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1. Package dependencies

These are the following package dependencies, imports, and suggestions for semla (version 1.1).

Depends R (>= 4.1.0),
Seurat (>= 4.0.0),
SeuratObject (>= 4.0.0),
dplyr (>= 1.0.0),
ggplot2 (>= 3.3.0)

Imports cli,
forcats,
jsonlite,
rlang,
tibble,
tidyr,
methods,
glue,
magick (>= 2.7.0),
Matrix (>= 1.5-0),
patchwork (>= 1.1.0),
scales (>= 1.2.0),
zeallot,
dbscan (>= 1.1.0),
RColorBrewer,
shiny,
shinyjs,
reactR

Suggests farver,
tidygraph,
igraph,
leaflet,
viridis,
testthat (>= 3.0.0),
data.table,
BiocManager (>= 1.30.18),
MatrixExtra,
htmlwidgets,
htmltools,
RcppML,
beakr,
colourpicker,
fs,
shinyBS,
ggnewscale,
ggsci,
scico,
ggfittext
hdf5r
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2. Operating System testing

The semla R package was developed using MacOS and has been further tested on multiple operating

systems (OS) to ensure it can be installed correctly and functions without error. OS unavailable to the

development team for local testing were tested using the R package “rhub” (Csárdi et al. 2023) for remote

checks using the R-hub builder.

The following OS have been tested:

● macOS Big Sur 10.16 install (devel), R version 4.2.1 (local test)

● macOS Catalina 10.15.7 install (devel), R version 4.1.2 (local test)

● macOS Monterey 12.3.1 install (devel), R version 4.2.1 (local test)

● macOS Ventura 13.4 install (devel), R version 4.1.2 (local test)

● Windows 10 Education, 64-bit (local test)

● Fedora Linux, R-devel, clang, gfortran (rhub test)

● Ubuntu Linux 20.04.1 LTS, R-release, GCC (rhub test)

● Windows Server 2022, R-devel, 64 bit (rhub test)

3. Selected function descriptions

3.1. Interactive applications

Usage description

We have built a web-based application called the Feature Viewer, that allows interactive exploration and

labeling of the SRT data set. The application is written in javascript and uses the React UI library. Some

of the functionality is similar to what you can do with the Loupe Browser (10x Genomics) or the ST

viewer (Fernandez Navarro et al. 2019). In comparison to interactive user interfaces provided in other R

packages for Visium data analysis (SpatialLIBD (Pardo et al. 2022), Seurat (Hao et al. 2021), SPATA2

(Kueckelhaus et al. 2023), Giotto (Dries et al. 2021)), the Feature Viewer in semla allows users to

interactively explore the histology image in higher resolution at different levels of magnification, select

among thousands of features to plot, easily switch between the available samples, and use a selection tool

to annotate spots and save them as labels for downstream analysis.

To use the Feature Viewer, the user first needs to import their SRT data with semla and further load the

coupled histology image, using the LoadImage() function. Once the data of interest is available in R,

the Feature Viewer can be initiated with the semla function FeatureViewer(),
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se <- FeatureViewer(se)

where “se” represents a Seurat object compatible with semla. Running this command within an R

environment will open a new web browser window containing the interactive user interface with your

data. If using a very large image, it is possible to speed up the process of engaging the Feature Viewer by

tiling the image beforehand using the ExportDataForViewer() function (this process can take

some time, read under Performance for additional information). Supplementary Figure 1 illustrates the

user interface of the Feature Viewer application.

Supplementary Figure 1. Feature Viewer used to visualize the mouse colon demo data set

available within semla.

To save and exit the Feature Viewer, the user needs to press the “save & quit” icon and may thereafter

close the browser window and return to the R session. Any annotations made with the lasso tool will be

saved as additional metadata columns in the Seurat object when the Feature Viewer is closed. The R

session will be occupied as long as the Viewer is active.

In addition to the Feature Viewer application, semla provides another interactive user interface (UI) for

aligning samples (Supplementary Figure 2). With the alignment application, the user can perform
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transformations such as rotations, mirroring, and moving to the images of multiple tissue sections. The

tool is available through the RunAlignment() function,

se <- RunAlignment(se)

More details on how to use the alignment tool is available on the semla tutorial website

https://ludvigla.github.io/semla/articles/image_alignment.html.

Supplementary Figure 2. Example case of aligning three tissue sections to achieve matching

tissue orientation and size. A) Sections 1-3 before alignment. 2) The interactive alignment

application is used to adjust the individual images before saving the transformations. 3) The

newly aligned images can be used for generating spatial feature plots.
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Performance

The Feature Viewer employs image tiling, through the TileImage() function, to enhance interactivity

with H&E images. The computation time for the tiling step depends on the number of samples, the

desired number of zoom levels and the size of the input images. For a single tissue section data set with an

H&E image approximately 2,000x2,000 pixels large, the tiling step with TileImage() completes in a

few seconds. For reference, in a test dataset, the tiling process took approximately 3 seconds to complete

on a MacBook Pro laptop (2017 model, 3.1 GHz Quad-Core Intel Core i7, 16GB RAM). TileImage()

automatically determines the suitable number of zoom levels based on the input image's size, for instance,

a 2,000x2,000 H&E image results in the creation of three layers containing tiles of sizes 2x2, 4x4, and

8x8. Once the tiling step is completed, the tiles are stored locally for future use and the viewer can be

launched almost instantaneously in the default browser.

For executing the image tiling separately, a utility function named ExportDataForViewer() can be

employed where an option to accelerate the tiling process by utilizing multiple threads is available. When

dealing with larger H&E images and/or multiple tissue sections, a greater number of tiles must be

exported, thus extending the overall processing time. The image tiling performed through this approach is

a one-time operation, and will therefore allow the Feature Viewer to be engaged quickly for as long as the

exported tiled images are available. Upon supplying the tiles, the FeatureViewer() function can be

invoked to promptly open the viewer, which launches almost instantaneously within a web browser.

3.2. NNLS cell type mapping methodology description

Semla includes an approach, based on Non-Negative Least Squares (NNLS), for inferring cell type

proportions in each spot. The method requires paired Visium and annotated scRNA-seq data generated

from the same source. In short, the method first estimates cell type enrichment scores from the annotated

cells in the scRNA-seq data by comparing their normalized and averaged gene expression profiles. This

scoring scheme assigns higher weights to genes that are cell type specific, thereby providing a profile that

describes relative differences between the cell types. The enrichment profiles are subsequently leveraged

into the NNLS method to predict the composition of cells in the Visium data. Given the Visium gene

expression matrix A and the cell type enrichment profiles y, the NNLS method attempts to solve the

following problem:

, subject to𝑎𝑟𝑔 𝑚𝑖𝑛
𝑥

𝐴𝑥 − 𝑦| || |
2
2 𝑥 ≥ 0

where the solution for x represents the cell type estimates in the Visium data.
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Within semla, the NNLS cell type mapping is executed by running the RunNNLS() function, providing

the spatial object of interest along with a normalized scRNA-seq Seurat object and specifying the

metadata column containing the cell group annotations:

se_spatial <- RunNNLS(object = se_spatial,
singlecell_object = se_allen,
groups = "subclass")

With a reasonably sized data set, the analysis should finish in a matter of seconds. The resulting cell type

proportion estimates are stored in a new assay, “celltypeprops”, residing within the spatial object, that is

easily accessible for downstream exploration and visualization.

3.3. Benchmarking the NNLS methodology

To assess the utility of the NNLS cell type mapping approach, we have performed a few comparisons of

NNLS with other established cell type mapping methods in order to benchmark its performance. The

articles outlining the comparisons and containing the code for reproducing the plots are accessible on the

semla website.

Publicly available Visium data

Initially, we tested the performance of NNLS, stereoscope (Andersson et al. 2020), and cell2location

(Kleshchevnikov et al. 2022) using publicly available Visium data sets and tissue type matched single cell

RNA-sequencing (scRNA-seq) data sets, all publicly available (Supplementary Table 1). Stereoscope and

cell2location were run in python on high-performance computing servers using default parameter settings,

while NNLS was run locally on a laptop. Examining the Pearson correlation between the inferred cell

type compositions between the different methods, we could observe high concordance for both tested

tissue types (Supplementary Figure 3). Unfortunately, the ground truth of the actual cell type

compositions in each spot of the Visium data is unknown, making it impossible to evaluate the actual

accuracy of the NNLS method with these data sets. However, both stereoscope and cell2location are two

well established methods for estimating cell type abundances, and thus we deem the NNLS approach to

produce comparable results.
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Tissue type scRNA-seq data set Visium data set

Mouse brain
Allen Brain, mouse atlas reference single cell

RNA-seq data set (Tasic et al., 2016)
https://doi.org/10.1038/nn.4216

Mouse brain sagittal data (anterior + posterior) made
available by 10x Genomics, processed using the

Space Ranger pipeline v1.0.0.
https://www.10xgenomics.com/cn/resources/datasets
/mouse-brain-serial-section-1-sagittal-anterior-1-stan

dard-1-0-0

Mouse kidney

Tabula Muris Senis droplet data from kidney, made
available by The Tabula Muris Consortium.

(Tabula Muris Consortium, 2020)
https://doi.org/10.1038/s41586-020-2496-1

Mouse kidney coronal section data made available
by 10x Genomics, processed using the Space Ranger

pipeline v1.1.0.
https://www.10xgenomics.com/cn/resources/datasets
/mouse-kidney-section-coronal-1-standard-1-1-0

Supplementary Table 1. Data sets used for cell type mapping.

Supplementary Figure 3. Comparison of output from cell type mapping algorithms NNLS, stereoscope,

and cell2location, on mouse brain (A) and mouse kidney (B) data sets, which demonstrates overall high

Pearson correlation values for most cell types.
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Synthetic data

To evaluate the performance of the NNLS approach using a data set where the ground truth of cell type

proportions per spot is available, we prepared a synthetic Visium data set. In order to make the synthetic

data set representative of a typical Visium data set, we opted to generate synthetic spots with an average

of 10 cells and with a median of 20,000 UMIs per cell. A count matrix from a single-cell RNA-seq

(Smart-seq 2) data set obtained from the Allen Brain atlas (Tasic et al., 2016) with 14,249 cells was used

to create the synthetic spots. Only the top 5,000 most variable genes were kept in the UMI count matrix to

speed up computation run time. Based on the distribution of UMI counts per cell in the scRNA-seq data

set, we downsampled the count matrix to 1% using the downsampleMatrix function from the scuttle R

package. Next, we generated cell counts by drawing 10,000 random numbers from a poisson distribution

with the mean set to 10 (number of cells per spot). Zero values were replaced with a value of one to make

sure that each synthetic spot would include at least one cell type. Each synthetic spot was created by

sampling and aggregating N random cell expression vectors, where N represents the number of cells per

spot. Sampling probabilities were biased to reflect the composition of cell types in the scRNA-seq data

set, thereby ensuring that the abundances of cell types in the scRNA-seq data set was reflected in the

synthetic Visium data. The ground truth corresponds to the proportion of cell type labels for each

synthetic spot. For run time performance assessment (NNLS and Seurat label transfer), we used the same

approach to create a large synthetic data set with 100,000 spots. For all benchmark analyses, the

scRNA-seq data set was downsampled to include a maximum of 250 cells per cell type and filtered to

exclude cell types with fewer than 10 cells.

NNLS

The NNLS technique was executed using a cap of 250 cells per cell type as the upper limit and a

minimum of 10 cells per cell type. In order to evaluate runtime performance, the NNLS approach was

employed in 10 cycles, deconvolving expression data for 10,000 to 100,000 spots in the large synthetic

data set (Supplementary Figure 4). All computations were run on a Macbook Pro (2017, 3.1 GHz

Quad-Core Intel Core i7, 16GB).

Seurat label transfer

The Seurat label transfer method was used to calculate cell type prediction scores from the synthetic

Visium data following the Seurat tutorial on integration with ‘single-cell’ data. The standard

logNormalize method was used to normalize the UMI count matrix. For run time performance

assessment, the Seurat label transfer method was run in 10 iterations, deconvolving the mixed expression
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data for 10,000 to 100,000 spots in the large synthetic data set. All computations were run on a Macbook

Pro (2017, 3.1 GHz Quad-Core Intel Core i7, 16GB).

RCTD

The RCTD method was run using standard parameter settings following their RCTD tutorial on Visium

data, with the doublet mode set to ‘full’. Seven cores were used for the computation. For the RCTD

deconvolution, a Macbook Pro (2017, 3.1 GHz Quad-Core Intel Core i7, 16GB) was used.

Stereoscope

For deconvolution with stereoscope, we used the scVI (https://scvi-tools.org/) implementation, following

the tutorial ‘STereoscope applied to left ventricule data’. First, a model was trained on the scRNA-seq

data with 1,000 epochs. Next, the model was used to deconvolve the synthetic Visium expression profiles

in 2,000 epochs. For the stereoscope deconvolution, we used a NVIDIA A100-SMX4-80GB Tensor core

GPU.

Cell2location

For deconvolution with cell2location, we followed their tutorial ‘Mapping human lymph node cell types

to 10X Visium with cell2location’. First, a model was trained on the scRNA-seq data with 1,000 epochs.

Next, the model was used to deconvolve the synthetic Visium expression profiles in 30,000 epochs. For

the cell2location deconvolution, we used a NVIDIA A100-SMX4-80GB Tensor core GPU.

NNLS computation time

The NNLS method can be used to deconvolve Visium data in a matter of seconds, even for larger data

sets. Supplementary Figure 4 shows that the average computation time for 100,000 spots is 4 seconds.
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Supplementary Figure 4. Computation time for NNLS on synthetic Visium data. The x-axis shows the

number of spots included in the synthetic Visium data and the y-axis indicates the computation time in

seconds. Each data point represents the average computation time across 10 iterations. The whiskers

indicate the standard deviation.

NNLS vs Seurat label transfer computation time

The second fastest method included in this benchmark is the Seurat label transfer method used for cell

type prediction. Although not a pure deconvolution method, this technique facilitates the probabilistic

transfer of labels from a reference (single-cell) to a query (Visium) dataset. As depicted in Supplementary

Figure 5, it's evident that the NNLS method consistently outperforms the Seurat label transfer method in

terms of speed.
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Supplementary Figure 5. Computation time for NNLS and the Seurat label transfer method on synthetic

Visium data. The x-axis shows the number of spots included in the synthetic Visium data and the y-axis

indicates the computation time in seconds.

Computation time for 10,000 spots

Although NNLS, Seurat label transfer, and RCTD could be executed on a laptop using 10,000 spots, both

stereoscope and cell2location necessitated a high-performance GPU for operation. Due to the substantial

computational demands, RCTD, stereoscope, and cell2location were assessed only with 10,000 spots, a

process taking several hours to complete. Supplementary Figure 6 illustrates the superior computational

speed of the NNLS method compared to all other techniques included in the comparison.
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Supplementary Figure 6. Computation time for NNLS, Seurat label transfer, RCTD, stereoscope and

cell2location. The y-axis shows the computation time in seconds (log10 scale).

Performance assessment

In the assessment of method precision, we employed two performance metrics: Pearson correlation and

root mean square error (RMSE), visualized in Supplementary Figures 7-9. The Pearson correlation scores

highlight that RCTD and cell2location present the most robust correlation regarding the inferred and

estimated cell type proportions. Conversely, NNLS and stereoscope exhibit slightly diminished

correlation concerning specific cell types. The Seurat label transfer method generally showcases reduced

correlation values across all cell types. The RMSE values follow a comparable pattern, with NNLS,

RCTD, stereoscope, and cell2location demonstrating similar performance.
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Supplementary Figure 7. Performance assessment metric for NNLS, Seurat label transfer, RCTD,

stereoscope and cell2location on 10,000 synthetic spots. Left: Pearson correlation between inferred and

expected proportions for all cell types. Right: RMSE between inferred and expected proportions for all

cell types. RMSE measures the average difference between the inferred proportions and the actual

proportions.

Supplementary Figure 8 depicts the contrast between inferred and expected cell type proportions for 22

cell types across the five deconvolution methods tested. RCTD, stereoscope, and cell2location exhibit a

generally strong agreement between the inferred and expected proportions, although there's a consistent

tendency to overestimate proportions for certain cell types like astrocytes and macrophages. NNLS

demonstrates skewed proportion estimations for various cell types in comparison to RCTD, stereoscope,

and cell2location. This includes specific excitatory neurons within the mouse visual cortex (L2/3 IT, L6

CT, and L6 IT), Pvalb+ neurons, and Lamp5+ neurons. Nonetheless, NNLS yields slightly improved

proportion estimates for other cell types such as astrocytes, endothelial cells, macrophages, and

oligodendrocytes. Overall, the proportions estimated with NNLS exhibit a strong correlation with the

expected proportions, suggesting that the spatial distribution of cell types remains dependable, even if the

abundance of certain cell types might be less reliable. In line with previous observations, the Seurat label

transfer method exhibits the worst concordance across all cell types.
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Supplementary Figure 8. Inferred vs expected proportions for the first 11 cell types. Each data point

corresponds to a synthetic spot. The blue lines highlight a fitted trend line and the dashed lines indicate

the expected 1 to 1 relationship.

Supplementary Figure 9. Inferred vs expected proportions for the last 11 cell types where each data point

corresponds to a synthetic spot. (Blue lines: fitted trend line, dashed lines: expected 1 to 1 relationship)
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Conclusion

Our benchmark analyses on synthetic Visium data indicate that the NNLS approach generates results that

are comparable with RCTD, cell2location, and stereoscope. Notably, in contrast to these approaches,

NNLS operates within a matter of seconds for datasets of up to 100,000 spots, without the need for

hardware acceleration. RCTD and cell2location generated more accurate proportion estimates compared

to NNLS and we therefore encourage users to test these more robust and well-established cell type

deconvolution algorithms. Nonetheless, we do recognize that NNLS presents a viable alternative for fast

cell type decomposition, which proves particularly beneficial during various stages of exploratory data

analysis.

For instance, cell type deconvolution of SRT data often necessitates careful curation of the single-cell

reference data set to make sure that the cell types included for deconvolution are present in the tissue

section. This can be particularly challenging when working with large atlases which encompass whole

organs or even multiple organs. Additionally, creating cell atlases from scRNA-seq data entails iterative

refinement of quality filters and tuning of hyperparameters. Cell type deconvolution offers valuable

insights for informing these choices by spatially mapping the cell types, yet this iterative process can be

hindered by computation time and hardware constraints. With a fast deconvolution approach such as

NNLS, this curation step becomes more time efficient and accessible to users who are not familiar

working with high performance machines. Once the foundation of a single-cell reference is laid, users can

subsequently employ a more robust deconvolution technique to attain enhanced accuracy in their

proportion estimates.

3.4. Label Assortativity and Neighborhood Enrichment

The term assortativity is used within network science to describe the connectivity between nodes of

similar properties. Traditionally, this is measured in terms of the node’s degree and computing a

correlation coefficient between nodes of similar degrees. A few methods based on this are Newman’s

Assortativity (Newman, 2002) and Ripley’s Function (Ripley, 1976). Inspired by this, we have developed

a straightforward approach to estimate the connectivity of spots belonging to the same cluster, i.e. sharing

the same label, by measuring the network’s average degree, ⟨k⟩, for each label and comparing this to a

completely randomly dispersed pattern. The randomly distributed pattern can be viewed as the baseline,

since we rarely obtain a pattern more dispersed than that, while a group of spots that is fully connected

with each other is the highest order of organization we can achieve. In this method, each label’s ⟨k⟩ is

therefore min-max scaled between the ⟨k⟩ of a randomized network (min) and the ⟨k⟩ of the fully

connected network (max). The output from this analysis, executed using the
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RunLabelAssortativityTest(se) function, is a table containing a scaled average degree for

each unique label provided for the analysis, along with stored values of the intermediates used for the

calculations of the final score. The scaled average degree ranges between ~0-1, with values around 0

being equal to a randomly dispersed spatial pattern and values closer to 1 indicating an aggregated and

highly connected organization of the spots of that label.

The purpose of a neighborhood enrichment analysis on the other hand is to test whether spots belonging

to two different categories are localized next to each other spatially. To estimate the enrichment of their

co-localization we compare it against random permutations of the labels, forming the null hypothesis

stating that the spots of the two labels are distributed randomly and share no connections other than those

observed by chance. A z-score for each label pair is calculated as:

𝑍
𝐴𝐵

=
𝑥

𝐴𝐵
−µ

𝐴𝐵

σ
𝐴𝐵

where xAB is the number of edges observed between spots of labels A and B, μAB is the permutation mean

of the edges between A and B, and σ𝐴𝐵 is the permutation standard deviation of the edges between A and

B. Thus, a z-score of around 0 can be interpreted as a spatial label co-localization equal to that seen by

chance, given the number of spots within those categories, while a positive z-score indicates an

over-representation of the label pair proximity and a negative z-score can be viewed as a depletion, or

repellant effect, of the label pair spatially. The neighborhood enrichment analysis is run by calling the

function RunNeighborhoodEnrichmentTest() and stores the results into an output table

containing the z-scores between each label pair.

The Label Assortativity and Neighborhood Enrichment tests included in semla are implementations and

further developments of the heterotypic and homotypic scores described in Bäckdahl et al (2021).

3.5. Digital unrolling

The “digital unrolling” approach was first presented by M. Parigi and colleagues (Parigi et al. 2022),

developed to digitally unfold mouse colon samples rolled up into “swiss-rolls”, enabling the analysis of

gene expression variation along the proximal-distal axis of the organ. Semla includes a new strategy for

“digital unrolling” that is conducted in two steps. In the first step, a spatial undirected network is created

from the Visium spot coordinates, representing each spot as a node in the network where adjacent nodes

are connected by an edge. The spatial network can then be visualized and modified using the

CutSpatialNetwork()function from an R session, which opens an interactive tool in the web

browser. The interactive tool overlays the spatial network on top of the histological H&E image of the

17



tissue section. Guided by the tissue histology, users can then cut edges between adjacent layers of the

“swiss-roll” (Supplementary Figure 10). Once the edge cutting step is complete, the modifications are

saved and returned to the R session for downstream processing. The selected edges are then filtered from

the spatial network to produce a reduced network where the adjacent layers are disconnected

(Supplementary Figure 11).

Supplementary Figure 10. Example illustrating how edges can be cut in a spatial network using the

CutSpatialNetwork() tool.

Supplementary Figure 11. Example of a spatial network before and after edge filtering.
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The filtered spatial network can thereafter be used for the second step which aims to position spots along

the proximal-distal axis of the “swiss-roll”. This “unfolding” step is done using the

AdjustTissueCoordinates()function which takes the modified spatial network as input. Note

that the unfolding step assumes that the spatial network is fully connected. If multiple disconnected

network components are detected, the largest network component will be selected. The “unfolding”

algorithm starts by identifying the pair of nodes (spots) separated by the largest distance in the network.

These spots should correspond to the most proximal and distal nodes which serve as the start and end

points of the x-axis in the unfolded coordinate system. Next, the algorithm identifies the shortest path

between these end points, returning node IDs along this path. Each node along this path is assigned with

an x coordinate determined by its order from start to end point. Subsequently, pairwise distances are

calculated between all remaining nodes and the nodes on the shortest path. Each node is then assigned the

same x coordinate as the closest shortest path node (Supplementary Figure 12) and the y coordinate

corresponds to the geodesic distance to the closest shortest path node.

Supplementary Figure 12. Spots colored by distance along the proximal-distal axis in the “unfolded”

coordinate system.

Subsequent downstream analyses and visualizations can leverage the new "unrolled" spot coordinate

system to identify relevant trends along the proximal-distal axis. For instance, regionalization of cell type

composition or marker gene expression. This concept is demonstrated in Supplementary Figure 13, where

the expression patterns of four chosen marker genes along the proximal-distal axis are illustrated.
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Furthermore, there exists the potential to model gene expression as a function of distance, facilitating

data-driven extraction of spatial regionalization patterns along the proximal-distal axis.

Supplementary Figure 13. Gene expression trends for four selected marker genes along the

proximal-distal axis of a mouse colon. The x-axis shows the distance along the proximal-distal axis. The

y-axis shows normalized gene expression values.

On a final note, the cutting tool for digital unrolling provided in semla could in theory be used to unfold

other tissue types. For instance, in the small intestine the tool could be used to separate circular folds

(plicae circulae) or individual villi. This extension could yield supplementary insights that could be

harnessed to analyze and model spatial patterns within these specific structures. The “unrolling”

algorithm, which takes a connected spatial network as input, makes certain assumptions about the shape

of the tissue and is therefore only useful for special applications. However, it proves highly advantageous

when tasked with swiftly computing distances between endpoints within a fully connected spatial

network. As exemplified in Supplementary Figure 14, this approach is demonstrated in a scenario where

spots were manually selected using the Feature Viewer tool, followed by distance calculations using the

AdjustTissueCoordinates algorithm.
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Supplementary Figure 14. Distances between endpoints (spot colors) of a fully connected region

(manually selected), calculated with AdjustTissueCoordinates.

4. Comments on semla and other tools for SRT analysis and exploration

Spatial data format

The semla R package is developed as an updated and improved version of the previous STUtility R toolkit

(Bergenstråhle et al. 2020), which utilizes the Seurat framework for storing expression data and adds an

additional S4 object, termed “Staffli”, to hold the associated spatial data. This new version utilizes the

Seurat framework for storing expression data and introduces an additional S4 object called "Staffli" to

hold spatial data associated with it. If a user has already initialized a spatial object using Seurat's

Load10X_Spatial() function, it can be converted to be compatible with semla using the

UpdateSeuratForSemla() function. To facilitate visualization, specialized functions are provided

in the semla package for plotting SRT data. These functions enable users to create images suitable for

publication by offering features like image cropping, customizable scale bars, and extensive control over

color scales and layouts. In the semla package, we have also included interactive web applications for

smooth exploration and labeling of the user’s SRT data, and for aligning the data from multiple slices by

applying image transformations such as rotation and scaling. To extract meaningful insights from the SRT

data, semla further includes multiple functions to analyze the data and look for spatially relevant patterns.
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The spatial omics field is rapidly evolving, with new computational tools and frameworks to handle the

data being developed with high frequency. As of version 3.2 of Seurat (2020), they introduced new

functionalities for processing Visium and Slide-seq data, allowing the user to visualize their spatial data

and perform integration with annotated scRNA-seq data to infer spatial localization of cell types. With

Seurat’s latest release, the version 5 beta (2023), they have moreover added support for imaging based

SRT data (Vizgen MERSCOPE, 10x Genomics Xenium, Nanostring CosMx, and Akoya CODEX) and

further developed a few specialized methods such as niche identification. However, more specialized

spatial analyses, such as those presented in the SquidPy and the Giotto packages, are still missing within

Seurat. These spatial analyses may involve tools for computing spatial statistics or identification of spatial

gene co-expression modules.

SpatialExperiment (Righelli et al. 2022) is another R based framework for efficient handling of SRT data,

comparable to the AnnData format available in python. Toolkits utilizing the SpatialExperiment object

format, such as spatialLIBD (Pardo et al. 2022), have started to emerge and provide a promising

alternative avenue for SRT data analysis in R. Likely due to the youth of these toolkits, the size of the

community of people developing new analysis methods is however limited for this object format. The

same can moreover be said for R packages that have developed their own object structure for SRT data,

such as Giotto (Dries et al. 2021) and SPATA2 (Kueckelhaus et al. 2023).

Interactive UI tools

Interactive visualization of SRT data is of great benefit for anyone interested in exploring their spatial

data, both researchers with limited programming expertise and experienced bioinformaticians in need of

browsing the data quickly and/or annotating selections of data points. 10x Genomics provides their Loupe

Browser application for exploration of Visium data, which includes useful features such as spot

annotation and rapid visualization of gene and cluster features, but is however limited to the use of the

cloupe Space Ranger output files, one sample at the time. Seurat includes an interactive Shiny application

for visualizing spatial data, though it is designed as a plain plotting tool for visualizing features and lacks

any ability to create new spot labels. Other interactive UI applications for Visium data are available and

address various aspects of interactive data exploration, such as multi-sample handling or incorporation of

statistical analysis tools within the application. For instance, spatialLIBD is a powerful interactive UI

application, powered by Shiny and Plotly, for exploring SRT data in a SpatialExperiment format. In

comparison with the Feature Viewer provided in semla, it is not possible to return manual spot

annotations to the R object in a one-step process with spatialLIBD, and it does moreover not handle
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zooming of the tissue image in an efficient way that allows the user to utilize a high resolution image for

detailed exploration of their data in its histological context.

Spatial platform compatibility

As mentioned previously, Seurat is currently able to handle SRT data generated from several platforms.

The Giotto and Squidpy libraries also include support for additional packages than Visium. Semla on the

other hand has been developed for the primary intent of processing and analyzing Visium Gene

Expression data, where a matching histological image is available. Visium is to date the most widely used

SRT platform, based on available published datasets, and the need for accessible analysis tools is

therefore greater than for other platforms. Besides the original Visium Gene Expression platform for fresh

frozen tissue samples, using the poly-A capture chemistry, semla can also handle output data from the

probe-based Visium FFPE platform, with or without CytAssist (including the extra large (XL) capture

areas), Visium with immunofluorescence (IF) images, and the under-development Visium high definition

(HD) platform. For Visium IF, the images will have to be registered to the hematoxylin and eosin (H&E)

stained section image, enabling the user to replace the H&E image with the IF image when loading the

image with semla. However, the image processing functionalities provided in semla, such as masking of

the background through tissue outline detection, have been optimized for H&E images and will not

produce desirable results in its default mode. Instead, users can pass a custom method to the

MaskImages() function in order to mask other types of images. The “custom masking” section in the

“Mask images” tutorial provides some basic examples of how to create such a function

(https://ludvigla.github.io/semla/articles/mask_images.html#custom-masking-advanced). Tissue detection

is a non-trivial problem which makes it difficult to provide a universal technique and therefore users are

encouraged to explore and build customized strategies using the magick R package.

Despite the Visium-centric development of semla, the package is however not necessarily limited to

Visium data. As long as there is a feature*spot matrix and a spot coordinate file available, semla can

import the data. Although, there are currently no functions within semla (v. 1.1) designed to handle output

files in other formats than as generated by the 10x Space Ranger pipeline. Taking advantage of Seurat’s

spatial data support, there is nonetheless the possibility to import Slide-seq data into semla by converting

the Slide-seq Seurat object into a semla compatible object, as outlined below and in the article “Slide-seq

data” on the website (https://ludvigla.github.io/semla/articles/slide-seq.html). Given the lack of a

histological image in Slide-seq data, all image related functionalities of semla will be inaccessible,

including the Feature Viewer, when working with this data type. Other spatial analysis tools may
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Unset

moreover work differently, and require some caution, given that most functions have been developed with

the Visium data format in mind.

library(semla)

library(SeuratData)

InstallData("ssHippo")

slide_seq <- LoadData("ssHippo")

slide_seq_semla <- UpdateSeuratForSemla(slide_seq)

The part of the semla package allowing for additional spatially resolved omics platform support is still

under development, and it is our ambition to make semla compatible with more platforms in order to

allow for integrated multi-platform analyses in the future.

Conclusion

Our vision with a specialized R package for SRT data analysis, is that you should be able to perform all

your desired exploratory work and spatial analyses with the convenience of not having to convert your R

object for various analysis steps. Therefore, we see it as a large benefit to base semla on the widely

popular Seurat object structure, which allows the users to tap into all tools developed for scRNA-seq

analysis with Seurat and piggy-back on the fantastic development that the Seurat team produces with their

latest version of the package. Initiating a new semla object with your Visium data, will thus automatically

allow you to apply any Seurat compatible tool as well as open up the possibility to utilize all the

specialized functions provided in semla. The framework of semla is designed to be flexible and allow for

continuous development to include the potential support of SpatialExperiment data formats or support for

additional spatial platforms besides Visium.

5. Limitations

Semla is an R package intended for processing, analysis, and visualization of SRT data, with a specific

focus on the Visium Gene Expression platform. It is built to extend the Seurat toolbox and offers a wide

variety of functions, designed with the intention to provide the basis for unleashing the full potential of

your spatial data. While semla is readily available for use from its initial release, there are some

limitations we would like to highlight.
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SRT platform support. As mentioned, semla is currently designed specifically for Visium Gene

Expression data. While this is the case, it is possible to load spatial data of other origins with semla, albeit

limited in function compatibility of certain analysis tools and with a lack of easily applicable functions for

loading other data types. These are aspects we aim to address with future updates of semla. In the

meanwhile, we encourage users with other types of spatial omics data than Visium to use alternative

packages, such as Seurat (v. 5 beta) or Giotto.

Data structure. Semla is built upon the Seurat framework, and relies on the Seurat object structure for

storing expression assays, dimensionality reductions, meta data, and other associated data/information.

For Visium datasets, semla adds additional information about the spot coordinates and optionally the

H&E images. This additional information typically consumes much less memory compared to the count

assays stored within the Seurat object, thus exerting minimal impact on performance. However, with

Seurat v5, which at this time is a beta release, new infrastructure is offered to handle even larger datasets

with millions of cells (or spots) even if the data cannot be fully loaded into memory. As of selma's

current version (v. 1.1), we have not implemented support for any other format other than Seurat (e.g,

SpatialExperiment), although semla has been designed to ease a future implementation of such support.

Image processing. While it is possible to load other images (PNG or JPEG format) than the H&E image

provided among the Space Ranger output files, such as Visium IF images, it is important to ensure that its

size and alignment is equivalent to that generated by the Space Ranger pipeline, which may require

manual adjustment with an image editing software (e.g Adobe Photoshop). Image processing functions,

such as MaskImages(), might fail for certain histological images, for instance when staining artifacts

are present. There are a number of potentially useful image processing functionalities that are currently

missing in semla, for instance cell segmentation tools or feature extraction methods.

Multi-sample alignment. Semla includes an interactive sample alignment tool which can be used for

alignment of tissue sections with similar shape and histology, for instance consecutive tissue sections. The

alignment tools handles rigid transformations such as rotation, scaling, and translation. Any non-linear

global or local distortions of the samples would on the other hand be difficult to account for using only

rigid transformations. Moreover, the alignment tool cannot perform spot-level alignment across multiple

sections to form a common coordinate framework or a “consensus slice”. As this is a non-trivial task, we

would recommend users looking to perform such transformations to explore other tools developed for this
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particular purpose, for instance eggplant (Andersson et al. 2021) or Probabilistic Alignment of ST

Experiments (PASTE) (Zeira et al. 2022).
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