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Supplementary Information1

Supplementary Note 12

Analysis of individual subjects3

To improve the signal-to-noise ratio, we initially performed our analysis on group-average structural and4
functional networks. Here, we sought to understand the regional patterns of structure-function coupling5
estimated by low-frequency and high-frequency eigenmodes from the perspective of individual subjects.6

For low-frequency eigenmodes, we conducted the fitting procedure for every subject, which returns a7
matrix of coupling R whose size is [69 subjects × 1,000 regions] (Fig. 6a). As in the previous section, we8
found considerable variability across regions (one-way ANOVA R; F(999)=11.9; p<10-15), confirming9
the regionally heterogeneous roles of low-frequency eigenmodes in local structure-function prediction.10
To visualize the spatial distribution of these results, we averaged over subjects and plotted the mean11
structure-function coupling R for each region (Fig. 6b). We found that the magnitude of structure-12
function coupling varied systematically across the cortex, with primary unimodal cortices exhibiting the13
higher prediction accuracies than transmodal association cortex.14

To assess whether the contributions of low-frequency eigenmodes were concentrated within specific15
functional systems, we aggregated these R values by seven functional networks and compared the16
network-specific mean R with the null distribution generated by a spatially-constrained permutation17
model (spin test; 10,000 permutations). We found that the visual network had significantly higher18
structure-function coupling relative to the null distribution while ventral attention, frontoparietal, and19
default mode networks exhibited lower R values than the level expected by chance (FDR corrected20
P<10-4; Fig. 6c). Considering the inter-individual heterogeneity, we also provided the distributions of21
network-specific mean R over all subjects (Fig. S2a). Aggregating across subjects, we found that22
structure and function were gradually decoupled from the visual network (R=0.33±0.07) to the23
frontoparietal (R=0.24±0.05) and default mode networks (R=0.25±0.05). We further repeated the24
analysis of network-specific effects at a single subject level and calculated for each functional network25
the fraction of subjects for whom the network-specific mean R was statistically significantly different26
from the null distribution generated by spatial permutation (FDR corrected P<10-4). As expected, we27
found that the visual network in 93% of subjects exhibited statistically significantly higher R values28
compared to the null distribution while the frontoparietal network in 43% of subjects and the default29
mode network in 71% of subjects exhibited statistically significantly lower R values than expected by30
chance.31

We then correlated the regional coupling R with the unimodal-transmodal functional gradient for every32
subject, comparing the empirical correlation coefficient against those obtained using a spatially-33
constrained permutation model (1,000 permutations) and against those generated by randomly rewiring34
network edges with degree sequence preserved (1,000 permutations). Fig. S3 shows the spatial35
distributions of regional coupling R (panel a) for three individual subjects, as well as scatter plots36
showing the correlation between the functional gradient and coupling R (panel b) and the two null37
distributions for this correlation (panel c and d). In general, we found that the correlation between the38
regional R and functional gradient was overall negative although these correlation coefficients were39
considerably variable across subjects (Pearson ρ=-0.297±0.168; Fig. S2b), implying that structure and40
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function are gradually divergent along the unimodal-transmodal hierarchy. Using the above two kinds of41
subject-specific null models, we found that this anticorrelation was statistically significant in 88% of42
subjects relative to the first null distribution and in 71% of subjects relative to the second null43
distribution (P<0.05).44

For high-frequency eigenmodes, the structure-function coupling estimated at the individual level yielded45
a matrix containing R of every region and subject, which was reported in Fig. 6d. Consistent with the46
previous section, we observed regionally heterogeneous contributions of high-frequency eigenmodes to47
structure-function prediction (one-way ANOVA R; F(999)=15.7; P<10-15). Averaging regional R across48
subjects, we observed relatively weak structure-function coupling in unimodal primary and particularly49
in visual regions, and relatively strong coupling in transmodal association regions (Fig. 6d).50

To examine whether the contributions of high-frequency eigenmodes are system-specific, we aggregated51
these R values by seven functional networks, comparing the network-specific mean R with those52
obtained by the spatially-constrained permutation model (spin test; 10,000 permutations). We found that53
regions with lower R values were prominent in the visual and dorsal attention networks whereas regions54
with higher R values were affiliated with the limbic, frontoparietal, and default mode networks (FDR55
corrected P<10-4; Fig. 6f). We also took into account inter-individual heterogeneity and plotted the56
distribution of network-specific mean R over all subjects (Fig. S2c). In general, the strength of structure-57
function coupling increased from the visual network (R=0.58±0.03) to the default mode networks58
(R=0.62±0.02). Compared to the null distributions generated using the spatially-constrained permutation59
model (spin test; 10,000 permutations), we found that 84% of subjects exhibited statistically60
significantly lower R values in the visual network (FDR corrected P<10-4). In contrast, the default mode61
network in 41% of subjects, the frontoparietal network in 23% of subjects, and the limbic network in62
32% of subjects displayed statistically significantly higher R values than expected by chance (FDR63
corrected P<10-4). These results demonstrate that the magnitude of coupling R estimated by high-64
frequency eigenmodes was circumscribed by functional systems, with visual cortices showing relatively65
lower structure-function coupling than association cortices.66

Furthermore, we estimated the correlation between the regional structure-function coupling R and the67
unimodal-transmodal functional gradient for every subject. The examples of individuals’ spatial68
distributions of R were provided in Fig. S4 (panel a), with their corresponding correlations to the69
macroscale functional gradient illustrated in Fig. S4 (panel b). In general, we found that the regional R70
and functional gradient were overall positively correlated across subjects (Pearson ρ=0.254±0.157; Fig.71
S2d), implying that local structure-function relationships estimated by high-frequency eigenmodes are72
increasingly convergent along the unimodal-transmodal hierarchy. For every subject, we also compared73
the empirical correlation coefficient against those generated by two kinds of null models (Fig. S4, panel74
c and d). In the first one, we performed spatial permutation with spatial autocorrelation preserved (spin75
test; 1,000 permutations); in the second one, we rewired structural connections but preserved the original76
degree sequence (1,000 permutations). We found that 87% of subjects exhibited statistically77
significantly higher correlation coefficients than the first null distribution and that 65% of subjects than78
the second null distribution (P<0.05).79

Finally, we estimated the standard deviation of coupling R estimated by low-frequency and high-80
frequency eigenmodes for every region across all subjects. Interestingly, we found that regions with81
great inter-individual variations were overall concentrated in the visual and somatosensory cortex82
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whereas structure-function coupling in prefrontal, lateral temporal, and inferior parietal cortex was83
relatively consistent across subjects (Fig. S5a and c). Note that, for low-frequency eigenmodes, this84
spatial pattern is very similar to the spatial distribution of regional coupling R (Pearson ρ=0.79), and85
when transforming the standard deviation to the coefficient of variation, this trend did not persist86
(Pearson ρ=0.05; P=0.09; Fig. S5b), suggesting that the regional heterogeneity in inter-individual87
variability observed in the case of low-frequency eigenmodes may be attributable to a floor effect. In88
contrast, for high-frequency eigenmodes, the negative association between inter-individual variation in89
structure-function coupling and the unimodal-transmodal functional gradient was still statistically90
significant (Pearson ρ=-0.53; P<10-5; Fig. S5d).91

Collectively, these results suggest that the contribution of low-frequency eigenmodes is not uniform92
across the brain but concentrated on the primary unimodal regions, resulting in structure-function93
decoupling along the unimodal-transmodal gradient. Conversely, high-frequency eigenmodes94
preferentially contributed to the interpretation of functional profiles of transmodal association regions,95
inducing gradually convergent structure-function relationships from unimodal to transmodal regions.96
Both of these results are consistent with those obtained from group-average data and motivate further97
investigation into regional patterns of structure-function tethering under different diffusion processes.98

Supplementary Note 299

Sensitivity analyses100

we performed several sensitivity analyses to confirm the robustness of the regional structure-function101
coupling results to choices of low-frequency and high-frequency thresholds, spatial resolutions, data102
acquisition, and network reconstruction. First, we calculated regional structure-function coupling using103
low-frequency and high-frequency eigenmodes under the choice of �� ranging from ��=10 to ��=20104
and �� ranging from ��=384 to ��=484, respectively. We found that the regional patterns of structure-105
function coupling were highly robust to the choice of thresholds (the mean spatial correlation was 0.99106
(S.D. 0.02) for low frequencies and 0.99 (S.D. 0.00) for high frequencies; Supplementary Fig. S6). We107
also observed good agreement with the main regional coupling patterns when using structural and108
functional networks derived: (1) at another four resolutions (68, 114, 219, 448 nodes; Supplementary109
Fig. S7) and (2) using an independently collected dataset (HCP; Supplementary Fig. S8). We further110
repeated our analyses using functional networks derived from the partial correlation and found111
comparable results with the main text (Supplementary Fig. S9).112

Supplementary Note 3113

Comparison of prediction models with and without high-frequency eigenmodes114

Null models115

As a control, we performed phase-randomization of empirical eigenmodes while preserving the original116
spatial frequency to build null benchmarks (10×100 repetitions) [1-3]. We generated three null117
distributions, which corresponded to prediction models comprising phase-randomized low-frequency118
eigenmodes, comprising phase-randomized high-frequency eigenmodes, and comprising empirical low-119
frequency and phase-randomized high-frequency eigenmodes. We found that both prediction models120
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containing only low-frequency eigenmodes and containing only high-frequency eigenmodes121
significantly outperformed the corresponding null models (P<10-3; Fig. S10a-c), confirming the122
contribution of low-frequency and high-frequency eigenmodes to structure-function prediction. We123
further combined empirical low-frequency eigenmodes with phase-randomized high-frequency124
eigenmodes and compared this null benchmark with the empirical combined model to determine125
whether high-frequency eigenmodes supplement information from low-frequency eigenmodes to yield126
improved predictions. By calculating the change in prediction accuracy (Δ�), we found that the null127
benchmark underperformed the low-high combined model, and even the baseline low-frequency model128
(in both cases P<10-3; Fig. S10d). Thus, while low-frequency eigenmodes could well predict functional129
connectivity on their own, the introduction of noise would significantly hurt the performance of pre-130
existing model with good features. The small but statistically significant improvement from combining131
low-frequency and high-frequency eigenmodes strongly suggests this is not the case with high-132
frequency eigenmodes. Instead, the addition of high-frequency eigenmodes enhanced the explanation of133
functional interaction patterns, suggesting that high-frequency eigenmodes brought significantly more134
value than noise.135

Lasso regression for all three prediction models136

In the main text, we performed LASSO regression only for high-frequency eigenmodes and preserved137
all low-frequency eigenmodes for model comparison. Here, we performed LASSO regression for low-138
frequency model, high-frequency model, and low-high combined model, separately. The results were139
illustrated in Fig. S11. We found that low-high combined outperformed low-frequency model and that140
the top 10% of brain regions with the highest percentage increases were mostly located in transmodal141
association areas.142

Robustness to high-frequency threshold143

In the main text, we report results using the high-frequency threshold ��=434. Here, we extended the144
choice of �� to a wide range (from the highest 200 modes to the highest 600 modes) and repeated the145
main analyses of the manuscript. We found that the observed prediction improvements and preference146
for transmodal regions were stable across different threshold choices (Fig. S12).147

148
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149

Fig. S1.150
Prediction performance of single eigenmodes. (a) We applied each eigenmode to whole-brain151
structure-function prediction and expressed the prediction accuracy R into a z score relative to the152
null distribution generated by the corresponding phase-randomized eigenmodes (10,000153
repetitions). Statistically significant eigenmodes were shown in color (one-sided P<0.005). (b)154
The whole-brain prediction accuracy R estimated by each individual eigenmode. Source data are155
provided as a Source Data file.156

157
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158

159

Fig. S2.160
Individual structure-function coupling. (a) The distribution of network-specific mean R estimated161
by low-frequency eigenmodes over all subjects (n=69 subjects). Seven resting-state networks162
(RSNs): visual (vis), somatomotor (sm), dorsal attention (da), frontoparietal (fpn), ventral163
attention(va), limbic (lim), and default mode (dmn) networks. The boxplot shows the medians164
(circles), interquartile ranges (boxes), and min to max range (whiskers). (b) The histogram of165
correlation coefficients between regional coupling R estimated by low-frequency eigenmodes and166
functional gradient across all subjects. (c) The distribution of network-specific mean R estimated167
by high-frequency eigenmodes over all subjects (n=69 subjects). The boxplot shows the medians168
(circles), interquartile ranges (boxes), and min to max range (whiskers). (d) The histogram of169
correlation coefficients between regional coupling R estimated by high-frequency eigenmodes and170
functional gradient across all subjects. Source data are provided as a Source Data file.171
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172

Fig. S3.173
Regional structure-function coupling estimated by low-frequency eigenmodes for three individual174
subjects. (a) The spatial distribution. (b) The scatter plot showing the correlation between the175
functional gradient and regional coupling R. (c) Comparison of the empirical correlation176
coefficient against the null distribution generated by spatially-constrained permutation (1,000177
repetitions). (d) Comparison of the empirical correlation coefficient against the null distribution178
generated by randomly rewiring network edges (1,000 repetitions). In (c) and (d), we provided the179
empirical P-values (one-sided, unadjusted), calculated as the proportion of correlation coefficients180
generated by the null model that were more extreme than the empirical correlation coefficients.181
Source data are provided as a Source Data file.182

183
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184

Fig. S4.185
Regional structure-function coupling estimated by high-frequency eigenmodes for three individual186
subjects. (a) The spatial distribution. (b) The scatter plot showing the correlation between the187
functional gradient and regional coupling R. (c) Comparison of the empirical correlation188
coefficient against the null distribution generated by spatially-constrained permutation (1,000189
repetitions). (d) Comparison of the empirical correlation coefficient against the null distribution190
generated by randomly rewiring network edges (1,000 repetitions). In (c) and (d), we provided the191
empirical P-values (one-sided, unadjusted). Source data are provided as a Source Data file.192

193
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194

195

Fig. S5.196
Inter-individual heterogeneity. (a) The standard deviation of regional coupling (n=1,000 regions)197
estimated by low-frequency eigenmodes across all subjects (left), which is negatively correlated198
with the unimodal-transmodal gradient (right). (b) When transforming the standard deviation to199
the coefficient of variation, this negative correlation did not persist. (c) The standard deviation of200
regional coupling (n=1,000 regions) estimated by high-frequency eigenmodes across all subjects201
(left), which is negatively correlated with the unimodal-transmodal gradient (right). (d) When202
transforming the standard deviation to the coefficient of variation, this negative correlation was203
still statistically significant. In (a)-(d), two-sided t-test p-values were calculated. Source data are204
provided as a Source Data file.205

206
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207

Fig. S6.208
Robustness to frequency thresholds. The relationship between coupling strength R and the209
functional gradient is stable under different definitions of low-frequency and high-frequency210
eigenmodes. Source data are provided as a Source Data file.211

212
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213

Fig. S7.214
Consistency across spatial resolutions. The node-wise structure-function predictions based on215
low-frequency and high-frequency eigenmodes are respectively repeated in another four spatial216
resolutions (68, 114, 219, 448 nodes). The spatial patterns of structure-function R are visually217
similar. Source data are provided as a Source Data file.218

219
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220

Fig. S8.221
Verification on an independent dataset. The main results (structure-function divergence and222
convergence along the unimodal-transmodal gradient) are replicated in an independently collected223
dataset (Human Connectome Project HCP). Two-sided t-test p-values were calculated. Source224
data are provided as a Source Data file.225

226
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227

Fig. S9.228
Robustness to network reconstruction. The main results (structure-function divergence and229
convergence along the unimodal-transmodal gradient) are preserved when using the functional230
connectivity matrix derived from partial correlation. Two-sided t-test p-values were calculated.231
Source data are provided as a Source Data file.232

233
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234

Fig. S10.235
Comparison to null models. (a) The prediction performances of low-frequency eigenmodes (blue),236
high-frequency eigenmodes (orange) and low-high combined model (red) across the brain, which237
significantly outperform the null distributions obtained from phase-randomized low-frequency238
eigenmodes, phase-randomized high-frequency eigenmodes, and the model combining low and239
phase-randomized high eigenmodes (*** the empirical P<10-3). (b) Blue: the performance of240
prediction model comprising empirical low-frequency eigenmodes. Grey: the null distribution241
generated by prediction model comprising phase-randomized low-frequency eigenmodes. (c)242
Orange: the performance of prediction model comprising empirical high-frequency eigenmodes.243
Grey: the null distribution generated by prediction model comprising phase-randomized high-244
frequency eigenmodes. (d) Red: the increment in prediction accuracy (Δ�) with the addition of245
empirical high-frequency eigenmodes. Grey: the null distribution of changes in prediction246
accuracy generated by combining empirical low-frequency eigenmodes with phase-randomized247
high-frequency eigenmodes. Source data are provided as a Source Data file.248

249
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250

Fig. S11.251
LASSO regression for all three prediction models. We performed Lasso regression separately for252
low-frequency model, high-frequency model, and low-high combined model, which may result in253
the elimination of low-frequency features. (a) The prediction performances of low-frequency254
eigenmodes (blue), high-frequency eigenmodes (orange) and low-high combined model (red). (b)255
The increments (blue) and increase percentages (red) in prediction accuracy with the addition of256
high-frequency eigenmodes for unimodal and transmodal regions. (c) The spatial distribution of257
the top 10% of nodes with the highest percentage increases in prediction accuracy. Source data are258
provided as a Source Data file.259

260
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261

Fig. S12.262
Replication of main results under different high-frequency thresholds. Left panel: the increment263
(blue) and increase percentage (red) in prediction accuracy with the addition of high-frequency264
eigenmodes for unimodal and transmodal region. Right panel: The spatial distribution of the top265
10% of nodes with the highest percentage increases in prediction accuracy. (a-b) Results of high-266
frequency eigenmodes defined as 800:1000 modes. (c-d) Results of high-frequency eigenmodes267
defined as 600:1000 modes. (e-f) Results of high-frequency eigenmodes defined as 400:1000268
modes. Source data are provided as a Source Data file.269

270
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