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Fig. S1: UMAP plots of (A) PBMC dataset and (B) BMMC dataset. Cells are colored by 
cell types.
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Fig. S3: UMAP plots for the PBMC-based simulations shown in Figure 2B.
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Fig. S4: UMAP plots for the BMMC-based simulations shown in Figure 2C.
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Fig. S5: UMAP plot of the SHARE-seq mouse skin dataset, colored by cell types.

Dermal Fibroblast

Dermal Papilla

TAC-1

IRS

Basal

K6+ Bulge Companion Layer

Medulla

alowCD34+ bulge

Isthmus

ORS

Infundibulum

Spinous

ahighCD34+ bulge

TAC-2

Macrophage DC

Endothelial

Dermal Sheath

Sebaceous Gland

Granular

Hair Shaft-cuticle.cortex

Schwann Cell

Melanocyte

-10

-5

0

5

-15 -10 -5 0 5 1 0
wnnUMAP_1

w
nn

U
M

A
P

_2
WNN

ahighCD34+ bulge
alowCD34+ bulge
Basal
Dermal Fibroblast
Dermal Papilla
Dermal Sheath
Endothelial
Granular
Hair Shaft-cuticle.cortex
Infundibulum
IRS
Isthmus
K6+ Bulge Companion Layer
Macrophage DC
Medulla
Melanocyte
ORS
Schwann Cell
Sebaceous Gland
Spinous
TAC-1
TAC-2
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Fig. S6: UMAP plots for the SHARE-seq based simulations shown in Figure 3.
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Fig. S7: Additional evaluation metrics for each method at integrating scRNA- seq, 
snATAC-seq and multiome data, at different depths of the multiome data, as described 
in Figure 3. (A) PBMC-based simulations. (B) BMMC-based simulations with 2000 
multiome cells. (C) BMMC-based simulations with 4000 multiome cells. (D) BMMC-
based simulations with 4000 cells at 10 different depths. (E) BMMC-based simulations 
at 100% of depth but with 10 different numbers of multiome cells. Cell type ASW and 
cLISI measure separation of cell types. Batch ASW and kBET measure the mixing of 
scRNA-seq, snATAC-seq, and multiome cells. Runtime is measured in seconds, for 
each method, in log2 scale. Error bar is mean ± standard deviation.
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Fig. S8: UMAP plots for the PBMC-based simulations shown in Figure 4B.
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Fig. S9: UMAP plots for the BMMC-based simulations with 2000 multiome cells shown in 
Figure 4C (left).
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Fig. S10: UMAP plots for the BMMC-based simulations with 4000 multiome cells shown in 
Figure 4C (right).
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Fig. S13: UMAP plots for the BMMC-based simulations with technical batch effect challenge 
shown in Figure 5B (left). 
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n_multiome = 1000 cells n_multiome = 5000 cells
Cell type Predicted Modality Sample Cell type Predicted Modality Sample
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Biological batch effect challenge

Fig. S14: UMAP plots for the BMMC-based simulations with biological batch effect 
challenge shown in Figure 5B (right).
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Complex test #1 Complex test #2

Cell type Predicted Modality Sample Cell type Predicted Modality Sample
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Plasma cell Proerythroblast Transitional B

Fig. S16: UMAP plots for the BMMC-based simulations with complex batch effect challenge 
shown in Figure 5D. 
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Fig. S17: Additional integration results for the Human Pancreas Analysis Program 
(HPAP) datasets as described in Figure6. (A) Integration results of additional methods: 
UMAP projection using integrated embedding for a select number of methods, colored 
by cluster ID (left), data type (middle), and dot-plots showing the expression of marker 
genes per cluster, colored by average expression, sized by the percentage of cells 
expressing the gene 
(right). B) Additional evaluation metrics for each method at integrating scRNA-seq, 
snATAC-seq and multiome datasets. Batch ASW and batch kBET measure the mixing 
of scRNA-seq, snATAC-seq, and multiome cells. Donor ASW and donor kBET 
measure the mixing of cells by donor ID. Runtime is measured in seconds, for each 
method, in log2 scale. 



Supplementary methods 

We evaluated a total of nine methods. Each method was run according to the most 

relevant tutorial available. The source code and processed data used for simulations 

are available on GitHub at 

https://github.com/myylee/benchmark_sc_multiomic_integration.  

Multiome-guided integration methods  
Seurat v4 [1] 

Each modality in the multiome dataset was processed with a standard approach. 

Specifically, RNA-seq profile was normalized with scTransform and reduced to 50 

dimensions using principal component analysis (PCA). ATAC-seq profile was 

processed with the latent semantic indexing (LSI). Specifically, the cell-by-peak matrix 

was normalized with term frequency-inverse document frequency (TF-IDF) and reduced 

to 50 dimensions using singular vector decomposition (SVD). The two separate latent 

embeddings were joined through the weighted-nearest neighbor (WNN) approach, 

using the top 50 principal components for the RNA-seq and the top 2-50 component for 

ATAC-seq, excluding the first component mainly correlated with sequencing depth. 

Single modality datasets were processed using the same standard workflow. Then, the 

raw data matrix was projected to the WNN-integrated space using supervised PCA and 

supervised LSI. Normalized gene expression values were imputed using anchor-based 

approximation for the ATAC-seq cells. The multiome analysis was done 

https://satijalab.org/seurat/articles/weighted_nearest_neighbor_analysis.html#wnn-

analysis-of-10x-multiome-rna-atac-1. ScRNA-seq was mapped following 

https://satijalab.org/seurat/articles/multimodal_reference_mapping.html#example-1-

mapping-human-peripheral-blood-cells-1. We then adopted this framework to project 

the snATAC-seq dataset to the multiome reference.    

Seurat v4 integrate 

For the last two simulations described in Figure 4, the multiome dataset was composed 

of samples from multiple donors exhibiting batch effects. Before learning a joint 

representation for the cells using WNN, a within-modality integration was employed to 



mitigate batch effects. The RNA-seq profiles were integrated using canonical correlation 

analysis (CCA) described in 

https://satijalab.org/seurat/articles/sctransform_v2_vignette.html#perform-normalization-

and-dimensionality-reduction-1. The ATAC-seq cells were integrated following steps 

described in https://stuartlab.org/signac/articles/integrate_atac.html. Then, the same 

WNN workflow and the supervised mapping of single-modality datasets were performed 

to project single-modality datasets to the batch-corrected space.  

MultiVI [2] 

MultiVI trains a variational autoencoder to learn a latent representation for cells in all 

three data types. Firstly, the two modalities of the paired datasets were horizontally 

stacked. Then, the paired and unpaired datasets were combined, with a modality 

column indicating which technology the cell belongs to. Features appearing in fewer 

than 1% of cells were filtered out. Then, the MultiVI model was trained with default 

parameters. Specifically, an autoencoder was trained for each modality using both the 

single-modality dataset and multi-modal dataset. Then, a symmetric Kullback-Leibler 

(KL) divergence loss was used to align the RNA-seq latent embedding and the ATAC-

seq latent embedding of the paired cells. The model was trained using default 

parameters as described in https://docs.scvi-

tools.org/en/stable/tutorials/notebooks/MultiVI_tutorial.html. The latent state of each cell 

was extracted using the converged model to represent the integrated cell state. The 

unmeasured RNA-seq profile of the unpaired ATAC-seq cells were inferred by passing 

the latent embedding through the learned decoder. When integrating datasets with 

additional batch labels, such as donor ID or site ID, these were included as covariates in 

the model.  

Cobolt [3] 

Cobolt also learns a latent representation of the cells using a variational autoencoder 

structure. Specifically, a modality-specific neural network was trained for each modality, 

using both unpaired and paired cells. For the paired cells, the latent representation of its 



ATAC-seq profile and RNA-seq profile were multiplied to jointly define a cell’s identity. A 

projection from the single modality latent embedding to the multi-modal latent 

representation was trained using the paired cells and later applied to the single-modality 

cells to ensure both unpaired and paired cells reside on the same space. Cobolt was 

run as described in the tutorial 

https://github.com/epurdom/cobolt/blob/master/docs/tutorial.ipynb. 

scMoMaT [4] 

scMoMaT uses a matrix tri-factorization model to deconvolute each cell-by-feature into 

a cell embedding factor (Ci), a feature factor (Cj), and an association matrix between 

cell i and feature j. For datasets simulated with PBMC, BMMC, or SHARE-seq mouse 

skin dataset as the source, we first selected 5000 highly variable genes for scRNA-seq 

and the RNA-seq profile of the multiome dataset separately. Then, we found the 

intersection of the two and used that as the final highly variable genes. For integration of 

the HPAP datasets, highly variable genes were selected using only the multiome 

datasets. RNA-seq profiles were normalized with quantile normalization.  

Regarding ATAC-seq profiles, peak counts were first binarized. Then, a pseudo-counts 

matrix was calculated for snATAC-seq datasets. Essentially, for each gene, accessible 

ATAC peaks that overlap with the gene body or 2kb upstream of its transcriptional start 

site are summed up, and then binarized, to represent the pseudo-count of the gene. As 

a result, a list of RNA matrices and a list of ATAC-seq matrices were passed into the 

scMoMaT model. A scRNA-seq dataset is represented by just a normalized cell-by-

gene matrix. A snATAC-seq dataset is represented by a binarized cell-by-peak matrix 

and a binarized cell-by-gene pseudo-counts matrix. Multiome datasets are represented 

by a normalized cell-by-gene matrix and a binarized cell-by-peak matrix. The scMoMaT 

model was trained using lambda=0.001, batch size=0.1, seed=0, K=30, interval=1000, 

T=4000, and learning rate=0.001. After training, cell factors are extracted to represent 

cells in the integrated space. We tried post-processing steps described in the original 

publication [4] for some of the simulated data, but no improvement on clustering result 

was observed. Thus, we did not include this step in our standard pipeline. ScMoMaT 



was run following the steps described in this tutorial 

https://github.com/PeterZZQ/scMoMaT/blob/main/test/test_mop_5batches.py. 

Unpaired integration methods  
Liger [5] 

This method can integrate unpaired scRNA-seq and snATAC-seq datasets. The peak-

count matrix was first converted into a gene activity matrix, aggregating reads mapped 

within 2-kb upstream or downstream of the transcription start site (TSS). Both ATAC-

seq and RNA-seq profiles were normalized by total expression across each cell. Highly 

variable genes were selected using the second dataset, the RNA-seq profiles, using 

default parameters that select genes with variance greater than 0.1. Then the 

scaleNotCenter was used to scale the normalized data matrices. Joint matrix 

factorization was performed using optimizeALS with k = 20. Quantile normalization was 

performed on the resulting cell loading across RNA-seq and ATAC-seq profiles, 

allowing the datasets from two modalities to be integrated. Louvain clustering was then 

used with the goal to generate a specific number of clusters. UMAP loading was 

calculated using cosine distance between quantile normalized cell loadings, with 30 

neighbors and a minimum distance of 0.3. We followed the tutorial at 

http://htmlpreview.github.io/?https://github.com/welch-

lab/liger/blob/master/vignettes/Integrating_scRNA_and_scATAC_data.html.  

Seurat v3 [6] 

Seurat v3 integrates unpaired RNA and ATAC datasets using the canonical correlation 

analysis (CCA). RNA-seq was normalized by library size and log-transformed. Top 

2,000 highly variable genes were identified and used for dimensional reduction with 

PCA. ScATAC-seq data was converted to gene activity matrix as described above and 

normalized in the same way as the RNA-seq data. Using the highly variable genes 

identified in the gene expression data as the features, anchors between RNA-seq and 

ATAC-seq were identified, and the two profiles were aligned using CCA. Canonical 

aligned components were used as integrated cellular loadings. Normalized gene 



expression was imputed by merging the expression of neighboring RNA cells. We 

followed steps from 

https://satijalab.org/seurat/articles/atacseq_integration_vignette.html.  

FigR [7] 

FigR projects scRNA-seq and snATAC-seq to one shared latent embedding using a 

similar workflow as Seurat v3. In addition, it computationally pairs cells from different 

modalities, creating a pseudo-multiome dataset for downstream analyses such as peak-

gene pair identification. Specifically, the cell-peak count matrix was converted to gene 

activity matrix and normalized in the same way as the gene expression matrix. The top 

5,000 most variable genes were identified using the gene expression matrix and the 

gene activity matrix individually, and the union of the two lists was obtained as the 

feature for downstream analysis. Canonical correlation analysis (CCA) was applied to 

align the ATAC and RNA profiles. L2 normalization was applied to the top 30 CCA 

components. OptMatch algorithms were used to pair the RNA and ATAC cells, using 

the 30 CCA component are latent embedding. Cells paired with multiple cells were 

removed, resulting in a 1-to-1 cell pairing. We implemented the preprocessing and CCA 

alignment of the unpaired datasets using functions in the Seurat package, and we used 

the OptMatch from the FigR GitHub page [7].  

BindSC [8] 

BindSC integrates unpaired single-cell datasets by estimating a cell-by-gene matrix Z 

for the snATAC-seq cells that maximizes the correlation between Z and the cell-by-peak 

matrix (Y) as well as between Z and the scRNA-seq data (X). The simultaneous 

similarity maximization is done in the latent embedding space through the bi-direction 

CCA. Firstly, 5,000 highly variable genes were selected using the RNA-seq profile. 

Then, the ATAC-seq profile was converted into the gene activity matrix as an initial 

approximation of the transformed matrix, Z. BiCCA was run with using default setting 

with lambda=0.5 and alpha=0.5, K=15, num.iteration=100, block.size=0. Through this 

process, Z was iteratively improved to better approximate the gene expression for the 

snATAC-seq cells while maintaining its similarity with the ATAC-seq profile. After 



training, a latent representation of the scRNA-seq and snATAC-seq cells was learned 

and could be used for clustering. Moreover, the imputation of gene expression was 

performed using impuZ and fold-change normalization is performed to scale the 

imputed RNA expression. Only the 5,000 highly variable genes used for integration 

were imputed. We followed the steps from 

https://htmlpreview.github.io/?https://github.com/KChen-

lab/bindSC/blob/master/vignettes/mouse_retina/retina.html. 

GLUE [9]  

GLUE integrates unpaired single-cell datasets by building a modality-specific 

autoencoder to extract a low dimensional embedding per modality, while using a 

knowledge-based (‘guidance’) graph to learn relationship between RNA and ATAC 

features. GLUE first requires the preprocessing of scRNA-seq and snATAC-seq 

datasets separately. Standard preprocessing steps for scRNA-seq dataset include 

filtering genes expressed by less than 3 cells, identifying top 2,000 highly variable 

genes, normalize by library size, log1p transformation, z-score standardization and PCA 

reduction (100 components). For snATAC-seq, peaks accessible in less than 1 cells are 

removed and the LSI dimensional reduction was performed to reduce the data into 100 

dimensions, using the scglue.data.lsi function. A guidance graph was built using hg38 

genome-build for human datasets and mm10 genome-build for mouse datasets. 

Regarding the guidance graph, an ATAC peak is considered to be connected to a gene 

if it overlaps in either the body of the gene or promoter region, which is defined as 2kb 

upstream of the transcriptional start site of the gene. Lastly, the GLUE model is fit and 

an integrated latent representation (50 components) is extracted for each cell. We 

followed the steps from https://scglue.readthedocs.io/en/latest/tutorials.html. When 

integrating datasets with additional batch labels, such as donor ID or site ID, these were 

included as covariates in the model by setting the batch parameter in 

scglue.models.configure_dataset.  

Integration of HPAP dataset 



Some unpaired integration methods do not have clear instruction for dealing with batch 

effects across samples. HPAP samples show large batch effects as these are cells from 

different human donors. Therefore, for methods that perform z-score standardization 

(Seurat v3, BindSC, FigR), we tried to correct for some batch effects by performing 

library-size and z-score standardization per sample, and then aggregate the data across 

donors. Moreover, to select for highly variable genes that could represent all samples 

equally, we first ran 10,000 highly variable gene selection for every sample, and the 

5,000 high variable genes ranked the highest across samples were selected.  

For LIGER, instead of providing two counts matrix (one for snATAC-seq and one for 

scRNA-seq data), we treated each HPAP sample (defined by donor and technology) as 

one counts matrix, therefore, a total of 14 RNA-seq profiles (10 scRNA-seq and 4 

multiome-RNA data), and 12 ATAC-seq profiles (8 snATAC-seq and 4 multiome-ATAC 

data) are the inputs to LIGER.  

For GLUE and MultiVI, we provided sample ID as a batch covariate to the model. For 

scMoMaT, HPAP samples were processed as individual batches, so it knows that it is 

dealing with 22 samples. For Cobolt, we tried inputting each sample as individual 

datasets to the model, but results were worse than the original workflow. Thus, we ran 

the original workflow for this task. For Seurat v4, we ran the ‘Seurat v4 integrate’ 

pipeline as described above. This explicitly corrected for batch effects in the multiome 

dataset first, then mapped the single-modality datasets onto the reference. For more 

details, check the codes on our GitHub repository, 

https://github.com/myylee/benchmark_sc_multiomic_integration. 
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