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1. Theoretical analysis 

1.1. Effective bulk Hamiltonian 

Due to the symmetric spatial distribution of refractive index in the z direction, the TM and TE 

modes supported by the photonic crystal slab are orthogonal to each other. We focus on the TE 

modes which exhibit nonzero magnetic components only in the z direction. The Maxwell equation 

for the magnetic field hz(r) with harmonic time dependence is 
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A Bloch mode with momentum k can be expanded in an orthonormal set of plane waves as 

 ( ) ,( ) exp exp( )zh j c j= ⋅ ⋅ k G
G

r k r G r   (S2) 

where G is a reciprocal vector of the photonic crystal. Here, we take six reciprocal vectors Gm (m 

= 1–6) into consideration and obtain an eigenvalue problem 
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where η(k) is the Fourier transform of ε−1(r): 

 1

unit cell

( ) ( ) exp( )j dη ε −= ⋅ ⋅k r k r r  

We will find out the values of η(k) at the Γ, Gm, and Pm points (m = 1–6), which are shown in Fig. 

S1. Specifically, the geometric parameter δt leads to a nonzero η(Gm) = αt (m = 1–6), and the other 

geometric parameter δi leads to a nonzero imaginary part of η(Pm) such that η(Pm) = η1 + j∙αi for m 

= 1–3 and η(Pm) = η1 − j∙αi for m = 4–6. Here, αt and αi are proportional to the geometric parameter 

δt and δi, respectively. Then we have 

 λ =k k k kc H c   (S4) 
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with the eigenstate vector ck = (ck,G1,శ, ck,G2,శ, ck,G3,శ, ck,G1,ష, ck,G2,ష, ck,G3,ష)T, the eigenvalue λk = ωk
2 c2⁄ − G2൫η0 + η1 2⁄ ൯, and the Hamiltonian 

Hk = ൫η0∙I3⨂σ0 − η1 2⁄ ∙M1⨂σ0 + αt∙M1⨂σx + jαi∙M2⨂σz൯ ∙ Mk − G2൫η0 + η1 2⁄ ൯∙I3⨂σ0. 

 
Figure S1. Theoretical analysis of the photonic crystal using a plane-wave expansion method. 
The gray shaded hexagon indicates the first Brillouin zone of the photonic crystal. The distribution 

of η(k) is similar to that in our previous work on nanomechanical systems30. Adapted with 

permission from Ref. 30. 

In the above equations, the symbols are defined as G = |Gm| (m = 1–3), 

σ0 = ቂ1 0
0 1ቃ, σx = ቂ0 1

1 0ቃ, σz = ቂ1 0
0 −1ቃ, 

I3 = 1 0 0
0 1 0
0 0 1

൩, M1 = 0 1 1
1 0 1
1 1 0

൩, M2 =  0 1 −1−1 0 1
1 −1 0

൩, ሺMkሻi, j = Gi ∙ Gj + k ∙ ൫Gi + Gj൯. 

At the Γ point (k = 0), the Hamiltonian Hk has eigenvalues 

(λ1,↑, λ2,↑, λ1,↓, λ2,↓) = ( − ∆0 2⁄ , ∆0 2⁄ , − ∆0 2⁄ , ∆0 2⁄ ) 

As the opened bandgap ∆0 = G2ට3αi
2 + αt

2 is proportional to the geometric parameter δ0 and does 

not depend on θ, the parameters αi and αt can be expressed as (√3αi, αt) = Δ0/G2∙(cosθ, sinθ). Note 

that the Hamiltonian in Eq. (S4) has six eigenfrequencies in total, but we only need to focus on 

four of them, because the other two have eigenvalues far away from  λn,↑↓ (n = 1, 2). We define 

another four states which are superpositions of the plane waves with wave vectors Gm (m = 1–6) 
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so that  ℎ௭ሺrሻ can be decomposed as 

 , , ,
,

( ) exp( ) , ( , )z n s n s
n s

h j c n sψ= ⋅ ⋅ = ± =↓↑ kr k r   (S6) 

With the states ቀቚψ+,↓ , ቚψ+,↑ , ቚψି,↓ , ቚψି,↑ቁ as the basis, Eq. (S4) can be reduced to  

 ( )λ = ⋅k k kc H k c   (S7) 

with the eigenstate vector ck = (ck,+,↓, ck,+,↑, ck,ି,↓, ck,ି,↑)T and the Hamiltonian 

 0( ) ) ( cos s )( i
2

nx y z xD x y yv k k θ θΔ= ⋅ + + −H τσ σ σk τ   (S8) 

where σx, σy, σz, and τz are the Pauli matrices, and vD = G·൫η1 − η0൯ is the effective Fermi velocity 

near the Γ point. In Eq. (S8), the first term indicates the double-Dirac-cone dispersion relation in 

the momentum space, and the second term indicates the effective masses that produce the bulk 

bandgap. The Hamiltonian H(k) in Eq. (S8) is mathematically identical to the Jackiw–Rossi model, 

where ቚψ±,↓↑ represents charge-conjugate (+/−) Dirac fermions with opposite spins (↓/↑). Besides, 

similar to the Jackiw–Rossi model, the states ቚψ±,↓↑ in Eq. (S5) naturally satisfy the charge-

conjugation symmetry  
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1.2. Analytical solution of the Dirac-vortex states 

Our previous discussion focuses only on bulk states in strictly periodic photonic crystal structures 

with constant parameters Δ0 and θ. Next, we will focus on a different case where the geometric 
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parameters Δ0 and θ are functions of the spatial position r. Similar to Eqs. (S7) and (S8), the Dirac-

vortex state is governed by 

 0 ( ) ( ) ( )λ = ⋅c r H r c r   (S10) 

with the spatially dependent vector c(r) = [c+,↓(r), c+,↑(r), cି,↓(r), cି,↑(r)]T, the eigenvalue λ0 =
ω0

2 c2⁄ − G2൫η0 + η1 2⁄ ൯, and the real-space Hamiltonian 

 0( ) ) ( cos sin )(
2x y z x yD x yjv θ θ= − ⋅ + + Δ∂ ∂ −H τσ σ σr τ   (S11) 

In the polar coordinate system, r = R∙(cosφ, sinφ). We focus on the zero mode with ω0 =
cGටη0 + η1 2⁄   (i.e., λ0 = 0), so that Eqs. (S10) and (S11) lead to the following equations 

 

( )
*0

D , ,

( )
*0

D , ,

( )( ) ( ) 0
2

( )( ) ( ) 0
2

j
j

R

j
j

R

ejjv e c c
R

ejjv e c c
R

θ
ϕ

ϕ

θ
ϕ

ϕ

−
+ ↑ + ↑

+ ↓ + ↓








Δ − ∂ − ∂ + = 
 

Δ − ∂ + ∂ + = 
  

r

r

rr r

rr r
  (S12) 

Note that the values of cି,↓↑(r)  can be determined by the relationship cି,↓(r) = c+,↑
∗ (r)  and 

cି,↑(r) = −c+,↓
∗ (r). We focus on a special case of Δ0(R) = Δmax∙[tanh(R/R0)]4 and θ(φ) = w∙φ + θ0, 

where R0 controls the size of the cavity, w = 1 is the winding number of the vortex, and θ0 is the 

value of θ(φ) at φ = 0. We assume that the solution of Eq. (S12) is c+,↓↑(r) = g↓↑ሺRሻ⋅exp ቀjp↓↑φ+
jϑ↓↑ቁ, where g↓↑ሺRሻ is the amplitude distribution along the radial direction, the integer p↓↑ is the 

angular quantum number, and ϑ↓↑ is the additional phase term of c+,↓↑(r). Equation (S12) can be 

rewritten as  
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As Eq. (S13) is valid for arbitrary values of φ, we obtain p↑ = 0, and p↓ = −1, so that 
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Besides, as g↓↑ሺRሻ is always real, the phase terms in Eq. (S14) have to satisfy ϑ↑↓ = − θ0 2⁄ + π 4⁄  

or ϑ↑↓ = − θ0 2⁄ − π 4⁄ , so that Eq. (S13) can be reduced to  
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and  
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Considering the boundary conditions that g↓↑ሺR = 0ሻ is finite and g↓↑ሺR = +∞ሻ is zero, we find 

that Eq. (S15) has a nonzero solution 
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only when ϑ↑ = − θ0 2⁄ − π 4⁄ , while Eq. (S16) always has a zero solution g↓ሺRሻ = 0.  

In conclusion, the modal profile of the Dirac-vortex state with parameters Δ0(R) = Δmax∙[tanh 

(R/R0)]4 and θ(φ) = φ + θ0 is 

 0 0( ) ( )zh g R ψ= ⋅r   (S18) 

where the envelope function g0ሺRሻ controlling the modal volume of the Dirac-vortex state is 
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 3max 0 max
0

D 0 0 D

( ) exp tanh 3 tanh exp
6 2

R RR Rg R
v R R v

    Δ Δ= ⋅ + ⋅ −    
   

  (S19) 

and the Bloch mode หψ0ൿ = eିjሺπ 4⁄ ାθ0 2⁄ ሻ ቚψ+,↑ + ejሺπ 4⁄ ାθ0 2⁄ ሻ ቚψି,↓ controlling the detailed modal 

profile is  

 ( ) ( )0 04 2 4 2
0 , ,

j je eπ θ π θψ ψ ψ− + +
+ ↑ − ↓= +   (S20) 

Note that hz(r) naturally satisfies hz(r) = hz*(r). From Eq. (S20) one can also find that the Dirac-

vortex mode exhibits an interesting property: adiabatically varying θ0 from 0 to 2π introduces a 

nontrivial geometric phase π. This phenomenon is closely related to the braiding of the Majorana 

modes.  

1.3. Comparison with the Kekulé distortion scheme 

To investigate the relationship and difference between our scheme and the Kekulé distortion 

scheme widely used by others, we begin with the original uniform structure without any geometric 

variations. In this case, the physics is generally described by a four-band Dirac Hamiltonian  

 1 2x yk k= +H Γ Γ   

where iΓ (i = 1–5) is the 4 × 4 Gamma matrix satisfying the anticommutation relation ൛Γi,  
Γjൟ = 2δij similar to the 2 × 2 Pauli matrix in two-band Dirac Hamiltonian. To ensure the four-fold 

degeneracy at the Dirac point, the four-band Dirac Hamiltonian is composed by at most five 

Gamma matrices, which means that there are at most three synthetic parameters δi, δt, δt2 to make 

a full Hamiltonian 

 1 2 3 4 2 5x y i t tk k δ δ δ= + + + +H Γ Γ Γ Γ Γ   

In our specific case, the detailed form of Gamma matrix is ሺΓ1, Γ2, Γ3, Γ4, Γ5ሻ = ൫σx, σy, σzτx, − σzτy, τzσz൯. As shown in Fig. S2, these three parameters can span a three-dimensional (3D) 

synthetic parameter space. Our scheme operates in the 2D subspace spanned by δi and δt, while the 
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Kekulé scheme operates in the 2D subspace spanned by δt and δt2. In fact, any big circles of the 

sphere shown in Fig. S2 can lead to a Dirac-vortex cavity. Different choices of the big circles can 

lead to different near-field modal profiles as well as far-field patterns. This interesting 

phenomenon was investigated and demonstrated on a nanomechanical platform (see Fig. 5 in Ref. 

30).  

 
Figure S2. Illustration of the extended 3D synthetic parameter space. Our scheme and the 

Kekulé scheme are both based on a mapping from the azimuthal angle of spatial domain arg(r) to 

the 3D synthetic parameter space. Our scheme operates in the 2D subspace spanned by parameters 

δi and δt, while the Kekulé scheme operates in the 2D subspace spanned by δt and δt2. The 

difference between our scheme and the Kekulé scheme has been discussed in detail in our previous 

work on nanomechanical systems30. Adapted with permission from Ref. 30. 
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2. Additional methods and results 

 
Figure S3. Device fabrication process flowchart. 

 
Figure S4. Epitaxial structure of the InAs/InGaAs QD active layer grown on silicon. a, 

Illustration of epitaxial structure of the active layer, which consists of two symmetric 40-nm-thick 

Al0.4Ga0.6As cladding layers and four layers of InAs/InGaAs dot-in-well structures separated by 

50-nm GaAs spacer layers. b, Cross-sectional bright-field transmission electron microscope image 

of a single QD. Scale bar, 10 nm. c, Atomic force microscope image of uncapped InAs/InGaAs 

QDs. Scale bar, 400 nm. The same wafer was also used for fabricating the corner-state lasers34. 

Adapted with permission from Ref. 34. © 2022 American Chemical Society. 
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Figure S5. Dependence of the bulk bandgap on parameter θ. a, b, Simulated bulk bandgaps at 

the Γ point of the first Brillouin zone with δ0 fixed at 35 nm and θ varying from 0 to 2π. The 

geometric parameters δt and δi are determined by (δt, δi) = δ0(α·sinθ, cosθ). The simulated bulk 

bandgap depends strongly on θ when α is 0.49 (a). In our experiment, we set α = 0.65 (0.33) for 

δt > 0 (δt < 0) to obtain a weakly θ-dependent bulk bandgap (b). 

 

 

Figure S6. Log–log plot of the L–L curve for the sample shown in Fig. 3b and the theoretically 

calculated curves by using the coupled rate equations with different β values. 
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Figure S7. Simulated properties of the Dirac-vortex laser cavities with different R0. a, 

Simulated cavity resonant wavelength (purple solid line) and Q factor (orange dashed line) of the 

Dirac-vortex lasers as a function of the cavity size R0. b, Simulated modal area of the Majorana 

bound state as a function of the cavity size R0. The modal area increases from 16.7 to 33.0 μm2 

when R0/a0 is increased from 2 to 4. 
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Figure S8. Measured and simulated far-field patterns from devices with different cavity sizes 

and polarization directions.  
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Figure S9. Measured far-field patterns of the device with R0/a0 = 1 under varying pump 
intensities. a, Measured spontaneous emission below the lasing threshold. The spontaneous 

emission does not exhibit directionality or polarization. b, Measured far-field patterns above the 

lasing threshold. The peanut-shaped lasing pattern appears gradually in the x-polarized emission 

as the pump intensity increases, which suggests that the directionality and polarization of the 

device are improved with increased pump intensity. 

 
Figure S10. Measured lasing wavelength, linewidth, and threshold of devices with different 
s0. Varying the size of etched holes s0 leads to effective tuning of the lasing wavelength from 1300 

to 1370 nm. Under a pump intensity of 4.25 kW cm−2, the devices with a smaller s0 exhibit a 

narrower linewidth and a longer lasing wavelength. The narrower linewidth is attributed to a higher 

optical Q factor of the Dirac-vortex cavity with smaller etched holes which cause less optical 

scattering into the free space. The lasing threshold varies between 0.4 and 1.9 kW cm−2 and does 

not change monotonically with s0. This is because the lasing threshold depends not only on the 

optical Q factor of the cavity but also on the gain coefficient of the material. Although the optical 

Q factor of the cavity increases with wavelength, the gain coefficient of the quantum dots drops at 

wavelengths longer than 1360 nm. 
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