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Figure S1. General scheme for synthesis of HBS Sheet. Two different methods (A and B) were tested for
formation of the HBS thioether linkages.
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Figure S2-a: Dataset of cross-strand interacting residues at non-hydrogen bonded positions in

antiparallel B-sheets.
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Figure S3. CD spectra of macrocyclic B-sheets. Spectra were obtained at a concentration of 30
uM peptide in 10 mM potassium fluoride (pH 7.3).
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Figure S4: Thermal denaturation of B-sheet 5. Plot shows change in 228 nm signal of § as a
function of temperature. Full graph at different temperatures are shown in Figure 4C.
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Figure S5: Crystal Structure of 5. Left: Full side-chain view. Each monomer has a different
aromatic-aromatic orientation. Right: Backbone with hydrogen bonds.
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Supplementary Table 1. X-ray Data collection, phasing and refinement statistics for HBS 3-

Sheet 5

Beta-Sheet Peptide

Data collection PDB (8DPY)
Wavelength (A) 0.092010
Space Group P62
Cell dimensions

a=b (A) 43.176

c 22.223

a=b (°) 90

Y 90
Resolution (A) 37.392-0.997 (1.056-

0.997)

Ellipsoidal diffraction 1.029, 1.029, 0.993
limits (A)?
Rimerge 0.064 (1.430)
I/sI 16.2 (1.3)
CCin 1.000 (0.432)
Completeness 91.5(39.8)
ellipsoidal (%)
Redundancy 9.7 (7.0)
Refinement
Resolution (A) 21.59-0.997 (1.10-0.997)
No. reflections 11290 (1430)
Rwork / Riree 0.180/0.206 (0.260/0.318)
No. atoms 241
B-factors 16.0

Protein 13.9

Ligand 22.1

Solvent 27.5

R.m.s deviations

Bond lengths (A) 0.0185
Bond angles (°) 2.67

*Values in parentheses for highest resolution shell. Lack of parentheses indicates one shell only.
*Data scaling performed with ellipsoidal cutoff using the STARANISO server (Global Phasing).
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Materials and Methods

General

Commercially purchased solvents and reagents were used without further purification. Amino
acids and peptide synthesis reagents were purchased from Novabiochem or Chem-Impex
International. Molecular biology grade salts and buffers were purchased from Sigma. Peptides
were synthesized manually or using a Gyros Protein Technologies Prelude X automated peptide
synthesizer and purified on preparative C18 columns using a combination of reverse-phase high-
performance liquid chromatography (RP-HPLC) on a Thermo Fisher Scientific UltiMate 3000
HPLC. Peptide purity was evaluated on an Agilent 1260 Infinity series RP-HPLC with a diode
array detector equipped with a C18 analytical column. High-resolution mass spectrometry data
was collected on a Bruker UltrafleXtreme MALDI-TOF mass spectrometer.

Synthesis and Purification of Peptides

Macrocycled were synthesized using standard Fmoc solid-phase peptide synthesis on low-loaded
(0.27 mmol/g) Knorr Rink Amide resin. Hairpin was synthesized with high-loading Knorr Rink
Amide resin (0.61 mmol/g). Normal deprotection conditions of 20% (v/v) piperidine:DMF and
coupling conditions of Fmoc-AA-OH (5 eq.), hydroxybenzotriazole (HOBt, 5 eq.), and
diisopropylcarbodiimide (DIC, 5 eq.) were used unless otherwise noted. Upon completion of
coupling steps, resin was washed with DCM 3x, methanol 3x, and DMF 3x.

Addition of the first N-alkylglycine, noted as G*, was performed by first coupling bromoacetic
acid (5 eq.) after pre-activation with hydroxy-7-azabenzotriazole (HOAL, 5 eq.) and DIC (5 eq.) in
DMEF. After washing, S-Mmt-cysteamine (5 eq.) and N,N-diisopropylethylamine (DIEA, 15 eq.)
were added to the resin. After two hours of incubation, Fmoc-Val-OH (10 eq.) was preactivated
with 10 equivalents each of HOAt and DIC and treated with the resin overnight. Standard peptide
coupling conditions were followed to synthesize the first strand.

For synthesis of the second HBS bridge, two strategies were evaluated after Fmoc deprotection of
the first strand (Route A & B).

Route A: 3-bromopropionic acid (5 eq.) was pre-activated with DIC (5 eq.) in DMF and coupled
to the deprotected resin. After washing, the resin was treated with Fmoc-cysteamine (3 eq.) and
DIPEA (3.3 eq.) in dry DMF twice for one hour each.

Route B: Acrylic acid (5 eq.) was preactivated with 5 equivalents each of HOBt and DIC in DMF
and coupled for two hours. Cysteamine hydrochloride (10 eq.) and 2,2-dimethoxy-2-
phenylacetophenone (0.5 eq.) were added to the resin in a scintillation vial, flushed with argon,
and introduced to 365 nm UV light from a Kessil PR160-370 LED light for 25 minutes. The resin
was then transferred back to the solid phase synthesis vessel and washed five times each with DMF
and DCM.

After Fmoc deprotection, 2-nitrobenzylsulfonyl chloride (10 eq.) and 2,4,6-collidine (10 eq.) was
coupled to the deprotected resin in dry DCM for two hours. Next, t-butyl bromoacetate (10 eq.)
and 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU, 10 eq.) were added to resin in DMF twice (one
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hour each). Nosyl deprotection was carried out using 10 eq. each of DBU and B-mercaptoethanol
(1x 1 hour, 3x 30 min).

Synthesis of the N-terminal strand was initiated with Fmoc-Thr-OH (10 eq.) coupled overnight to
the secondary amine after pre-activation with 10 eq. of HOAt and DIC. Upon completion of the
second strand 3-bromopropionic acid (5 eq.) was coupled to the resin for three hours after pre-
activation with DIC (5 eq.). From there, a solution of 2% trifluoroacetic acid (TFA) and 5%
triisopropylsilane in DCM was added to the resin (8x, 10 minutes each) to remove the Mmt group.
After washing with DMF, DBU (5 eq.) in DMF was added to the resin for 30 minutes for ring
closure.

Peptide cleavage was performed using a mixture of TFA/Phenol/Water/Thioanisole/EDT
(82.5/5/5/5/2.5) for two hours. The cleavage solution was filtered with subsequent removal of
solvent by rotary evaporation. Then the peptide was precipitated and washed (3x) with cold diethyl
ether, filtered, and dissolved in a mixture of water: acetonitrile. The peptide was then purified via
reverse-phase high-performance liquid chromatography (HPLC) using preparative-scale Cig
columns.

Dataset of Cross-strand Interacting Non-Hydrogen Bonded Residue

Using the PDBe search methods to remove proteins at 30% sequence similarity, a nonredundant
set of PDBs was obtained. Using the pre-computed DSSP assignments released by Kabsch &
Sander!'l, PDBs containing an antiparallel strand pair with at least one hydrogen bond between
them were recorded. For each such pair, residue pairs involving one residue from each strand
making at least one atomic contact as well as making a backbone hydrogen bond were identified.

With this dataset, a heat map was constructed. This list of structures was filtered to identify only
those residue pairs that were not making a backbone hydrogen bond and stored as raw counts in
a 2D array to obtain raw relative frequencies. These counts were then normalized as described by
Tsutsumi & Okamil?! to the baseline prevalence of each residue on antiparallel strands and then
plotted using Seaborn’s heatmap module. Non-normalized and normalized value tables are in
Figure S2.

The code and full set of results are available on GitHub:
https://github.com/everyday847/strand_contact analysis

Circular Dichroism Spectroscopy

Peptide concentrations were calculated based on absorbance values at 280 (A,g) and extinction
coefficients for tryptophan and tyrosine (Trp = 5690 cm™*M ™1, Tyr = 1280 cm™*M™1). Circular
dichroism spectra were acquired at room temperature using a Jasco J-1500 CD spectrometer at
peptide concentration of 30 uM in 10 mM potassium fluoride (pH 7.3) using a 0.1 cm pathlength
cell. For temperature-denaturation studies, HBS B-Sheet 5 spectra were acquired under the same
conditions at 10° intervals from 5-95°C.
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Crystallization of HBS B-Sheet 5

5 was dissolved in water to make a 4 mM stock solution. The crystallization buffer of 1.4 M
phosphate buffer at pH 7.25 was prepared and filtered through a nylon filter. A 24 well-plate was
utilized for hanging-drop crystallization. Mixtures of 1:1, 1:2, and 1:3 microliters of 5 to buffer
were then placed on glass slides before sealed onto separate wells with reservoir buffer being the
same as the crystallization buffer. Chosen samples were then cryoprotected in a final solution of
30% glycerol and crystallization buffer (pH 7.14) before X-ray diffraction experiments.

X-ray diffraction data collection, processing and structure determination

X-Ray diffraction data were collected on AMX 17-ID-1 of the National Synchrotron Light Source
IT, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE
Office of Science by Brookhaven National Laboratory.l*] The diffraction data were processed
using the automatic data processing package autoPROC (Global Phasing, Cambridge, UK), which
automatically indexes the data for space group determination, integrates the data in the space group
using XDS, and scales the data using AIMLESS.[* Results from X-ray diffraction were processed
for isotropy using the STARANISO server (Global Phasing) to remove directional dependence of
the resolution, allowing for an ellipsoidal resolution cutoff which increases the resolution limit.[%!
Structures were solved using molecular replacement using the NMR model. Initial molecular
replacement was successful using two copies of the NMR model. PHENIX Refine was used to
finish refinement of the structure with minimal additional refinement in Coot.[®! The Coot
program,/l UCSF ChimeraX,!”! were used to model crystal structures and create figures. Data
collection and refinement statistics are shown in Supplementary Table 1.

Characterization Data ......cceeeeveeeencsccscsccncscns

Analytical HPLC traces and MALDI-TOF mass characterization

Analytical HPLC chromatogram for purified peptides are shown. Conditions: 5 —95% gradient
in solvent B (ACN + 5% H,0 + 0.1% TFA), solvent A (H,0 + 0.1% TFA) across 12-16 minutes
on a XTerra RP;g 3.5 um 2.1 x 150 mm column (Part No. 186000410). Absorbance values
observed for 220 nm on an Agilent Infinity 1260 UV/DAD. Observed mass for each peptide on
a Bruker UltrafleXtreme MALDI-TOF are noted along with calculated mass.
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HBS Sheet 5: [M+H]" Calculated for C¢,Hg,N150,9S, — 1414.61; Observed = 1414.83
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NMR Spectroscopy

Experiments for § were performed on a Bruker AV-4 800 MHz NMR Spectrometer at 277 K and
298 K. TOCSY and ROESY mixing times were 80 ms and 200 ms, respectively. HBS Sheet 5
was dissolved in 20 mM sodium phosphate buffer, pH 6.0, at 1.3 mM. NMR analyses on
peptides 1 and 3 were performed on a Bruker AVANCE III-600 MHz NMR Spectrometer at 298
K. These two peptides were dissolved in the same buffer as § with concentrations above 0.6 mM.
Proton, TOCSY, and ROESY spectra were acquired using Watergate solvent suppression.
TOCSY and ROESY mixing times were 60 and 200 ms, respectively. Spectral data were
processed using Bruker TOPSPIN program.

Resonance assignments, *JNHCaH coupling constants, and calculated ¢ angles are reported
below for HBS Sheet 5 at 277 K. NOE cross-peaks and distance constraints for 5 are reported
below. Phi angles are reported as the lowest-energy conformer.

5-277 K Table & NOE Assignment

Residue HN Ha HB, HB’ Other 0]
Thrl 8.109 4.395 3.709 y (0.825) -159.4
Trp2 8.484 4.621 2.835,2.748 el (9.862) -166.3

€2 (6.940)

3 (6.925)

€3 (6.803)

N2 (6.781)

€3 (6.651)
Glu3 8.743 4.390 1.661, 1.491 y (1.858) -138.7
Thr4 8.532 4.496 3.850 y (0.991) -124.0
Thr5 8.291 4.271 3.659 y (0.777) -110.9
Tyr6 8.198 4.113 2.082, 1.339 0 (5.816), e (6.161) | -111.4
Arg7 8.252 4.086 1.257,1.161 | y (1.057),y"' (1.001), 6 | -117.0

(2.712), £ (6.966)

Val8 8.212 4.012 1.676 y (0.607), y' (0.641) | -98.7

NMR Signal Table — Strong is 2.5 +/- 1.0 A, Medium is 3.0 +/- 1.0 A, Weak is 4.0 +/- 1.0 A.

Proton 1 (chemical shift) Proton 2 (chemical shift) | Strength (Distance constraint)

el W2 (9.862)

He Y6 (6.161) Medium

el W2 (9.862) H35 Y6 (5.816) Weak
NH E3 (8.743) NH T5 (8.291) Medium
NH E3 (8.743) Ho W2 (4.621) Strong
NH E3 (8.743) HB W2 (2.835) Weak
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NH E3 (8.743) Hy E3 (1.858) Medium
NH E3 (8.743) HB E3 (1.661) Medium
NH E3 (8.743) HPB' E3 (1.491) Strong
NH T4 (8.532) Ho E3 (4.390) Strong
NH T4 (8.532) HB T4 (3.850) Strong
NH T4 (8.532) HB E3 (1.661) Medium
NH T4 (8.532) Hy T4 (0.991) Strong
NH W2 (8.484) HS W2 (6.926) Medium
NH W2 (8.484) Ho T1 (4.395) Strong
NH W2 (8.484) HB T1 (3.709) Strong
NH W2 (8.484) HB W2 (2.844) Strong
NH W2 (8.484) HB' W2 (2.748) Strong
NH T5 (8.290) £3 W2 (6.803) Medium
NH T5 (8.290) HB T5 (3.659) Strong
NH T5 (8.290) Hy T5 (0.777) Strong
NH R7 (8.252) Ho Y6 (4.113) Strong
NH R7 (8.252) HS R7 (2.712) Weak
NH R7 (8.252) HB R7 (1.257) Strong
NH R7 (8.252) HB' R7 (1.161) Strong
NH R7 (8.252) NH T1 (8.109) Medium
NH R7 (8.252) Hy R7 (1.057) Weak
NH R7 (8.252) Hy' R7 (1.001) Medium
NH V8 (8.212) Ho R7 (4.086) Strong
NH V8 (8.212) HP V8 (1.676) Strong
NH V8 (8.212) Hy V8 (0.607) Strong
NH V8 (8.212) Hy' V8 (0.641) Weak
NH Y6 (8.198) H35 Y6 (6.653) Weak
NH Y6 (8.198) Ho T5 (4.271) Strong
NH Y6 (8.198) HB T5 (3.656) Strong
NH Y6 (8.198) HP Y6 (2.082) Strong
NH Y6 (8.198) HPB' Y6 (1.339) Medium
NH T1 (8.109) HB T1 (3.706) Strong
NH T1 (8.109) Hy T1 (0.825) Strong
NH T1 (8.109) HB R7 (1.257) Weak
He R7 (6.966) Hy R7 (1.057) Medium
He R7 (6.966) Hy' R7 (1.001) Medium
He R7 (6.966) HB R7 (1.257) Weak
He R7 (6.966) HB' R7 (1.161) Weak
H5 W2 (6.926) He Y6 (6.159) Medium
H5 W2 (6.926) H35 Y6 (5.816) Medium
H5 W2 (6.926) HB W2 (2.844) Strong
H5 W2 (6.926) HB' W2 (2.748) Strong
H5 W2 (6.926) Ho T1 (4.392) Medium
£3 W2 (6.803) He Y6 (6.159) Weak
£3 W2 (6.803) H3 Y6 (5.816) Medium
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£3 W2 (6.803) Ho W2 (4.623) Medium
£3 W2 (6.803) HB W2 (2.844) Medium
£3 W2 (6.803) HB' W2 (2.748) Weak
£3 W2 (6.803) HPB' Y6 (1.339) Weak
(3 W2 (6.651) NH Y6 (8.198) Weak
(3 W2 (6.651) Ho T5 (4.271) Strong
(3 W2 (6.651) HPB' Y6 (1.339) Weak
He Y6 (6.159) Hy V8 (0.607) Strong
He Y6 (6.159) Hy' V8 (0.641) Medium
HS Y6 (5.816) Ho Y6 (4.113) Strong
HS Y6 (5.816) HB Y6 (2.082) Strong
HS Y6 (5.816) HPB' Y6 (1.339) Weak
HS Y6 (5.816) Hy V8 (0.607) Medium

Molecular Modeling of 5 from 277 K NOE Constraints

A starting structure for HBS Sheet 5 peptide was derived from a segment from PDB 5E95 in
PyMol. This was then transferred to MacroModel for incorporation of linkers and further
modifications. 3JNHCH coupling constants were obtained from the 1D spectra and torsion
angles calculated from Pardi parameterized Karplus equation®. A total of 8 dihedrals (+/- 20
degrees) and all NOE:s listed in the previous table were used to constrain a conformational search
in MacroModel using the OPLS4 force field and mixed torsional and low-mode sampling. The
20 lowest energy structures were generated.

5 NMR NOE-Constrained Model Spectra at 277 K TOCSY (Blue) ROESY (Gold)
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Aromatic - Aromatic Region
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Ha for HBS Peptides Utilized in 2D NMR Analyses at 298 K

5, @, notation for HBS Sheet peptides with number assignment at 298 K on a Bruker
AVANCE III-600 MHz NMR Spectrometer, with HBS Sheet 5 done at 298 K on a Bruker AV4-
800 MHz NMR Spectrometer as previously mentioned.

W-W Chx-W W-Y
Ha HBS Sheet 1 HBS Sheet 3 HBS Sheet 5
T1 4.408 4352 4.609
E3 4.525 4.512 4.615
T4 4.617 4.745 4.753
T5 4.427 4.568 4.498
R7 4.377 4.507 4.322
V8 4.305 4414 4.263

Chemical Shift Deviation Calculations

Chemical shift deviations were taken from Ha values recorded above and subtracted from
random coil Ha values defined by Wishart et.al.[”]

1 - Amide Fingerprint Region TOCSY (Blue) ROESY (Gold)
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3 - Amide Fingerprint Region TOCSY (Blue) ROESY (Gold)
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