

Figure S1. Wolbachia does not increase the longevity of flies of the w^{1118} background line infected with several filamentous fungal pathogens. Flies of each given background and sex were systemically infected with the indicated pathogen. Infections were performed with either (a) *Aspergillus fumigatus*, (b) *Aspergillus flavus*, (c) *Fusarium oxysporum*, or (d) *Fusarium graminaerum*. Infections of all groups were performed side-by-side, along with those of the w^k background line (Figure 1), with at least two blocks of infections performed on different days. Each line represents a total of 60 flies. Sham controls were performed with sterile 20% glycerol. Full statistics, available in Table S1, were done with a Cox mixed effects model. Controls are the same in all panels and in panel S2a because they were performed concurrently in the same background.

Figure S2. Wolbachia increases the longevity of w¹¹¹⁸ background line flies infected with certain filamentous fungal

entomopathogens. Flies of each given background and sex were systemically infected with the indicated pathogen. Infections were performed with either (a) *Beauveria bassiana*, (b) *Metarhizium anisopliae*, (c) *Clonostachys rosea*, or (d) *Trichoderma atroviride*. Infections of all groups were performed side-by-side, along with those of the w^k background line (Figure 2), with at least two blocks of infections performed on different days. Each line represents a total of 60 flies. Sham controls were performed with sterile 20% glycerol. Full statistics, available in Table S1, were done with a Cox mixed effects model. Controls for panel S2a are the same for Figure S1, and the panels in S2b-d are the same because they were performed concurrently in the same background.

Figure S3. *Wolbachia* increases the longevity of flies of the w^{1118} background line infected with yeast pathogens. Flies of each given background and sex were systemically infected with the indicated pathogen. Infections were performed with either (a) *Candida auris*, (b) *Candida glabrata*, or (c) *Galactomyces pseudocadidus*. Infections of all groups were performed side-by-side, along with those of the w^{1118} background line (Figure 3), with at least two blocks of infections performed on different days. Each line represents a total of 60 flies. Sham controls were performed with sterile 20% glycerol. Full statistics, available in Table S1, were done with a Cox mixed effects model. Controls are the same in all panels and because they were performed concurrently in the same background.

Figure S4. Wolbachia increases the number of eggs laid but not the percentage of eggs hatched post-*B. bassiana* infection in the w^{1118} background line. Female flies were systemically infected with *B. bassiana* or treated with a sham control. The flies then laid eggs for 3 days post-infection. (a) Numbers of eggs laid. (b) Proportion of eggs hatched. Each dot represents the total offspring of a single female, with an overall mean of 48 eggs laid. The boxes indicate the interquartile range. Outer edges of the box indicate 25th (lower) and 75th (upper) percentiles and the middle line indicates 50th percentile (median). Whiskers represent maximum and minimum ranges of data within 1.5 times the interquartile range of the box. Statistics are based on a logistic regression (Table S1). The entire experiment was performed twice, and graphs represent a combination of data from both blocks.

3523 354 3556 3556 3557 3559 359

Figure S5. *Wolbachia* associates with reduced pathogen titer after infection with no significant change in *Wolbachia* titer in w^{1118} flies. Female flies were systemically infected with the indicated fungal pathogen and pathogen titers were measured both immediately after infection and 24 h post-infection. Dots represent pools of 3 infected females. (a) *Wolbachia* titers. (b) *B. bassiana* titers. The boxes indicate the interquartile range. Outer edges of the box indicate 25^{th} (lower) and 75^{th} (upper) percentiles and the middle line indicates 50^{th} percentile (median). Whiskers represent maximum and minimum ranges of data within 1.5 times the interquartile range of the box. Statistics are based on a logistic regression (Table S1). The entire experiment

59 was performed twice, and graphs represent a combination of data from both blocks.

523 Table S2. Microorganisms used in this study.

Species (strain)	Microbial	Isolation Source	Stock Number or
	Classification		Isolated/Gifted By
Candida glabrata (CBS	Yeast	Feces	ATCC 2001
138)			
Candida auris	Yeast	Clinical isolate	CDC B11903
Galactomyces	Yeast	Drosophila	Isolated by I.
pseudocandidus			Nevarez-Saenz
Fusarium oxysporum (f.	Filamentous	Tomato	FGSC 9935
sp. Lycopersici)	fungus		

Beauveria bassiana	Filamentous	Locusta migratoria	Gift from P.
(GHA)	fungus	_	Shahrestani
Aspergillus fumigatus	Filamentous	Clinical isolate	FGSC 1100
	fungus		
Aspergillus flavus (NRRL	Filamentous	Peanut	FGSC A1446
3357)	fungus		
Metarhizium anisopliae	Filamentous	Insect	ARSEF 23
(recently renamed	fungus		
Metarhizium robertsii)			
Clonostachys rosea	Filamentous	Aedes albopictus	Isolated by P.
	fungus	(mosquito) L4	Tawidian & gifted by
		larvae, Manhattan,	K. Michel
		KS	
Trichoderma viride	Filamentous	Aedes albopictus	Isolated by P.
	fungus	(mosquito) L4	Tawidian & gifted by
		larvae, Manhattan,	K. Michel
		KS	

594 Table S3. Primers used in this study.

Gene	Primer Name	Sequence
Wolbachia groEL	groEL_F	CTAAAGTGCTTAATGCTTCACCTTC
	groEL_R	CAACCTTTACTTCCTATTCTTG
Drosophila rp49	Rp49_F	CGGTTACGGATCGAACAAGC
	Rp49_R	CTTGCGCTTCTTGGAGGAGA
Beauveria bassiana gamma-tubulin	Bbas_F	CAGAGCGACGACACACGC
	Bbas_R	CCCACGCCATTCTTGCCAATG