Supplementary Information

Photo-Responsive Carbon Capture over Metalloporphyrin-C₆₀ Metal-Organic Frameworks via Charge-Transfer

Shi-Chao Qi, Zhen Sun, Zhi-Hui Yang, Yun-Jie Zhao, Jia-Xin Li, Xiao-Qin Liu, and Lin-Bing Sun* State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemical Engineering, Nanjing Tech University, Nanjing, China, 211816.

*Address correspondence to: bsun@njtech.edu.cn (L.B.S.)

The related definitions and formulas:

(1) Definition of ESP:

$$ESP(\mathbf{r}) = \Sigma_{\rm N} \left[Z_{\rm N} / |\mathbf{r} - \mathbf{R}_{\rm N}| \right] - \int [\boldsymbol{\rho}(\mathbf{r'}) / |\mathbf{r} - \mathbf{r'}|] d\mathbf{r'}$$

in which Z_N and R_N are the nuclear charge and its location, respectively, and $\rho(r')$ means the electrons density.

(2) Definition of electron-hole distribution:

$$\boldsymbol{\rho}_{\text{hole}}(\boldsymbol{r}) = \sum_{i \to m} c_{i \to m}^2 \varphi_i^2(\boldsymbol{r}) + \sum_{i \to m} \sum_{j \to m}^{i \neq j} c_{i \to m} c_{j \to m} \varphi_i(\boldsymbol{r}) \varphi_j(\boldsymbol{r})$$
$$\boldsymbol{\rho}_{\text{electron}}(\boldsymbol{r}) = \sum_{i \to m} c_{i \to m}^2 \varphi_m^2(\boldsymbol{r}) + \sum_{i \to m} \sum_{i \to m}^{m \neq n} c_{i \to m} c_{i \to m} \varphi_m(\boldsymbol{r}) \varphi_n(\boldsymbol{r})$$

in which $\varphi_i(\varphi_j)$ and $\varphi_m(\varphi_n)$ represent the originally occupied and virtual molecular orbitals, respectively, and *c* is the configuration coefficient.

(3) Definition of electron-hole delocalization index (EDI & HDI):

$$EDI = 100 \sqrt{\int \boldsymbol{\rho}_{electron}^{2}(\boldsymbol{r}) d\boldsymbol{r}} ; HDI = 100 \sqrt{\int \boldsymbol{\rho}_{hole}^{2}(\boldsymbol{r}) d\boldsymbol{r}}$$

(4) Variation of μ at *c*-axis with respect to ground state ($\Delta \mu$):

 $\Delta \mu = \iint c \rho_{\text{hole}}(\mathbf{r}) dc d\mathbf{r} - \iint c \rho_{\text{electron}}(\mathbf{r}) dc d\mathbf{r}$

in which *c* means the coordinates at *c*-axis direction.

Fig. S1. The SEM images of CPCN-M samples.

Fig. S2. The XRPD patterns of the CPCN-Ms and the pair distribution function of the PCN-M reported.

Fig. S3. The FTIR spectra of CPCN-Ms and C₆₀.

Fig. S4. The HREM images of the representative CPCN-Co. The red broken lines indicate the distorted lattice, and the red cycles indicate the doped C_{60} .

Fig. S5. The N_2 adsorption-desorption isotherm of the C_{60} .

Fig. S6. The TG profiles of CPCN-M samples.

Fig. S7. The H-NMR spectra of the representative CPCN-Co and its contrast PCN-Co. CPCN-Co (C₂D₆SO, 400 MHz): δ 2.89, 2.96, 3.65, 5.16, 7.16 (s, 8H, porphin ring-*H*), δ 1.73 (s, 8H, proximal phenyl-*H*), δ 0.95-1.38 (m, 8H, distal phenyl-*H*). PCN-Co (C₂D₆SO, 400 MHz): δ 3.72, 5.43, 7.37 (s, 8H, porphin ring-*H*), δ 1.61 (s, 8H, proximal phenyl-*H*), δ 0.85-1.26 (m, 8H, distal phenyl-*H*).

Fig. S8. The phosphorescent radiation spectra of solid samples excited with the Vis = 420 nm at ambient temperature.

Fig. S9. The phosphor decay profile of the C_{60} at 750 nm, in which the *l/e* indicates the effective phosphorescence lifetime.

Fig. S10. The IAST selectivity of CO_2 towards N_2 at 0 °C and 1 bar.

Fig. S11. The UV-Vis absorption spectra of solid samples.

Fig. S12. The static adsorption isotherms of CO_2 tested with UV-Vis irradiation and in the darkness over the CPCN-Co samples with different mass ratios of C_{60} /PCN-Co at 0 °C, in which the green arrows indicate the variation trend of the UV-Vis CO_2 adsorption isotherm with respect to that in the darkness.

Fig. S13. The static adsorption isotherms of CO_2 and N_2 tested with UV-Vis irradiation and in the darkness over the CPCN-Ms at 25 °C, in which the green arrows indicate the variation trend of the UV-Vis CO_2 adsorption isotherm with respect to that in the darkness.

Fig. S14. The recyclability test for the representative CPCN-Co.

Fig. S15. The molecular surface ESPs of the TPP-M with the density isovalue = 1×10^{-3} at GS and at ES.

Fig. S16. The electron-hole distribution at ES of the TPP-M (green area: electrons distribution; blue area: holes distribution).

Fig. S17. The molecular surface ESPs of C_{60} with the density isovalue = 1×10^{-3} at GS and at ES.

Fig. S18. The electron-hole distribution at ES of C_{60} (green area: electrons distribution; blue area: holes distribution).

Sorbent	SBET	Vpore	CO ₂ uptake (mmol g ⁻¹)		N2 uptake (mmol g ⁻¹)		
	m ² g ⁻¹	cm ³ g ⁻¹	Pristine	UV-Vis	Pristine	UV-Vis	
CPCN-Fe	2100	2.10	2.08	2.50	0.20	0.23	
CPCN-Co	2160	2.15	2.05	2.69	0.14	0.20	
CPCN-Ni	2130	2.06	2.43	1.99	0.13	0.12	

Table S1. The textural properties of CPCN-Ms and the gas adsorption uptakes at 0 °C and 1 bar.

Sauk and		\mathbf{C} (, 2 1)	CO ₂ adsorp	D.£		
Sordent	Deforming unit	S_{BET} (m ² g ⁻¹)	Uptake (mmol g ⁻¹)	<i>R.C.</i> ^{<i>a</i>}	T, P	Kei.
PCN-123	2-(Phenyldiazenyl)terephthalate		1.02 (no light) / 0.75 (UV)	-26%	22°C, 1 bar	19
ECUT-15	4,4'-Diazene-1,2-diyldibenzoate acid		0.26 (no light) / 0.14 (UV)	-46%	25 °C, 1 bar	20
Zn(AzDC)(4,4'-BPE) _{0.5}	4,4'-Dicarboxylate	126	1.23(no light) / 0.53 (UV-Vis)	-57%	30 °C, 1 bar	45
azo-IRMOF-10	2-Azobenzene-4,4'-biphenyldicarboxylate	4086	0.71 (no light) / 0.65 (UV)	-8%	25 °C, 1 bar	46
Azo-DMOF-1	2-(Phenyldiazenyl)terephthalate	581	3.26 (no light) / 1.61 (UV)	-51%	0 °C, 1 bar	47
$A_2P_2@MS$	4-(3-Triethoxysilylpropyl-ureido)azobenzene	797	2.55 (Vis) / 1.65 (UV)	-35%	0 °C, 1 bar	48
Azo-COP-2	Cross-coupling 1,2-di-p-tolyldiazene	554	2.12 (no light) / 1.66 (UV)	-22%	0 °C, 1 bar	49
P ₃ /azoMOF	Grafted azobenzene	324	2.94 (Vis) / 2.21 (UV)	-25%	25 °C, 1 bar	50
SP/CTA ⁺ /Mont	Spiropyran	~1	0.43 (no light) / 0 (UV)	-100%	27 °C, 1 bar	51
HCPs@Azo	Azobenzene	984	1.68 (Vis) / 2.54 (UV)	+51%	0 °C, 1 bar	52
CPCN-Co	Nondeforming	2160	2.05 (no light) / 2.69 (UV-Vis)	+31%	0 °C, 1 bar	This work
CPCN-Fe	Nondeforming	2100	1.32 (no light) / 1.58 (UV-Vis)	+20%	25 °C, 1 bar	This work

Table S2. The CO₂ adsorption performances and the deforming units of some representative photo-responsive sorbents during the past decade.

a: *R*.*C*., rate of change.

Index	TPP-Fe	CTPP-Fe	TPP-Co	CTPP-Co	TPP-Ni	CTPP-Ni
Hole contribution from the -M/%	92.4	88.8	94.7	94.2	94.9	98.2
Electron contribution from the -M/%	101.2	91.4	100.6	95.9	71.3	70.8
Difference between electron and hole/%	+8.8	+2.6	+5.9	+1.7	-23.6	-27.4
Hole delocalization index/a.u.	39.4	33.4	45.0	44.1	49.5	46.6
Electron delocalization index/a.u.	36.4	32.1	40.8	39.7	42.0	41.9
Variation of μ at <i>c</i> -axis with respect to ground state/×10 ⁻⁴ a.u.	1.7	970.7	23.0	737.3	13.6	673.6

Table S3. The indexes of the excited states for the adsorption sites.