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Supplementary figures:
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fig. S1. GO analysis of the Chromatin-On and -Off proteins. (A) GO analysis of
the Chromatin-On and -Off proteins. These proteins include all the proteins (i.e.,
PARylation-dependent and PARylation-independent). (B) GO analysis of the
Chromatin-On-PARYylation independent, Chromatin-Off-PARYylation dependent, and
Chromatin-Off-PARylation independent proteins.
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fig. S2. Validation of DDR-induced re-localization events. The abundance of INTS5,
INTS3, SOX11, ZC3H3, and TAF10 in the chromatin fraction as measured in the

proteomic (upper panel) and immunoblot experiments (lower panel).
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fig. S3. RNF114 targets PARylated-PARP1 for ubiquitin-proteasomal
degradation. (A) In vitro ubiquitination assays of PARP1 or PARylated-PARP1. The
assay was performed using the protocol as shown in Fig. 3B, with PARP1 or
PARylated-PARP1 (both were used at 1 ug) as the potential substrate. Purified RNF114
or CHIP was subject to in vitro ubiquitination experiments in the presence of PARP1
or PARylated-PARP1. After the in vitro ubiquitination reaction, the samples were
denatured by the addition of 1% SDS (final concentration) and were boiled. The
samples were diluted (10X) using the lysis buffer (to reduce the concentration of SDS
to 0.1%), and were subject to immunoprecipitation using the PARP1 antibody (to
remove the interference from RNF114 or CHIP). The isolated PARP1 was probed using
the anti-ubiquitin antibody. (B) RNF114 interacts with PAR. Immunoblot analyses of
the interaction between PARylated-PARP1 and RNF114 in vitro. The recombinant
GST-RNF114-WT, GST-RNF114-*PBZ mutant, or GST-RNF114-*RING mutant was



incubated with PARylated-PARP1. The samples were subject to glutathione-based
enrichment (for the isolation of GST and GST-fusion proteins). (C) PARylated-PARP1
is not degraded by RNF114 in proteasome inhibition. RNF114-KO cells were
reconstituted with RNF114-WT, RNF114-*PBZ mutant, or RNF114-*RING mutant.
These cells were pre-treated with MG132 (10 uM for 6 h) and were then treated with
H202 (2 mM for 5 min). PARP1 was isolated using immunoprecipitation and was
subject to immunoblot analyses using the indicated antibodies. (D) RNF114 is co-
localized with PCNA during DNA damage response. Staining of RNF114-GFP (Green)
and PCNA-DSRED (Red) during laser microirradiation-induced DNA damage. Scale
Bars, 10 um. (E) RNF114 is involved in DNA damage response. Control (RNF114-
WT) and RNF114-KO HCT116 cells were treated with or without H,O2 (2 mM for 5
min). Cell viability was measured using the colony formation assay. (F) Mutation of
the RING domain in RNF114 renders cells susceptible to genotoxic stress. RNF114-
KO HCT116 cells were reconstituted with RNF114-WT, RNF114-*PBZ mutant, or
RNF114-*RING mutant. The cells were treated with MMS (1 mM for 9 h). Cell
viability was measured using the CellTiter-Glo assay. (G) Nimbolide blocks the auto-
ubiquitination of RNF114 in an in vitro ubiquitination assay. Where indicated, GST-
RNF114 was incubated with E1/E2/ubiquitin in the presence of increasing
concentrations of nimbolide (0.1 uM, 0.5 uM or 1 uM). (H) Generation of the RNF114-
KO and PARP1-KO HeLa cells. RNF114 or PARP1 was deleted in HeLa cells using
the CRISPR-Cas9 system. Whole cell lysates were subject to immunoblot analyses

using the indicated antibodies.
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fig. S4. Structure of the various nimbolide analogs. These compounds were inactive

against UWBL cells.
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fig. S5. The primary and BRCAL-WT cells are not sensitive to nimbolide. HMEC
and CCD-18Co cells were treated with or without nimbolide (1 uM). Cell viability was
measured using a CellTiter-Glo assay.
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fig. S6. Nimbolide synergizes with DNA damaging agents. (A) The synergistic effect
between nimbolide and DNA damaging agents. UWB1 cells were treated with either
nimbolide (0.25 uM) alone, or nimbolide in combination with various DNA-damaging
agents (MMS (10 uM), Doxorubicin (0.01 uM), and Temozolomide (TMZ, 10 uM))
for 96 hrs. (B) The synergistic effects between nimbolide and inhibitors of the DNA
damage repair machinery. UWBL1 cells treated with either nimbolide (0.25 uM) alone,
or nimbolide in combination with AZD6738 (0.1 uM), LY2603618 (0.1 uM), or
SCH900776 (0.1 uM)) for 96 hrs.
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fig. S7. Nimbolide synergizes with a PARG inhibitor. The synergistic effects
between nimbolide and PDD00017273 (a PARG inhibitor, PDD). UWBL1 cells were
treated with either nimbolide (0.25 pM) alone, PDD00017273 (0.25 uM) alone or
nimbolide in combination with PDD00017273 (both at 0.25 uM) for 96 hrs.
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fig. S8. Nimbolide treatment induces the activation of innate immune signaling. (A)
Nimbolide induces strong activation of innate immune signaling. HelLa cells were
treated with nimbolide (1 uM, +) or Olaparib (1 uM, + or 10 uM, ++) for 48 h. The
whole cell lysates were subject to immunoblot experiments using the indicated
antibodies. (B) nimbolide induces expression of PD-L1. UWBL1 cells were treated with
nimbolide (1 uM, + or 2 uM, ++) or Olaparib (5 uM, + or 10 uM, ++) for 48 hours. The
whole cell lysates were subject to immunoblot experiments using the indicated

antibodies.



Supplementary information for synthetic procedures:

Compound 3

Mn(dpm)z, TBHP, PhSiH,(i-PrO), rt

Hexane/CH,Cl, 4:1
32%, brsm: 62%

Nimbolide (20 mg, 0.0429 mmol) and Mn(dpm)s (1.3 mg, 0.0021 mmol, 5 mol%)
were dissolved in 2 mL hexane and 0.5mL CH>Clz under Ar. PhSiH2(OiPr) (15uL,
0.0858 mmol, 2 eq) and TBHP (5.5 M in decane, 16 pL, 0.0858 mmol, 2 eq) were
added in sequence. The mixture was stirred at room temperature for 50 min. Saturated
Na>S203 were added. The layers were separated and the aqueous layer was extracted
several times with EtOAc. The combined organic extracts were washed with brine,
dried over MgSOys, and concentrated. Purification by silica gel chromatography
(hexanes:EA = 2:1) afforded the product as white solid 6.4 mg (yield 32%, brsm:
62%) and recovered nimbolide 9.6 mg (yield 48%).

[a] 0% =+ 119.22 (c 0.253, MeOH), (literature[a] p?® = + 122.2 (¢ 0.1, MeOH))

IH NMR (600 MHz, CDCls): 7.33 (t, J = 1.7 Hz, 1H), 7.26 — 7.24 (m, 1H), 6.32 (dd,
J=1.9,0.9 Hz, 1H), 5.53 (ddt, J = 8.4, 6.6, 1.9 Hz, 1H), 4.56 (dd, J = 12.1, 3.5 Hz,
1H), 4.21 (d, J = 3.5 Hz, 1H), 3.67 (dd, J = 8.5, 1.8 Hz, 1H), 3.56 (s, 3H), 2.86 (dd, J
=15.7, 5.2 Hz, 1H), 2.81 (ddd, J = 16.2, 11.6, 8.5 Hz, 1H), 2.71 — 2.67 (m, 2H), 2.40
~2.35(m, 1H), 2.32 (dd, J = 15.7, 5.8 Hz, 1H), 2.22 (dd, J = 12.1, 6.7 Hz, 1H), 2.14 —
2.08 (M, 3H), 1.70 (d, J = 1.8 Hz, 3H), 1.50 (s, 3H), 1.33 (s, 3H), 1.28 (s, 3H) ppm.



13C NMR (150 MHz, CDCls): § 210.42, 177.70, 172.90, 144.99, 143.01, 138.89,
135.97, 126.52, 110.38, 88.31, 82.77, 72.71, 51.64, 50.02, 49.60, 49.48, 49.33, 41.16,
40.79 (2C), 34.37, 33.22, 32.87, 17.06, 15.72, 15.09, 12.81 ppm.

HRMS (ESI-TOF): calc’d for C27H3,07 [M+H]": 469.2216, found: 469.2221.

TLC: Rf=0.4 (1:1 hexanes : ethyl acetate).

Compound 2

=
O
o S

NaBH,, CeClze7H,0, -78 °C

MeOH, 50%

Nimbolide (25 mg, 0.054 mmol) was dissolved in 3 mL MeOH. The mixture was
cooled to -78 °C and CeClz « 7H20 (40.3 mg, 0.108 mmol, 2 eq) was added followed
by NaBH4(4.9 mg, 0.108 mmol, 2 eq). After stirring at -78 °C for 30 min, the reaction
was quenched by 30 mL saturated NH4ClI then warmed to rt. Another 30 mL H,O was
added. The layers were separated and the aqueous layer was extracted with EtOAc (30
mL x 6). The combined organic extracts were washed with brine, dried over MgSOQOa,
and concentrated give the crude. Purification by silica gel chromatography

(hexanes:EA 1:1.5) afforded the product as white solid 12 mg (yield 50%).
[a] 0% =+ 38.01 (c 0.1, CHCI5).

IH NMR (400 MHz, CDCl3): § 7.34 (t, J = 1.7 Hz, 1H), 7.21 (s, 1H), 6.24 (d, J = 1.6
Hz, 1H), 6.16 (dd, J = 9.9, 2.4 Hz, 1H), 5.50 (dd, J = 9.9, 2.4 Hz, 1H), 5.48 — 5.41 (m,



1H), 4.51 (dd, J = 12.3, 3.7 Hz, 1H), 4.24 (dd, J = 8.0, 3.1 Hz, 2H), 3.67 (d, J = 8.6
Hz, 1H), 3.54 (s, 3H), 2.82 (dd, J = 15.5, 6.3 Hz, 1H), 2.56 (d, J = 12.3 Hz, 1H), 2.40
(dd, J = 15.5, 5.2 Hz, 1H), 2.30 (t, J = 5.7 Hz, 1H), 2.23 (dd, J = 12.1, 6.6 Hz, 1H),
2.17 —2.10 (m, 1H), 1.74 (d, J = 1.9 Hz, 3H), 1.35 (s, 3H), 1.32 (s, 3H), 1.06 (s, 3H)

ppm.

13C NMR (100 MHz, CDCls): 5 176.74, 174.75, 145.54, 143.29, 138.95, 136.16,
133.14, 130.66, 126.84, 110.53, 88.33, 83.06, 74.48, 52.14, 50.29, 49.60, 47.55,
46.73, 43.61, 41.41, 40.75, 32.20, 29.85, 19.15, 16.64, 13.09, 12.81 ppm.

HRMS (ESI-TOF): calc’d for CarHz07 [M+H]*: 469.2221, found: 469.2221.

TLC: Rf= 0.4 (EA:hexanes 1:1)

Compound 4

-
r
RN =

NaOMe, MeOH, 0 °C

MeOH, quant

Under Ar (g), nimbolide (20.8 mg, 0.0446 mmol) and NaOMe (7.2 mg, 0.13 mmol, 3
eq) were dissolved in 3 mL MeOH at 0 °C. After stirring at 0 °C for 1 hour, the
reaction was completed. Solvent was removed under vacuo, then the crude was
purified on silica gel chromatography (hexanes:EA 1:1.5) to afford the product as
white solid 22.1 mg (quant).



[a] 0?4 = +101.16 (c 0.17, CHCIs) ([a] 0 = + 110 (c 1, CHCIy)

IH NMR (600 MHz, CDCl3): 6 7.33 (t, J = 1.7 Hz, 1H), 7.24 (d, J = 1.1 Hz, 1H),
6.41 (d, J = 10.1 Hz, 1H), 6.33 (dd, J = 1.9, 0.9 Hz, 1H), 5.85 (d, J = 10.1 Hz, 1H),
5.55 (ddt, J = 8.4, 6.6, 2.0 Hz, 1H), 4.02 (d, J = 3.3 Hz, 1H), 3.92 (dd, J = 11.7, 3.3
Hz, 1H), 3.70 (s, 3H), 3.67 (s, 1H), 3.66 (s, 3H), 3.40 (d, J = 11.7 Hz, 1H), 2.90 (dd, J
=16.4,5.7 Hz, 1H), 2.76 (dd, J = 5.7, 3.8 Hz, 1H), 2.26 — 2.20 (m, 1H), 2.20 — 2.17
(m, 1H), 2.04 (dt, J = 11.9, 8.5 Hz, 1H), 1.68 (d, J = 1.9 Hz, 3H), 1.59 (s, 3H), 1.29 (s,
3H), 1.21 (s, 3H) ppm.

13C NMR (150 MHz, CDCls): § 202.25, 175.61, 173.73, 148.14, 146.84, 143.12,
139.05, 134.98, 126.86, 126.47, 110.48, 87.44, 86.97, 66.25, 53.08, 51.73, 49.65,
47.79, 47.51, 47.37, 43.68, 41.48, 39.10, 34.42, 17.58, 17.19, 16.45, 12.91ppm.

HRMS (ESI-TOF): calc’d for C2sH340g [M+H]": 499.2319, found: 499.2326.

TLC: Rr= 0.4 (CH2CI2EA 6:1)

Compound 5

md:H OH
O//\NHs-Bu

5

The compound 5 was prepared following reported procedure.



'H NMR spectra of compound 3 in CDCl3 (600 MHz)
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13C NMR spectra of compound 3 in CDCl3 (150 MHz)
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'H NMR spectra of compound 2 in CDCl3 (400 MHz)
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13C NMR spectra of compound 2 in CDCl3 (100 MHz)
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table S1. The quantitative proteomic MS experiments to identify the chromatin associate proteins.





