = 0.7204 + 0.2426*kid.glomdx, Q = 
0.4467 + 0.0768*kid.glomdx),3) 
print(as.data.frame(times.pe3,row.names=percentile.header)) 
 
# Partially enriched model 4: elementary + hypertension + anemia + albumin + 
co2 + chloride corresponds to an enriched "Current day" model 
times.pe4 <- round(qgengamma(c(0.1,0.25,0.5), mu = 4.4095 + 
2.0944*log(kid.gfr/45) - 1.4511*max(c(0,log(kid.gfr/45))) - 0.0231*kid.glomdx 
+ 0.7360*kid.glomdx*log(kid.gfr/45) - 
0.6282*kid.glomdx*max(c(0,log(kid.gfr/45))) - 0.1984*log(kid.upc/0.5) - 
0.1803*max(c(0,log(kid.upc/0.5))) - 0.2339*kid.highbp - 0.3162*kid.anemia + 
0.3168*kid.albumin - 0.0074*kid.co2 - 0.0248*kid.chloride, sigma = 0.7242 + 
0.2172*kid.glomdx, Q = 0.4163 + 0.1367*kid.glomdx),3) 
print(as.data.frame(times.pe4,row.names=percentile.header)) 
 
# Fully enriched model: elementary + hypertension + anemia + albumin + co2 + 
chloride + deltaGFR corresponds to "Current day" + deltaGFR (longitudinal) 
model which is fully enriched 
times.full <- round(qgengamma(c(0.1,0.25,0.5), mu = 4.4493 + 
1.9837*log(kid.gfr/45) - 1.4158*max(c(0,log(kid.gfr/45))) + 0.0268*kid.glomdx 
+ 0.6275*kid.glomdx*log(kid.gfr/45) - 
0.5253*kid.glomdx*max(c(0,log(kid.gfr/45))) - 0.1968*log(kid.upc/0.5) - 
0.1759*max(c(0,log(kid.upc/0.5))) - 0.2282*kid.highbp - 0.3033*kid.anemia + 
0.3172*kid.albumin - 0.0071*kid.co2 - 0.0255*kid.chloride + 
0.3934*(log(kid.gfr/kid.prevgfr)/kid.prevgfryrs), sigma = 0.7262 + 
0.1390*kid.glomdx, Q = 0.3914 + 0.2787*kid.glomdx),3) 
print(as.data.frame(times.full,row.names=percentile.header)) 
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Supplementary Appendix S2. Content from online clinical calculator describing model 
purpose, use, strengths and limitations designed for clinicians. 

Website: https://ckid-gfrcalculator.shinyapps.io/CKiD_KRT_Risk/  

Pediatric CKiD Kidney Replacement Therapy Risk Calculator 

This calculator provides estimated times to when a patient diagnosed with CKD may require 
kidney replacement therapy (KRT). These estimates are based on a set of variables that are 
routinely measured on patients. It is intended to aid clinicians in managing kidney disease for 
pediatric patients below the age of 18 years. 

The tool requires information on current markers of kidney health: CKD diagnosis, GFR and 
proteinuria. Additional variables include blood pressure category, anemia, serum albumin, 
serum chloride, serum bicarbonate and GFR from approximately one year ago. Not all 
additional variables are required for a valid estimate of estimated time to kidney replacement 
therapy, but additional variables will yield improved prediction. 

Please note these are estimated times to needing KRT according to information provided. 
Please interpret the estimated times within the context of the patient's full clinical profile. 

Frequently Asked Questions 

About the calculator 

What is the purpose of this calculator? 

The calculator is designed to help clinicians estimate the time to initiation of kidney replacement 
therapy (transplant or dialysis) for a pediatric patient with diagnosed kidney disease. The 
calculation is based on the patient's clinical variables. 

How was this calculator developed? 

This calculator is based on data from a study of North American children and adolescents with a 
pediatric diagnosis of kidney disease (specifically, the Chronic Kidney Disease in Children 
study, called CKiD). Statistical learning methods (random survival forests, best subset 
regression) were used to identify candidate predictors of time to kidney replacement therapy 
and determine the most predictive survival models using the generalized gamma distribution. 
The model was internally validated using cross-validation. 

How does this calculator compare with other online risk calculators? 

Other risk calculators may be based on data from adults and have not been well-validated in 
children. Some risk calculators are based on GFR and urine protein levels only. This calculator 
uses multiple variables that are commonly collected at clinical visits. In addition, other risk 
calculators predict time to kidney replacement therapy or a 50% decline in GFR. This calculator 
is based on the occurrence of kidney replacement therapy alone. Lastly, this calculator uses 
patient history of GFR (change in GFR over the course of a year) to better estimate when 
kidney replacement therapy is expected to occur. 

Does this calculator collect personal or private information? 
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No, this calculator does not collect or store any personal information or clinical data. The 
calculator does not ask for name, date of birth or any information of that sort.  

 

Using the calculator 

Is this calculator applicable to any patient? 

This calculator is designed to be used by healthcare providers for pediatric patients (17 years of 
age or younger) with a diagnosis of chronic kidney disease (non-glomerular or glomerular 
etiology) and GFR < 90 ml/min|1.73m2 and is expected to be generalizable to North American 
patients who fit this profile. 

What if the patient does not have data (e.g., not measured, or not asked) for one or more 
questions? 

This calculator is unique in that the only requirements for KRT prediction are diagnosis, GFR 
and proteinuria level. Additional data including BP category, anemia, serum biomarkers and 
change in GFR over 1 year will improve the prediction, but are not necessary for a valid 
estimate. 

Does previous GFR have to be from exactly one year ago? 

No, the variables do not have to be from a visit exactly one year ago, but approximately one 
year ago. Clinical information from one year ago is used to indicate patient history. The 
calculator is based on models using data from clinical visits in the CKiD study approximately 
one year apart, so it is recommended to use that same time frame (plus or minus a few 
months). If you have information available from a patient's clinical visit approximately one year 
ago, you can use that information in the calculator to estimate time to kidney replacement 
therapy, but it is not necessary. 

Interpreting the results 

Do the results identify when exactly the patient will have renal replacement therapy? 

No, the calculator cannot predict exactly when or if a particular patient will require renal 
replacement therapy. There are many factors that contribute to disease progression and the 
calculator does not capture all of them. These are estimates based on a large, representative 
cohort of children and adolescents with chronic kidney disease. Since the calculator provides 
estimates of time, variability of outcomes is shown for when 50%, 25% and 10% of patients with 
a similar profile will have KRT. 

How should I interpret the results? 

The calculator will estimate the time when 50%, 25% and 10% of patients with the same clinical 
profile as your patient will have renal replacement therapy. For example, if the results state 
'Among patients with the same profile, 25% will have KRT by 6 years', this means that among 
patients with similar clinical profiles to your patient, 25% will be expected to have KRT within 6 
years and 75% will be expected to have KRT after 6 years.  
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Supplementary Table S6. List of principal site investigators of the Chronic Kidney Disease in 
Children (CKiD) cohort study.  

Study 
Invest igator(s)  

Inst i tut ion City State/Province 

Sahar Fathallah-Shaykh, 
MD 

University of Alabama at 
Birmingham (Children’s of 
Alabama) 

Birmingham AL 

Anjali Nayak, MD; Martin 
Turman, MD 

Phoenix Children’s Hospital Phoenix AZ 

Tom Blydt-Hansen, MD, 
FRCPC 

British Columbia Children’s 
Hospital 

Vancouver 
British Columbia, 
Canada 

Cynthia Wong, MD; 
Steve Alexander, MD 

Stanford University  Palo Alto CA 

Ora Yadin, MD 
University of California – 
Los Angeles (UCLA) 

Los Angeles CA 

Elizabeth Ingulli, MD; 
Robert Mak, MD, PhD 

University of California – 
San Diego (UCSD) 

San Diego CA 

Cheryl Sanchez-Kazi, 
MD 

Loma Linda University Loma Linda CA 

Asha Moudgil, MD 
Children’s National Medical 
Center 

Washington DC 

Samina Muneeruddin, 
MD 

Nemours Hospital for 
Children- Delaware Valley 

Wilmington DE 

Carolyn Abitbol, MD; 
Marissa DeFrietas, MD; 
Chryso Katsoufis, MD; 
Wacharee 
Seeherunvong, MD 

University of Miami Miami FL 

Larry Greenbaum, MD, 
PhD 

Children’s Healthcare of 
Atlanta / Emory University 

Atlanta GA 

Lyndsay Harshman, MD University of Iowa Iowa City IA 

Priya Verghese, MD 
Ann & Robert H. Lurie 
Children’s Hospital of 
Chicago 

Chicago IL 

Sonia Krishnan, MD 
University of Illinois at 
Chicago 

Chicago IL 

Amy Wilson, MD 
Riley Hospital for Children at 
Indiana University Health 

Indianapolis IN 

Stefan Kiessling, MD; 
Margaret Murphy, PhD 

University of Kentucky Lexington KY 

Siddharth Shah, MD, 
Janice Sullivan, MD; 
Sushil Gupta, MD 

University of Louisville 
(Novak Center for Children’s 
Health) 

Louisville KY 

Samir El-Dahr, MD; 
Stacy Drury, MD 

Tulane University New Orleans LA 

Nancy Rodig, MD Boston Children’s Hospital Boston MA 
Allison Dart, MD MSc, 
FRCPC 

University of Manitoba (The 
Children’s Hospital 

Winnipeg Manitoba, Canada 



Page 20 of 21 
 

Research Institute of 
Manitoba) 

Meredith Atkinson, MD 
Johns Hopkins University 
(Johns Hopkins Children’s 
Center) 

Baltimore MD 

Arlene Gerson, PhD  Baltimore MD 

Tej Matoo, MD 
Children’s Hospital of 
Michigan / Wayne State 
University 

Detroit MI 

Zubin Modi, MD University of Michigan Ann Arbor MI 

Jason Thomas, MD 
Spectrum Health Hospitals / 
Helen DeVos Children's 
Hospital 

Grand Rapids MI 

Bradley Warady, MD; 
Rebecca Johnson, PhD 

Children’s Mercy Hospital Kansas City MO 

Vikas Dharnidharka, MD 
Washington University in St. 
Louis (St. Louis Children’s 
Hospital) 

St. Louis MO 

Stephen Hooper, PhD University of North Carolina Chapel Hill NC 
Susan Massengill, MD Levine Children’s Hospital Charlottesville NC 
Liliana Gomez-Mendez, 
MD 

East Carolina University Greenville NC 

Matthew Hand, DO 
Dartmouth-Hitchcock 
Medical Center 

Lebanon NH 

Joann Carlson, MD 
Rutgers-Robert Wood 
Johnson Medical School 

New 
Brunswick 

NJ 

Craig Wong, MD, MPH 
University of New Mexico 
Health Sciences Center 

Albuquerque NM 

Frederick Kaskel, MD, 
PhD; Shlomo Shinnar, 
MD, PhD 

Albert Einstein College of 
Medicine/Montefiore 
Medical Center 

Bronx NY 

Jeffrey Saland, MD 
Icahn School of Medicine at 
Mount Sinai 

New York NY 

Marc Lande, MD; 
George Schwartz, MD 

University of Rochester 
Medical Center 

Rochester NY 

Anil Mongia, MD 
State University of New 
York, Downstate Medical 
Center 

Brooklyn NY 

Donna Claes, MD; Mark 
Mitsnefes, MD 

Cincinnati Children’s 
Hospital  

Cincinnati OH 

Katherine Dell, MD 
Case Western Reserve 
University/Cleveland Clinic 
Children’s 

Cleveland OH 

Hiren Patel, MD 
Nationwide Children’s 
Hospital 

Columbus OH 

Pascale Lane, MD 
University of Oklahoma 
Health Sciences Center 

Oklahoma 
City 

OK 

Rulan Parekh, MD; Lisa 
Robinson, MD 

Hospital for Sick Children 
(Sick Kids) 

Toronto Ontario, Canada 
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Amira Al-Uzri, MD, 
MCR; Kelsey 
Richardson, MD 

Oregon Health and Science 
University 

Portland OR 

Susan Furth, MD, PhD; 
Larry Copelovitch, MD 

Children’s Hospital of 
Philadelphia 

Philadelphia PA 

Elaine Ku, MD, MAS 
University of California – 
San Francisco (UCSF) 

San 
Francisco 

SF 

Joshua Samuels, MD 
University of Texas Health 
Science Center at Houston 

Houston TX 

Poyyapakkam Srivaths, 
MD 

Baylor College of Medicine 
(Texas Children’s Hospital) 

Houston TX 

Samhar Al-Akash, MD Driscoll Children’s Hospital Corpus Christi TX 

Davoud Mohtat, MD 
INOVA Children’s Hospital / 
Pediatric Specialists of 
Virginia 

Fairfax VA 

Victoria Norwood, MD University of Virginia Charlottesville VA 
Joseph Flynn, MD Seattle Children’s Hospital Seattle WA 

Cynthia Pan, MD 
Medical College of 
Wisconsin 

Milwaukee WI 

Sharon Bartosh, MD University of Wisconsin Madison WI 
 


