
Figure S1. Correlation between CFU and OD600. The relationship between 
CFU/mL and OD600 of key strains with dramatic differences in mucoidy or uronic 
acid content was assessed. Cells were cultured in LB overnight then normalized to 
OD 2.0 or 0.2 in PBS. Cells were serially diluted and enumerated on LB agar 
plates. Statistical significance was determined using one-way ANOVA with a 
Bonferroni post-test to compare each strain at the same OD600. No significant 
differences were detected. Experiments were performed ≥3 independent times, in 
triplicate.
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Figure S2. Medium alkalinity increases sedimentation resistance and cell-free 
extracellular polysaccharide (EPS) production. K. pneumoniae KPPR1 was cultured 
in pH-adjusted LB medium. (A) Mucoidy was determined by quantifying the supernatant 
OD600 after sedimenting 1 OD600 unit of culture at 1,000 x g for 5 min. (B) EPS was 
extracted from either total culture or spent medium and the uronic acid content was deter-
mined and normalized to the OD600 of the overnight culture. Statistical significance was 
determined using two-way ANOVA with a Bonferroni post-test to compare specific 
groups. * p < 0.05; ** p < 0.01; *** p < 0.001; # p < 0.0001. Experiments were performed 
≥2 independent times, in triplicate.
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Figure S3. Phenotypic differences between spontaneous Wzc mutants on 
solid agar. Transposon strain VK055_0204::kan with Wzc wild type (WT) or a 
P646S variant were struck on LB agar and incubated at 30 0C overnight. Wzc 
variants have a distinct colony morphology that appears as larger, more 
translucent colonies, and colonies appear less distinct.
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Figure S4. Transposon isolates with elevated mucoidy have increased 
frequency of single genetic variations. The genetic variation of 23 K. 
pneumoniae transposon isolates was determined using the Variation Analysis 
pipeline on PATRIC. The number of non-synonymous mutations per genome was 
plotted versus the frequency that number of mutations occurred in Tn:mucoid+ vs 
Tn:mucoidWT isolates.



Figure S5. Impact of L-arabinose on KPPR1 growth in LB medium.  Wild type K. 
pneumoniae strain KPPR1 was cultured in LB medium then back-diluted to OD600 0.01 in 
LB medium with the indicated concentrations of L-arabinose. Cultures were incubated at 
37 0C with continuous shaking. OD600 measurements were collected every 30 min. Growth 
assays were performed ≥3 independent times, in triplicate. Shown is the mean and error 
bars represent the standard error of the mean. No significant differences were detected 
using one-way ANOVA with a Dunnet post-test to compare each group to unmodified LB 
medium.
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Figure S6. Wzc Protein Alignment. Predicted wzc open reading frames (ORFs) were 
extracted from corresponding unassembled genomes deposited in NCBI Sequence Read 
Archive. An alignment of the translated ORFs was generated with Clustal Omega and 
visualized with the Jalview application and the online Boxy SVG applet.  Key mutation sites 
are indicated. The color of each amino acid represents basic (red), acidic (dark blue), polar 
uncharged (light blue), aromatic (green), and aliphatic (yellow) residues. Conservation 
between strains is indicated by the histograms below the alignments. 
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Figure S7. Sedimentation resistance of episomal Wzc-His6 variants. KPPR1 
transformed with His6-tagged Wzc (WT, Q395K, 526insA, G569C, G569V, G569D, P646S) 
or empty vector pBAD18 (EV) was cultured in LB medium containing kanamycin with 50 
mM L-arabinose. Mucoidy was determined by quantifying the supernatant OD600 after 
sedimenting 1 OD600 unit of culture at 1,000 x g for 5 min. Data presented are the mean and 
error bars represent the standard error of the mean. Statistical significance was 
determined using two-way ANOVA with a Bonferroni post-test to compare specific groups. 
# p < 0.0001. Experiments were performed ≥3 independent times, in triplicate. 
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Figure S8. Wzc tyrosine phosphorylation status of transposon mutants with and 
without Wzc variants. The indicated strains were cultured in LB medium. (A) Whole cell 
lysates were resolved by SDS-PAGE, transferred to nitrocellulose, then probed with 
anti-phosphotyrosine antibody (PY20). Membranes were stripped and re-probed with 
anti-GAPDH (GA1R). Vertical gray lines indicate where gel lanes are rearranged to 
improve data presentation. (B) The Wzc-Y-P bands in A were quantified in ImageJ and 
normalized to GAPDH band intensity. Normalized Wzc-Y-P in each mutant was divided by 
the normalized Wzc-Y-Pi of wild type (WT) KPPR1 within each blot. In all instances lysates 
were prepared and analyzed ≥ 3 independent times. One representative image is shown. 
A one-way ANOVA with a Bonferroni post-test was used to determine if each mean was 
significantly different from 1.0 (WT), where ** p < 0.0021. 
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