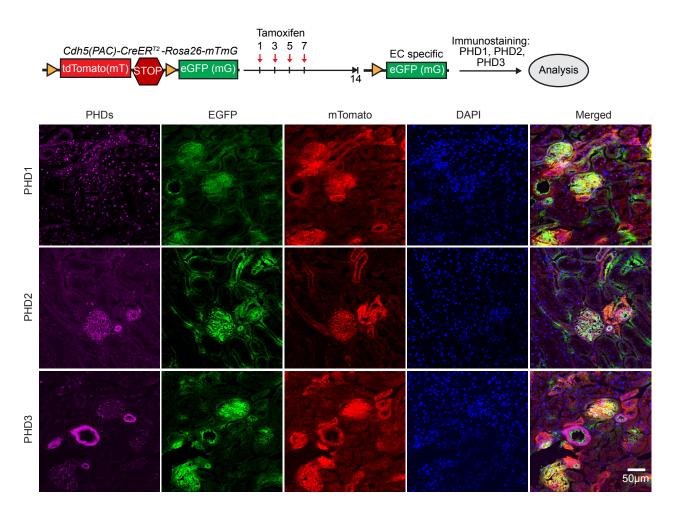
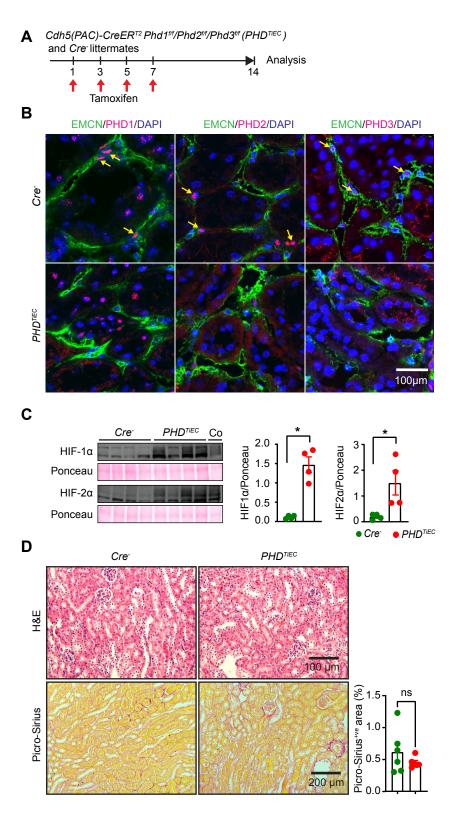
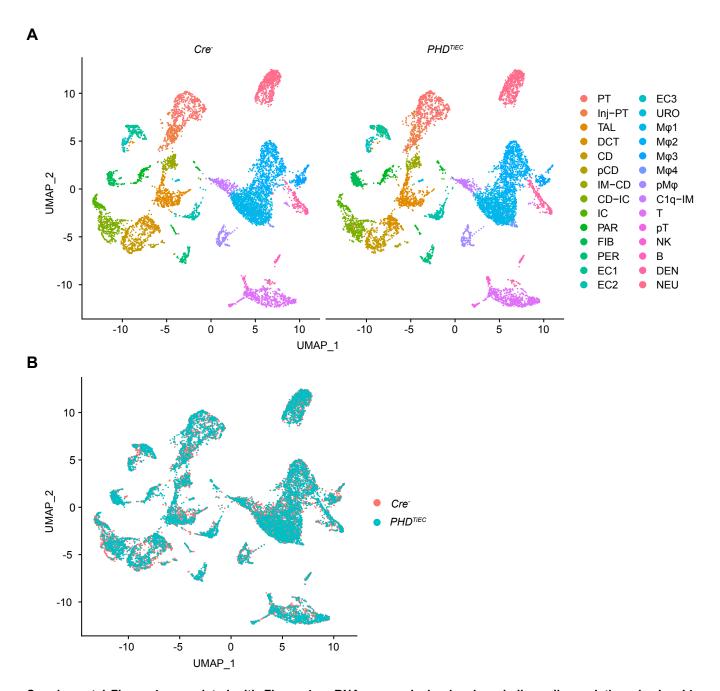
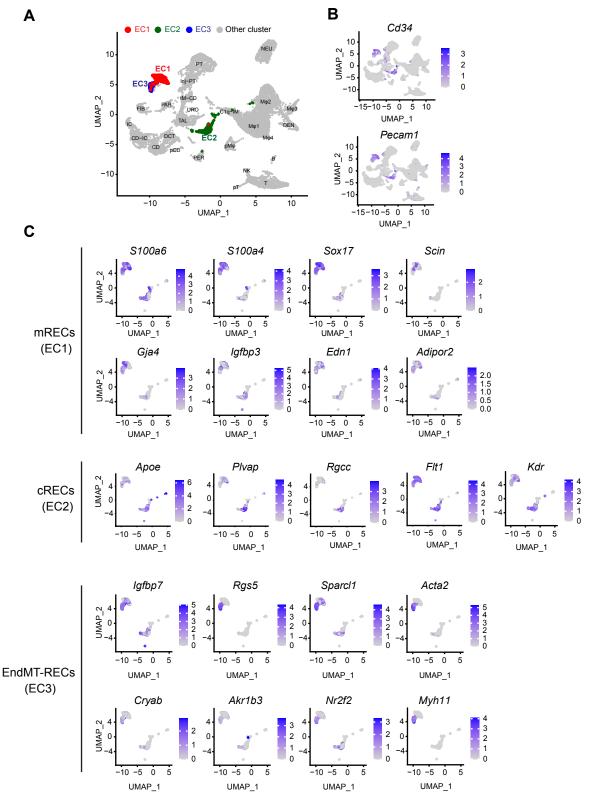

Supplemental Materials for

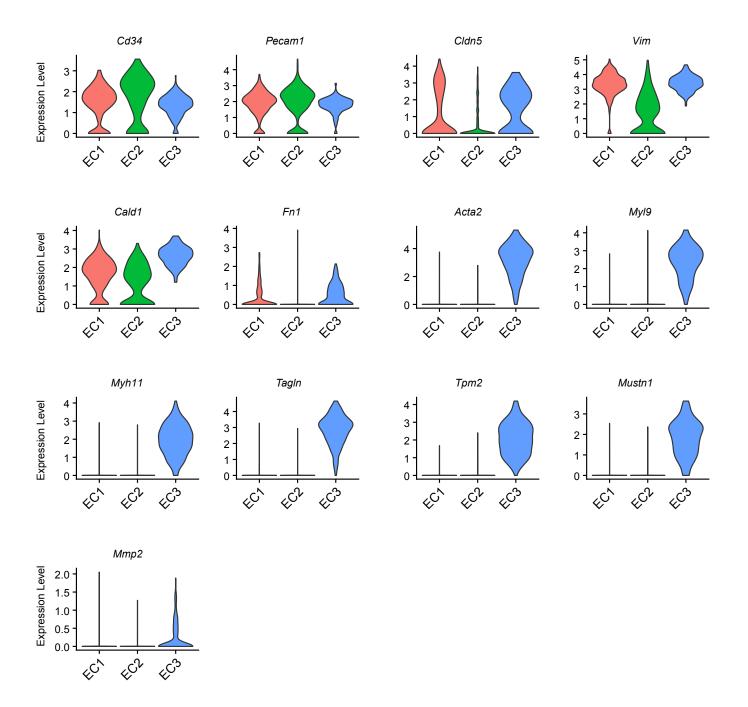

Post-ischemic inactivation of HIF prolyl hydroxylases in endothelium promotes maladaptive kidney repair by inducing glycolysis

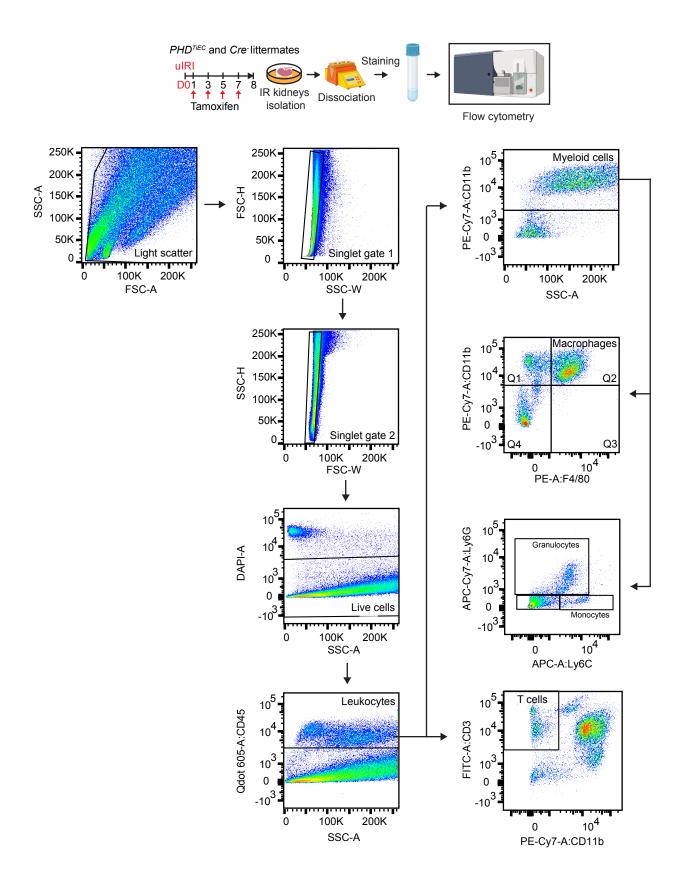
Tiwari et al.

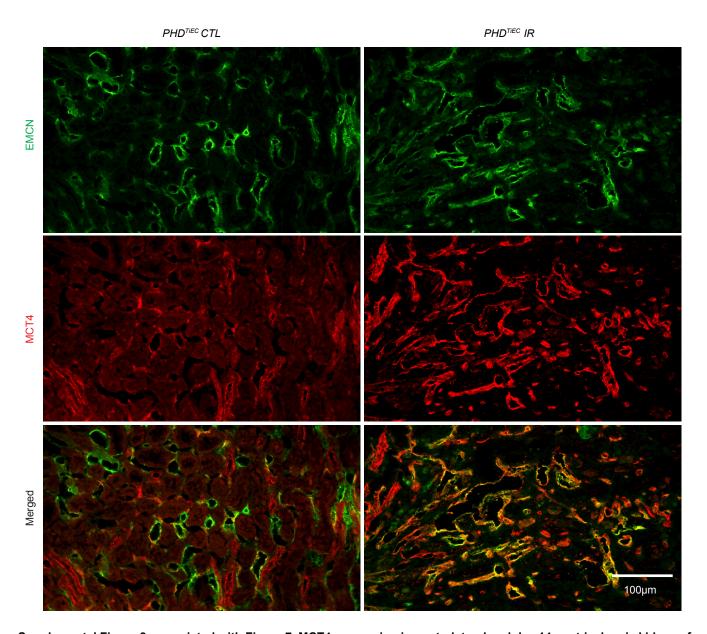

The PDF file includes: Supplemental Figures 1 to 9 Supplemental Tables 1 to 3

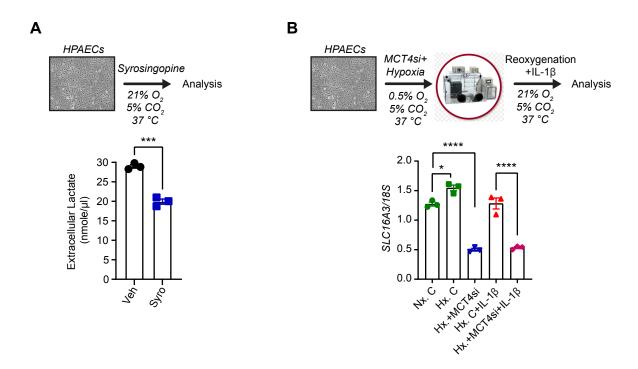

Supplemental Figure 1, associated with Figure 1. Efficiency of *Cre*⁻ recombination in *Cdh5(PAC)-CreER*⁻⁷² transgenic mice following kidney IRI. (A) By crossing *Cdh5(PAC)-CreER*⁻⁷² mice with *ROSA26-ACTB-tdTomato,-EGFP (mTmG)* reporter mice, we generated *Cdh5(PAC)-CreER*⁻⁷²; *Rosa26-mTmG* mice, in which successful *Cre*⁻ mediated excision is being indicated by GFP expression in endothelial cells (ECs). Mice were subjected to uIRI followed by tamoxifen administration starting at day 1 post uIRI to a total of 4 intraperitoneal (IP) injections given every other day. The degree of EC-specific recombination was assessed by FACs analysis in single-cell suspensions prepared by CTL and IR kidneys. (B) Flow cytometric gating strategy used to define recombined ECs. Staining for the endothelial marker CD31 was used to detect ECs, while GFP identified cells with tamoxifen induced expression of *Cdh5-CreER*⁻⁷². (C) Shown are the percentages of GFP^{+ve} and CD31^{+ve} cells (left panel) as well as the percentage of CD31^{+ve} cells among GFP^{+ve} cells (right panel) in CTL and IR kidneys at day 14 post uIRI (n=3). For (C), statistics were determined by one-way ANOVA with Sidak correction for multiple comparisons. ns, not statistically significant. ECs, endothelial cells.


Supplemental Figure 2, associated with Figure 2. Murine kidney endothelium shows compartment-specific differences in the expression of PHD1, PHD2 and PHD3. Schematic view of experiment and representative images of immunofluorescence staining for PHD1, PHD2, PHD3 (magenta) and nuclear DAPI staining (blue) on kidney sections from $Cdh5(PAC)-CreER^{T2}-Rosa26mTmG$ reporter mice after tamoxifen-induced recombination. Non recombined cells express membrane bound mTomato (red), whereas recombined cells express membrane-bound EGFP (green).


Supplemental Figure 3, associated with Figure 3. Simultaneous acute inactivation of endothelial PHD1, 2, and 3 stabilizes HIF without significantly affecting kidney morphology. (A) Schematic diagram depicting the tamoxifen administration regimen and the experimental strategy to obtain PHD^{TEC} mice and Cre^- control mice. (B) Immunofluorescence staining for PHD1-3 (red), EMCN (green) and nuclear DAPI (blue) using kidney sections from PHD^{TEC} mice and Cre^- controls collected 1 week after the last dose of tamoxifen. Scale bar, $100 \, \mu m$. (C) Immunoblot analysis of HIF-1 α and HIF-2 α in kidney nuclear extracts isolated from PHD^{TEC} mice and Cre^- littermates. Co, positive control. (D) Representative images of H&E and Picro-Sirius red stained kidney sections for the indicated genotypes. Right side graph shows semi-quantitative analysis of Picro-Sirius red rea for PHD^{TEC} mice and Cre^- littermates 1 week after the last dose of tamoxifen (n=4-6). Scale bars indicate 100 μ m and 200 μ m for H&E and Picro-Sirius red images, respectively. Data are represented as mean \pm SEM. Statistics were determined by unpaired t- test with Welch's correction. *, P < 0.05; ns, not statistically significant. EMCN, endomucin.


Supplemental Figure 4, associated with Figure 4. scRNA-seq analysis showing similar cell populations in day 14 post-ischemic kidneys of PHD^{TIEC} and Cre^- mice. (A) UMAP showing different cell clusters in day 14 post-ischemic kidneys from PHD^{TIEC} and Cre^- mice. (B) UMAP after overlaying samples of Cre^- and PHD^{TIEC} day 14 post-ischemic kidneys showing similar clustering.


Supplemental Figure 5, associated with Figure 5. Marker genes used to identify different EC clusters. (A) UMAP plot with highlighted EC1 (red), EC2 (green) and EC3 (blue) cluster. (B) Feature plot showing expression of endothelial marker genes *Cd34* and *Pecam1* in EC1, EC2 and EC3 clusters. (C) Feature plot of EC marker genes used to identify mRECs (EC1), cRECs (EC2) and EndMT-RECs (EC3) clusters.


Supplemental Figure 6, associated with Figure 5. Violin plots showing the expression of endothelial and mesenchymal markers in EC1, EC2 and EC3 clusters. Violin plots show the expression of marker genes for ECs (Cd34, Pecam1, Cldn5) and mesenchymal cells (Vim, Cald1, Fn1, Acta2, Myl9, Myh11, TagIn, Tpm2, Mustn1, and Mmp2) in three EC clusters.

Supplemental Figure 7, associated with Figure 6. Strategy for the analysis of immune cells by flow cytometry. Schematic view of FACs experiment and gating strategy for the analysis of different immune cell populations in day 8 post-IRI kidneys from *PHD*^{TIEC} and *Cre*⁻ mice. CD45⁺ (leukocytes), CD45⁺ CD3⁺ (T cells), CD45⁺ CD11b⁺ (myeloid cells), CD45⁺ CD11b⁺ F4/80⁺ (macrophages), CD45⁺ CD11b⁺ Ly6C⁺ (monocytes), CD45⁺ CD11b⁺ Ly6G⁺ (granulocytes) cells were measured.

Supplemental Figure 8, associated with Figure 7. MCT4 expression in contralateral and day 14 post-ischemic kidney of $PHD^{\textit{TIEC}}$ mouse . Representative images of immunofluorescence staining for MCT4 (red) and EMCN (green) of CTL and IR kidneys on day 14 post-IRI from $PHD^{\textit{TIEC}}$ mice indicating increased expression of endothelial MCT4 following ischemic injury. Images were captured using Nikon a Ti2 Widefield fluorescence microscope. Scale bar,100 μ m. CTL, contralateral kidney; IR, kidney subjected to uIRI.

Supplemental Figure 9, associated with Figure 8. Effect of syrosingopine on extracellular lactate levels and knockdown efficiency of MCT4 siRNA. (A) HPAECs were treated for 24 hours with syrosingopine or vehicle (DMSO) and extracellular lactate levels were measured. (B) Experimental scheme for HPAECs subjected to 0.5% O_2 for 18 hours in the presence of MCT4 siRNA followed by reoxygenation for 8 hours in the presence of IL-1 β (1 ng/ml). Graph showing SLC16A3 (MCT4) mRNA levels in cells transfected with MCT4 siRNA compared to negative control siRNA transfected cells. All bars show mean \pm SEM. For (A), unpaired t- test with Welch's correction was used. For (B), statistics were determined using one-way ANOVA with Sidak correction for multiple comparisons. *, P < 0.05; ***, P < 0.001; ****, P < 0.0001. Veh, vehicle; Syro, syrosingopine; Nx, Normoxia; Hx, Hypoxia/Reoxygenation; C, negative control siRNA; MCT4si, MCT4 siRNA.

Supplemental Table 1. List of GEO numbers and details of samples which were used to assess the level of *Eglns* in human kidney ECs.

Samples	GEO	Source name	Organism	Subject status	Tissue
1	GSM4191941	Tumor- nephrectory	Homo sapiens	Normal/healthy	Adult kidney
2	GSM4191942	Tumor- nephrectory	Homo sapiens	Normal/healthy	Adult kidney
3	GSM4191943	Tumor- nephrectory	Homo sapiens	Normal/healthy	Adult kidney
4	GSM4191944	Tumor- nephrectory	Homo sapiens	Normal/healthy	Adult kidney
5	GSM4191945	Tumor- nephrectory	Homo sapiens	Normal/healthy	Adult kidney
6	GSM4191946	Tumor- nephrectory	Homo sapiens	Normal/healthy	Adult kidney
7	GSM4191947	Tumor- nephrectory	Homo sapiens	Normal/healthy	Adult kidney
8	GSM4191948	Tumor- nephrectory	Homo sapiens	Normal/healthy	Adult kidney
9	GSM4191949	Tumor- nephrectory	Homo sapiens	Normal/healthy	Adult kidney
10	GSM4191950	Tumor- nephrectory	Homo sapiens	Normal/healthy	Adult kidney
11	GSM4191951	Tumor- nephrectory	Homo sapiens	Normal/healthy	Adult kidney
12	GSM4191952	Living donor	Homo sapiens	Normal/healthy	Adult kidney
13	GSM4191953	Living donor	Homo sapiens	Normal/healthy	Adult kidney

	,		ı		1
14	GSM4191954	Living donor	Homo sapiens	Normal/healthy	Adult kidney
15	GSM4191955	Tumor- nephrectory	Homo sapiens	Normal/healthy	Adult kidney
16	GSM4191956	Tumor- nephrectory	Homo sapiens	Normal/healthy	Adult kidney
17	GSM4191957	Tumor- nephrectory	Homo sapiens	Normal/healthy	Adult kidney
18	GSM4191958	Tumor- nephrectory	Homo sapiens	Normal/healthy	Adult kidney
19	GSM4191959	Tumor- nephrectory	Homo sapiens	Normal/healthy	Adult kidney
20	GSM4191960	Surveillance biopsy	Homo sapiens	Normal/healthy	Adult kidney
21	GSM4191961	Surveillance biopsy	Homo sapiens	Normal/healthy	Adult kidney
22	GSM4191962	Surveillance biopsy	Homo sapiens	Normal/healthy	Adult kidney
23	GSM4191963	Surveillance biopsy	Homo sapiens	Normal/healthy	Adult kidney
24	GSM4191964	Surveillance biopsy	Homo sapiens	Normal/healthy	Adult kidney

Supplemental Table 2. List of used marker genes to identify different cell cluster of scRNA seq data of *Cre*⁻ and *PHD*^{TiEC} mice and their references.

Marker genes	Cell cluster	Reference
Pck1, Lrp2, Slc5a12, Slc34a1	Proximal tubule (PT)	(1, 2)
Haver1	Injured PT (Inj-PT)	(1)
Umod, Slc12a1	Thick ascending limb (TAL)	(1)
Slc12a3	Distal convoluted tubule (DCT)	(3)
Fxyd4, Aqp2	Collecting duct (CD)	(4)
Slc14a2	Inner medullary collecting duct (IM-CD)	(5)
Atp6v1g3, Scl26a4	Intercalated cells (IC)	(1, 6)
Ncam1	Parietal cells (PAR)	(7)
Colla2, Colla2, Den	Fibroblasts (FIB)	(2, 8, 9)
Myh11, Acta2,	Pericytes (PER)/smooth muscle cells	(9)
Cd34, Pecam1, Igfbp3	Endothelial cells (EC)	(1, 10)
Upk1b	Urothelial cells (URO)	(11)
Mki67, Top2a	Proliferating cells (p)	(1) (12)
Ptprc	Immune cells	(6)
Itgam	Myeloid cells	(12)
Adgre1, Cx3cr1	Macrophages (Mφ)	(1, 12)
CIqa, CIqb, CIqc	C1qa, C1qb and C1qc expressing immune cell (C1q-IM); potentially resident macrophage/monocyte	(13, 14)
Trbc2, Skap1	T cells	(14, 15)
GZMA, GZMB	Natural killer cells (NK cells)	(16)
Ms4a1, Pax5, Bcl11a	B cells	(15, 17-19)
Flt3	Dendritic cells (DC)	(20, 21)
S100a8, S100a9	Neutrophils (NEU)	(22)

Supplemental Table 3. Primer sequences. Shown are sequences of primer sets used for the expression analysis of the indicated mouse and human genes by RT-PCR.

Gene	Forward Primer	Reverse Primer	
Mouse			
Loxl2	5'-GATCTTCAGCCCCGATGGA-3'	5'-CAAGGGTTGCTCTGGCTTGT-3'	
Tgfb1	5'-TGGCGAGCCTTAGTTTGGA-3'	5'-TCGACATGGAGCTGGTGAAA-3'	
Acta2	5'-CCTGACGCTGAAGTATCCGATAG-3'	5'-TTTTCCATGTCGTCCCAGTTG-3'	
Kim1	5'-AAACCAGAGATTCCCACACG-3'	5'-GTCGTGGGTCTTCCTGTAGC-3'	
Human			
SLC16A3	5'-GGGTGGGAACCGTGTCATT-3'	5'-CTTGCGGCTTGGCTTCA-3'	
VCAMI	5'-GCTTCAGGAGCTGAATACCC-3'	5'-AAGGATCACGACCATCTTCC-3'	
ICAM1	5'-CCACAGTCACCTATGGCAAC-3'	5'-AGTGTCTCCTGGCTCTGGTT-3'	

Supplemental References

- 1. Xu L, Guo J, Moledina DG, and Cantley LG. Immune-mediated tubule atrophy promotes acute kidney injury to chronic kidney disease transition. *Nat Commun.* 2022;13(1):4892.
- Rudman-Melnick V, Adam M, Potter A, Chokshi SM, Ma Q, Drake KA, et al. Single-Cell Profiling of AKI in a Murine Model Reveals Novel Transcriptional Signatures, Profibrotic Phenotype, and Epithelial-to-Stromal Crosstalk. *J Am Soc Nephrol*. 2020;31(12):2793-814.
- 3. Miao Z, Balzer MS, Ma Z, Liu H, Wu J, Shrestha R, et al. Single cell regulatory landscape of the mouse kidney highlights cellular differentiation programs and disease targets. *Nat Commun.* 2021;12(1):2277.
- 4. Klocke J, Kim SJ, Skopnik CM, Hinze C, Boltengagen A, Metzke D, et al. Urinary single-cell sequencing captures kidney injury and repair processes in human acute kidney injury. *Kidney Int.* 2022;102(6):1359-70.
- 5. Ransick A, Lindstrom NO, Liu J, Zhu Q, Guo JJ, Alvarado GF, et al. Single-Cell Profiling Reveals Sex, Lineage, and Regional Diversity in the Mouse Kidney. *Dev Cell*. 2019;51(3):399-413 e7.
- 6. McEvoy CM, Murphy JM, Zhang L, Clotet-Freixas S, Mathews JA, An J, et al. Single-cell profiling of healthy human kidney reveals features of sex-based transcriptional programs and tissue-specific immunity. *Nat Commun.* 2022;13(1):7634.
- 7. Liu WB, Huang GR, Liu BL, Hu HK, Geng J, Rui HL, et al. Single cell landscape of parietal epithelial cells in healthy and diseased states. *Kidney Int.* 2023;104(1):108-23.
- 8. Muhl L, Genove G, Leptidis S, Liu J, He L, Mocci G, et al. Single-cell analysis uncovers fibroblast heterogeneity and criteria for fibroblast and mural cell identification and discrimination. *Nat Commun.* 2020;11(1):3953.

- 9. Kirita Y, Wu H, Uchimura K, Wilson PC, and Humphreys BD. Cell profiling of mouse acute kidney injury reveals conserved cellular responses to injury. *Proc Natl Acad Sci U S A*. 2020;117(27):15874-83.
- 10. Dumas SJ, Meta E, Borri M, Goveia J, Rohlenova K, Conchinha NV, et al. Single-Cell RNA Sequencing Reveals Renal Endothelium Heterogeneity and Metabolic Adaptation to Water Deprivation. *J Am Soc Nephrol.* 2020;31(1):118-38.
- 11. Tanigawa S, Tanaka E, Miike K, Ohmori T, Inoue D, Cai CL, et al. Generation of the organotypic kidney structure by integrating pluripotent stem cell-derived renal stroma. *Nat Commun.* 2022;13(1):611.
- 12. Conway BR, O'Sullivan ED, Cairns C, O'Sullivan J, Simpson DJ, Salzano A, et al. Kidney Single-Cell Atlas Reveals Myeloid Heterogeneity in Progression and Regression of Kidney Disease. *J Am Soc Nephrol.* 2020;31(12):2833-54.
- 13. Zimmerman KA, Bentley MR, Lever JM, Li Z, Crossman DK, Song CJ, et al. Single-Cell RNA Sequencing Identifies Candidate Renal Resident Macrophage Gene Expression Signatures across Species. J Am Soc Nephrol. 2019;30(5):767-81.
- 14. Wu H, Malone AF, Donnelly EL, Kirita Y, Uchimura K, Ramakrishnan SM, et al. Single-Cell Transcriptomics of a Human Kidney Allograft Biopsy Specimen Defines a Diverse Inflammatory Response. *J Am Soc Nephrol.* 2018;29(8):2069-80.
- 15. Li H, Qu L, Yang Y, Zhang H, Li X, and Zhang X. Single-cell Transcriptomic Architecture
 Unraveling the Complexity of Tumor Heterogeneity in Distal Cholangiocarcinoma. *Cell Mol Gastroenterol Hepatol.* 2022;13(5):1592-609 e9.

- 16. Bezman NA, Kim CC, Sun JC, Min-Oo G, Hendricks DW, Kamimura Y, et al. Molecular definition of the identity and activation of natural killer cells. *Nat Immunol*. 2012;13(10):1000-9.
- 17. Morgan D, and Tergaonkar V. Unraveling B cell trajectories at single cell resolution. *Trends Immunol.* 2022;43(3):210-29.
- 18. Liu Y, Hu J, Liu D, Zhou S, Liao J, Liao G, et al. Single-cell analysis reveals immune landscape in kidneys of patients with chronic transplant rejection. *Theranostics*. 2020;10(19):8851-62.
- 19. Qu J, Yang F, Zhu T, Wang Y, Fang W, Ding Y, et al. A reference single-cell regulomic and transcriptomic map of cynomolgus monkeys. *Nat Commun.* 2022;13(1):4069.
- 20. Villani AC, Satija R, Reynolds G, Sarkizova S, Shekhar K, Fletcher J, et al. Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors. *Science*. 2017;356(6335).
- 21. Arazi A, Rao DA, Berthier CC, Davidson A, Liu Y, Hoover PJ, et al. The immune cell landscape in kidneys of patients with lupus nephritis. *Nat Immunol*. 2019;20(7):902-14.
- 22. Xie X, Shi Q, Wu P, Zhang X, Kambara H, Su J, et al. Single-cell transcriptome profiling reveals neutrophil heterogeneity in homeostasis and infection. *Nat Immunol*. 2020;21(9):1119-33.