Ncoa2 promotes CD8⁺ T cell-mediated anti-tumor immunity by stimulating T cell activation via upregulation of PGC-1α critical for mitochondrial function

Xiancai Zhong¹, Hongmin Wu¹, Ching Ouyang², Wencan Zhang¹, Yun Shi¹, Yi-Chang Wang³, David Ann³, Yousang Gwack⁴, Weirong Shang⁵ and Zuoming Sun¹*

¹Department of Immunology & Theranostics, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA, 91010, USA
²Department of Computational and Quantitative Medicine, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
³Department of Diabetes Complication and Metabolism, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA, 91010, USA
⁴Department of Physiology, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
⁵Department of Gynecology and Obstetrics, School of Medicine, Emory University, Atlanta, GA 30322, USA
* Corresponding author Zuoming Sun (zsun@coh.org)

Figure S1. (A) RT-qPCR analysis of Ncoa2 (encoding SRC-2) mRNA in indicated CD3⁺ T cells. (B) Body weight of WT and $Ncoa2^{fl/fl}/CD4^{Cre}$ mice (n = 12, 1:1 ratio for male and female). (C-D) Total thymocyte number (#) (C) and flow cytometric analysis of the percentage of CD4⁻CD8⁻, CD4⁺CD8⁺, CD4⁺, and CD8⁺ (D) of thymus from indicated mice. (E-G) Total splenocyte number (E) and flow cytometric analysis of CD4⁺ and CD8⁺ T cells in the spleen (F) or lymph node (G) from indicated 8-10-week-old mice. (H) Gating strategy for Figure 1C, D, and G. (I) Flow cytometric staining of dead cells by a near infrared dye (NIR). (J) Flow cytometric control of fluorescence minus one (FMO, left panel) and unstimulated CD8⁺ T cells from tumors with full staining (middle and right panels) for determining gate boundary for IFN-γ. (K) Gating strategy for Fig. 1E and J. (L-Q) WT and Ncoa2^{fl/fl}/CD4^{Cre} mice were subcutaneously implanted with 2 x 10⁵ MC38 cancer cells and euthanized on day 14 (n=8-10, L-O) and day 19 post-engraftment for assessment (P-Q). (L) Tumor size (left panel) and weight (right panel) in indicated mice. (M) Flow cytometric analysis of the percentage of CD8⁺ (left panel) and CD4⁺ (right panel) among CD45⁺ tumor-infiltrating lymphocytes (TILs) from indicated mice. (N-Q) Percentage of IFN- γ^+ (N), IL-10⁺ (O), PD-1⁺Tim3⁺ and PD-1⁺Lag3⁺ (P) cells among tumor-infiltrating CD8⁺ T cells, and percentage of Foxp3⁺ cells among CD4⁺ T cells in tumors in indicated mice. (L-M) Box plots show the median (central line), maximum, minimum (box ends), and outliers (extended lines). (A, C-G, I-J, O-Q) Data are shown as mean ± SEM. **P<0.01; ***P<0.001; ns, not significant (two-tailed unpaired Student's t-test).

Figure S2. (A) Scheme of experimental procedure for tumor rejection using adoptively transferred *OT1* CD8⁺ and WT CD4⁺ T cells shown in Figure 2A. (B and C) Flow cytometric verification of the purity of magnetic cell sorting (MACS) naïve WT CD4⁺ (B) and indicated *OT1* CD8⁺ (C) T cells with >97% purity. (D) Gating strategy for Figures 2B and 2E. (E-F) Flow cytometric analysis of percentages of CD4⁺/CD45⁺ (E) and Foxp3⁺/CD4⁺ (F) shown in Fig. 2A-E. Data in (E-F) are shown as mean \pm SEM. ns, not significant (two-tailed unpaired Student's t-test).

Figure S3. (A) Flow cytometric analysis of *in vitro* activated CD8⁺ T cells from indicated mice for assessing cell survival by staining NIR dye and Annexin V. (B-C) Scheme for the experimental procedure measuring killing capacity of CD8⁺ T cells (B) and gating strategy for Fig. 3E (C). (D) Scheme for acute and chronic activation of CD8⁺ T cells for Figure 3F. (E) Flow cytometric analysis of cell survival of tumor infiltrated CD45.1-expressing WT and CD45.2-expressing $Ncoa2^{fl/fl}/CD4^{Cre}$ CD8⁺ cells shown in Fig. 3I-N.

Figure S4. (A) Principal component analysis (PCA) of RNA-seq data. (B) Volcano plot showing upregulated or down-regulated DEGs [cut off at false discovery rate (FDR)<0.05]. (C) Gene set enrichment analysis (GSEA) plots of DEGs involved in mitochondrial metabolism when compared $Ncoa2^{fl/fl}/CD4^{Cre}$ and WT CD8⁺ T cells. (D) Representative flow cytometric analysis (left panels) and mean fluorescence intensity (MFI) of PGC-1 α in the CD8⁺ T cells from lymph node (LN) of indicated mice challenged without or with the challenge of MC38-Ova for 3 days. Data shown are mean ± SEM. ***P*<0.01; ****P*<0.001; ns, not significant (two-tailed unpaired Student's t-test).

Figure S5. (A) ChIP-seq detected DNA-binding peaks of Ncoa2 at the *Ppargc1a* (PGC-1a) gene locus in liver tissues (GSE53039). Region (Rgn) 2-5 are the potential Ncoa2 DNA-binding regions at the *Ppargc1a* (PGC-1a) gene locus, whereas Rgn1 is the negative control of Ncoa2 DNA-binding region. (B) PCR analysis of Rgn2 and Rgn5 in sorted Cas9-expressing CD8⁺ T cells that were transduced with non-targeting (NonT), or dual sgRNAs for deletion of Rgn2 or Rgn5. (C) Relative mRNA levels of *Ncoa1*, *Ncoa2*, and *Ncoa3* in OT1 and *OT1/Ncoa2^{fl/fl}/CD4^{Cre}* CD8⁺ T cells activated *in vivo* by engraftment of MC38-Ova cancer cells for 3 days. (D-E) Flow cytometric analysis of PGC-1a (D) or qPCR analysis of expression of PGC-1a downstream mitochondrial genes, *Ndufb9*, *Sdhb* and *Nqcrfs1* (E) in Cas9-expressing CD8⁺ T cells transduced with control NonT sgRNA, or sgRNAs that delete *Ncoa1* or *Ncoa3* genes. (F) Doubling of cell number over 6 days post-*in vitro* stimulation of indicated CD8⁺ T cells shown in D. (G-H) Raw Western blot images of Fig. 5J (G) and Fig. 5K (H). (I) Relative luciferase activity from indicated reporter transfected into 293T cells together with expression plasmid for CREB ^{S133A} or control empty plasmid (EV).

Figure S6. (A) RT-qPCR of mitochondrial DNA content (*mtNd1/Actin*) in WT and *Ncoa2*^{*fl/fl}/CD4*^{*Cre*} CD8⁺ T cells in vitro activated by α -CD3/CD28 antibodies for 24 h. (B) Seahorse analysis of extracellular acidification rate (ECAR) of glycolysis in WT and *Ncoa2*^{*fl/fl}/CD4*^{*Cre*} CD8⁺ T cells activated *in vitro*. (C) Flow cytometric analysis of mitochondrial membrane potential using tetramethylrhodamine, ethyl ester (TMRE).</sup></sup>

Figure S7. (A) Gating strategy for Fig. 7B. (B) Representative flow cytometric analysis of PGC-1 α in indicated CD8⁺ T cells transduced with retrovirus expressing GFP alone (EV) or with PGC-1 α . (C) Gating strategy for Fig. 7C and a FMO control was provided for determining gate boundary. (D) Gating strategy for Fig. 7D. (E-H) WT and *Ncoa2*^{fl/fl}/*CD4*^{Cre} CD8⁺ OT1 cells were retrovirally transduced GFP alone (EV), whereas *Ncoa2*^{fl/fl}/*CD4*^{Cre} CD8⁺ T cells were transduced with adjusted amount of PGC-1 α expressing virus so that PGC-1 α levels were equivalent to that of WT, indicated by E and analysis of PGC-1 α downstream mitochondrial genes in cells shown in E. (G) Cell number doubling time in cells shown in E. (H) Percentage of IFN- γ^+ cells among indicated CD8⁺ T cells shown in E after adoptively transferred to *Rag1*^{-/-} mice challenged with MC38-Ova cancer cells for 3 days.

Table S1. List PCR primer sequences

RT-qPCR			
Gene	Forward primer	Reverse primer	
Ncoa1	CCCTCAGTCAATCCTGGTATCT	CTGGCACACTGTCCTTCTTC	
Ncoa2	GGCAGGTTTGGTGGTTCT	TTGCGAGGGACTGTTCATTT	
Ncoa3	CAGAATCCAGTGGAGAGTTCAG	CTCTTTGGCAAGCACATCAC	
Ppargc1a	TATGGAGTGACATAGAGTGTGCT	CCACTTCAATCCACCCAGAAAG	
Ndufb9	GGTACTTTGCTTGCTTGATGAGA	TGGGAAGATATACGGCTGAGG	
Sdhb	AATTTGCCATTTACCGATGGGA	AGCATCCAACACCATAGGTCC	
Uqcrfs1	GAGCCACCTGTTCTGGATGTG	GCACGACGATAGTCAGAGAAGTC	
Rgn1	GCCTATGAGATCCACGGAAAG	GTCTCCTTGGCAGTAGAGAATG	
Rgn2	GGATCTTTGCTATTTGCCTGTT	GCTTTGAATGCCACCAACTC	
Rgn3	GCAAAGGGTAAGGTCCTATGT	CACTAGAGGGCAAAGAGTGAG	
Rgn4	CCACAGATTAGGAGTGTAGAAGTTAG	GAGGAAGAAGGGCAATCACA	
Rgn5	ATCTTTGAGCCCTGAGTGAAC	AGCTGGGAGCAGTAGTGATA	
Hbb	GCTCTGGGTACTCCCTCTGA	GCAAATGTGTTGCCAAAAAG	
Regular PCR			
Gene	Forward primer	Reverse primer	
Rgn2	TCTTTGCTATTTGCCTGTTTTGG	AGCTCCCGAATGACGCCAGTCAA	
Rgn5	CTGAGAGTGCCAAGTTCAACAGC	GCGATAGCAAGTGGGAAATAACAGC	

Table S2. List of gRNA sequences

gRNA	Forward primer
Ncoa1	GAATGGCCTCGGTCGGG
Ncoa3	ATCTTGGCGACCTCCGCTG
NonT #1	AAACTCGCCCGCGTCATAT
NonT #2	AAAGTACCCGCGCGTACGA
Rgn2 #1	GCAGGGCTCCGGTTTAGAGT
Rgn2 #2	ACTGGGGACTGTAGTAAGAC
Rgn5 #1	ACACAGATTGGAAATCGTAT
Rgn5 #2	AATGCATGCCATCACGTTGG