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Figure S1
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Figure S1. Characterization of PDGFRa/FKL1 subpopulations and their gene expression (related to
Figure 1)

(A) Histogram for GFP levels in P/F populations at Day 4 of differentiation of the transgenic mESC line with
heterozygous GFP insertion into the Brachyury locus.

(B) Quantification of GFP/Brachyury-positive cell fraction in P/F populations (n=6). P, Generalized Linear
Model p-value accounting for experiment batches.

(C) A representative flow cytometry plot for cTnT-stained cells at 8 days after isolation. See main Fig. 1C for
quantification.

(D) Blood colony forming units at 10 days after isolation for individual blood subtypes. BFU-E, erythroid burst-
forming unit. CFU-M, megakaryocyte forming unit. CFU-GEMM, granulocyte, erythrocyte, monocyte,
megakaryocyte-forming unit. CFU-G, granulocyte-forming unit. CFU-GM, granulocyte, monocyte-forming unit.
See main Fig. 1D for aggregate plot.

(E) PDGFRa/FKL1 subpopulation composition during differentiation. FACS plots are shown in main Fig. 1E.
(F) Re-stimulation of isolated PDGFRa/FKL1 subpopulations in the ABV regimen for 24 hours.

(G) RNA-seq TPMs for Pdgfra encoding PDGFRa and Kdr encoding FLK1.

(H) Gene Ontology (GO) terms associated with upregulated genes in PF over P (top) or in F over PF (bottom).
Red, most relevant GO terms.

[) Algorithm for clustering dynamic genes.

J) Heatmap for all 3,050 dynamic genes grouped into 6 clusters.

K) RNA-seq TPMs for representative hematopoietic genes.

L) RNA-seq TPMs for representative endothelial genes.
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Figure S2
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Figure S2. Characterization of Etv2 expression (related to Figure 2)

(A) RNA-seq TPMs for all 1,026 transcription factor (TF) genes in the P (x-axis) and the PF (y-axis)
populations.

(B) RNA-seq TPMs for all 24 ETS TF genes.

(C) Pdgfra and Flk1 (Kdr) mRNA levels (normalized read counts) of 2,202 single cells (Zhao & Choi, 2019). P,
cells with Pdgfra count > 0 and Flk1 count = 0. PF, cells with Pdgfra count > 0 and Flk71 count > 0. F, cells with
Pdgfra count = 0 and Flk1 count > 0.

(D) Etv2 expression levels of single cells categorized as P, PF, or F categorized in Fig. S2C.



Figure S3
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Figure S3. Characterization of accessible chromatin in the P/F populations (related to Figure 3)

(A) Distribution of distance from dynamic or not-dynamic ATAC sites to the nearest transcription start site
(TSS). Fisher’s exact test examined the fraction of ATAC sites with +/-2 kb of TSS. OR, odds ratio.

(B) Procedure for clustering dynamic ATAC sites.

(C) Heatmap for all dynamic ATAC sites (41,383) grouped into 6 clusters.

(D) MA plot comparing ATAC-seqg-derived chromatin accessibility at the 148,314 union ATAC sites in the PF
population derived with VEGF (PF) vs. the PF population derived without VEGF (PF5¢F). The PF and PFVE¢F
cells are produced in parallel.

(E) TF family motifs overrepresented within the 314 ATAC sites that were more accessible in PF relative to PF~
VEGF

(F) TF family motifs overrepresented within the 388 ATAC sites that were less accessible in PF relative to PF~
VEGF

(G) (Left) Fraction of 3,307 ETV2-binding sites (pre-selected for those overlapping any ATAC sites)
overlapping dynamic ATAC cluster sites. Fraction of all ATAC sites within the dynamic clusters is shown as
comparison. (Right) Number of ETV2-binding sites overlapping dynamic ATAC cluster sites and statistical
evaluation. PF-op F-cls denotes PF-opened F-closed sites.



FIGURE S4
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Figure S4. Histone H3K27ac states at ETV2-binding sites (related to Figure 4)
(A) H3K27ac ChIP-seq fold enrichment signal tracks at early mesoderm genes Pdgfra and Mesp1.
(B) H3K27ac ChlIP-seq fold enrichment signals at 1,000 highest and consistently expressed gene TSSs.



(C) VEGF-dependency of H3K27ac levels at the early-active 1st-wave ETV2-binding sites (red) and other 1st-
wave ETV2-binding sites (grey). (Top) Plot shows the fold difference of the H3K27ac level between PF and
PFVECF (x-axis) and the H3K27ac level in PF (y-axis). (Bottom) Histogram of data points along the x-axis.

(D) Classification of genes by linkage with early-active, delayed-active, and late-active ETV2-binding sites.

(E) Network visualization of GO terms overrepresented in the 2nd-wave genes. Same as Fig. 4E but all GO
annotations are labeled. For each GO term (circle), the fraction of the GO-associated genes linked to delayed-
active (yellow) or late-active (magenta) ETV2-binding sites or not linked to delayed or late-active ETV2-binding
sites (blue) are shown as a pie chart.

(F) Relationship between the 1st-wave genes and the genes linked to delayed-active ETV2-binding sites (top)
or the genes linked to late-active ETV2-binding sites. OR, odds ratio. Statistics, Fisher’s exact test.



