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18 Abstract

19 With the gradual maturity of sequencing technology, many microbiome studies 

20 have published, driving the emergence and advance of related analysis tools. R 

21 language is the widely used platform for microbiome data analysis for powerful 

22 functions. However, tens of thousands of R packages and numerous similar analysis 

23 tools have brought major challenges for many researchers to explore microbiome data. 

24 How to choose suitable, efficient, convenient, and easy-to-learn tools from the 

25 numerous R packages has become a problem for many microbiome researchers. We 

26 have organized 322 common R packages for microbiome analysis and classified them 

27 according to application categories (diversity, difference, biomarker, correlation and 

28 network analysis, functional prediction, and others), which could help researchers 

29 quickly find relevant R packages for microbiome analysis. Furthermore, we 

30 systematically sorted the integrated R packages (phyloseq, microbiome, 

31 MicrobiomeAnalystR, Animalcules, microeco, and amplicon) for microbiome 

32 analysis, and summarized the advantages and limitations, which will help researchers 

33 choose the appropriate tools. Finally, we thoroughly reviewed the R packages for 

34 microbiome analysis, summarized most of the common analysis content in the 

35 microbiome, and formed the most suitable pipeline for microbiome analysis. This paper 

36 is accompanied by hundreds of examples with 10,000 lines codes, which can help 

37 beginners to learn (C1-2 in GitHub), also help analysts compare and test different tools 

38 (C3-4 in GitHub). This paper systematically sorts the application of R in microbiome, 

39 providing an important theoretical basis and practical reference for the development of 
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40 better microbiome tools in the future. All the code is available at GitHub: 

41 https://github.com/taowenmicro/EasyMicrobiomeR.

42 Keywords R package, microbiome, data analysis, visualization 

43 Introduction

44 The metagenomic analysis is used to study microbial diversity, structure, and 

45 function by sequencing, quantifying, annotating, and analyzing DNA and/or RNA 

46 sequences of microbial communities or microbiota. The commonly used high-

47 throughput sequencing technology in microbiome research is mainly known as 

48 amplicon sequencing and shotgun metagenomic sequencing. Amplicon sequencing 

49 with the advantages of low cost, mature analysis system, and simple analysis process 

50 was widely used in microbiome research. Shotgun metagenomic sequencing provided 

51 the functional information of microbes and more accurate information on the microbial 

52 composition with the higher sequencing cost and large amount of computational 

53 resources needed. The detail pipeline for both sequencing have been systemically 

54 summarized in our previous review (Liu et al., 2021b) As an important component of 

55 biodiversity, microbial communities play a vital role in biology, ecology, 

56 biotechnology, agriculture, and medicine. Various bioinformatics methods are required 

57 for microbial community analysis, which mainly includes three parts: 1) data 

58 preprocessing, 2) quantification and annotation, and 3) statistics and visualization (Fig. 

59 1A). In the preprocessing step, the raw data is filtered and quality controlled to ensure 

60 data quality. In the quantification and annotation step, tools and databases are used to 

61 identify microbial representative sequences and annotate microbial taxonomy and 
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62 function. The first two parts of microbial community analysis have been well discussed 

63 and could be well done according to our previous papers (Liu et al., 2023). Finally, in 

64 the statistics and visualization step, various statistical methods are used to explore 

65 microbial community diversity, structure, and potential functions.

66 With the development of high-throughput sequencing technology, plenty of 

67 studies were performed with amplicon-sequencing technology (Thompson et al., 2017; 

68 Proctor et al., 2019) and shotgun metagenomes sequencing (Carrión et al., 2019; Paoli 

69 et al., 2022), which led to the development of microbiome analysis methodologies, 

70 software, and pipelines, e.g., QIIME (Caporaso et al., 2010), Mothur (Schloss et al., 

71 2009), USEARCH (Edgar, 2010), VSEARCH (Rognes et al., 2016), QIIME 2 (Bolyen 

72 et al., 2019), Parallel‐Meta Suite (Chen et al., 2022), EasyAmplicon (Liu et al., 2023), 

73 Kraken (Wood and Salzberg, 2014), MEGAN (Huson et al., 2007), MetaPhlAn2 

74 (Truong et al., 2015), HUMAnN2 (Franzosa et al., 2018) etc. As the most crucial and 

75 basic procedure for amplicon sequencing data analysis, OTU (Operational taxonomic 

76 unit) clustering method was popular before the year of 2015 while non-clustering 

77 methods were gradually developed and widely used recently. Currently, the common 

78 non-clustering methods include DADA2 (Callahan et al., 2016), deblur (Amir et al., 

79 2017), unoise3 (Edgar, 2016). One of the most representative non-clustering algorithms 

80 among them is DADA2, which was created with R language. It makes the R language 

81 (Ihaka and Gentleman, 1996) occupy an important position in raw data processing for 

82 amplicon sequencing. Compared with many software that can be used in upstream steps 

83 of microbiota sequencing data analysis, the downstream analysis steps rely on the R 

Page 4 of 90

~~ http://www.protein-cell.org ~~

Submitted manuscript for Protein & Cell

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

84 language heavily with various packages. These analyses mainly include: 1) Diversity 

85 analysis; 2) Difference analysis; 3) Correlation and network analysis; 4) Biomarker 

86 identification; 5) Functional predictions; 6) Integrative analysis of microbial 

87 communities with other indicators (including phylogenetic analysis, multi-omics 

88 integration, and environmental factor analysis, etc.). In addition to the kinds of 

89 multivariate statistical analysis that can be done in R, there are diversified data-cleaning 

90 packages that allow data to be transformed among different analyses.

91 R is a free, open-source language and environment for data statistical analysis and 

92 visualization, which was created by Ross Ihaka and Robert Gentleman from the 

93 University of Auckland in New Zealand and now is responsible by the "R Development 

94 Core Team". Compared with other analysis tools, such as SPSS, MINITAB, MATLAB, 

95 which are more suitable for the statistics of processed and standardized data, R language 

96 can handle processed data as well as raw data. R can easily implement almost all 

97 analysis methods, many of the latest methods or algorithms were first exhibited in it. 

98 Furthermore, R shows excellent data visualization, particularly for complex data. The 

99 powerful and flexible interactive analysis is also an advantage of R, meanwhile 

100 enabling visual data exploration. The functionality of the R language relies heavily on 

101 thousands of R packages, which provide a wide variety of data processing and analysis 

102 strategies, allowing almost any data analysis process to be done in R. The total number 

103 of R packages published on CRAN is 18,981, and Bioconductor is 2,183 (by January 

104 31, 2023). These packages demonstrated the powerful data process and analysis 

105 performance of R.
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106 In recent years, numerous R packages have been developed on the R platform for 

107 the downstream analysis of microbiome, which have made important contributions to 

108 the associated-research field. However, the increasing number of downstream analysis 

109 R packages has reached a dizzying level (Fig. 1B). In addition, integrated R packages 

110 containing a large amount of microbiome analysis content, such as phyloseq 

111 (McMurdie and Holmes, 2013), microeco (Liu et al., 2021a), and amplicon (Liu et al., 

112 2023), have gradually emerged. This abundance of R packages provides microbiome 

113 analysts with more choices, but also makes it difficult to identify the most suitable tools 

114 among many similar analysis tools. Furthermore, this plethora of R packages make it 

115 difficult for beginners to embark on a well-organized learning path for microbiome 

116 analysis. Therefore, it is urgent to compare similar analysis functions, and extract the 

117 similarities and differences functions, to select the best process for microbiome analysis 

118 and help beginners learn more effectively.

119 This paper attempts to sort and run the 322 common R packages (Fig. S1), 

120 especially the integrated R packages for microbiome analysis, and complete the 

121 following three parts: 1) compare different R package analysis processes according to 

122 the functional categories of microbiome analysis, analyze the results, and summarize 

123 example code; 2) organize the content of six integrated R packages according to the 

124 functional categories of microbiome analysis, compare the analysis results, and 

125 generate example code; 3) based on all R packages, select the optimal analysis approach 

126 using R language and provide example code for reference and learning to researchers.

127 Preparing microbiome data analysis
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128 Downstream analysis of microbiome requires the preparation of five data files, 

129 including a feature table, a feature annotation file, a sample metadata file, a 

130 phylogenetic tree, and representative sequences. For beginners, it is important to 

131 understand the format and basic data structure of these files and learn how to import 

132 these files into R language. Furthermore, different analytical contents often have 

133 different requirements for data, and it is necessary to learn some data manipulation 

134 skills to meet the demands of various functions. Finally, it is necessary to learn the 

135 basics of R plotting to facilitate the presentation of results.

136 Data preparation and cleaning

137 After the process of sequence data preprocessing and quantification and annotation, 

138 we need to further analysis the output files, including importing these files, cleaning 

139 data, and converting format and content which required for subsequent microbiome 

140 analysis in R. Before statistical analysis, we must master the basic procedure of R 

141 language to cope with the data input requirements of different packages. This section 

142 includes: importing, organizing, filtering, basic calculations, conversion, normalization, 

143 and modification of data. Five data forms are frequently used from raw data processing, 

144 including feature tables (file formats are .csv/.txt/.xlsx/.biom, typically used taxonomic 

145 and functional tables, including OTU/ASV/taxonomy/gene/module/pathway tables), 

146 feature annotation (.csv/.txt/.xlsx/.biom), sample metadata (.csv/.txt), 

147 evolutionary/phylogenetic trees (.nwk/.tree), representative sequences (.fasta/.fas/.fa). 

148 All the data cleaning-related packages show in Fig. 1C. Tabular data input for microbial 

149 community is primarily accomplished using functions such as read.table(), read.delim(), 
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150 and read.csv() in the utils package (Code 1A, script in GitHub). The reading of 

151 evolutionary tree files depends on functions like read.tree() in the ape/ggtree/treeio 

152 package, or read_tree() in the phyloseq package. For reading representative sequence 

153 files in microbiome, the readDNAStringSet() in the Biostrings package (Pages et al., 

154 2016) is typically used. Currently, big data integration of microbiome has become a 

155 trend, and leading to the emergence of R packages for integrated data from multiple 

156 studies, likes curatedMetagenomicData (Pasolli et al., 2017). The package only needs 

157 to import the package and could re-analysis the curated data, rather than input in raw 

158 sequencing data.

159 The basic idea of data organization can be summarized as three steps: splitting the 

160 data, processing with functions, and combining the output results into the desired 

161 format. The functions of basic packages in R can be combined to meet most 

162 requirements of the microbiome data operations. For example, the “for loop” combined 

163 with the basic statistical functions [sum(), mean(), sd(), etc.] can be used to perform 

164 basic statistical analysis and data transformations for microbial relative abundance 

165 (Code 1B); the base package provides the apply family of functions, including apply(), 

166 sapply(), lapply(), tapply(), aggregate(), etc., which can be applied to quickly complete 

167 the three stages of data processing. The apply family of functions provides a framework 

168 that acts as an alternative to “for loop” and is much faster than the basic “for loop” 

169 function in R (Code 1B). A similar purr (https://github.com/tidyverse/purrr) package 

170 can be used in place of “for loop” to perform efficient operations.

171 The plyr (Wickham and Wickham, 2020) package was upgraded from package of 
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172 base with a variety of data sorting processes for kinds of data frames, lists, etc. The 

173 plyr package provides three data processing stages “Split - Apply - Combine” in one 

174 function, and the plyr package implements grouping transformations between R types 

175 (vector, list, and data frame) and basically replaces the apply family of functions in the 

176 base package. It can easily handle grouping calculations, e.g., microbial abundance at 

177 different taxonomy levels (Code 1C). The reshape2 (Wickham, 2012) package 

178 provides the long-wide format transformation during data processing, and since 

179 ggplot2 (Wickham, 2011) plotting functions and most modeling functions, such as lm(), 

180 glm(), gam(), often use long data, microbiome data are general showed as wide form, 

181 so the transformation of microbiome data for plotting can be done using reshape2 

182 (Code 1D), which provides the long-wide format transformation during data processing.

183 The dplyr (Wickham et al., 2014) package is a member of the tidyverse family, 

184 innovatively abandoning the common form of data preservation in R rather than using 

185 the tibble format (more powerful than data.frame format) for data processing, which 

186 can more efficiently complete the data frame selection, merging and statistics within 

187 row and column, and data frame length and width format changes, the “%>%” pipeline 

188 symbol can be used to complete more complex data processing. The tibble format can 

189 store data during the analysis and modeling process, which is important for data 

190 analysis. For example, we demonstrated the use of dplyr and pipeline to run random 

191 forest modeling and the selection process of important variables (Code 1E).

192 Visualization in R language

193 In most cases, we are used to plotting standard graphs in microbiome data display 
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194 such as alpha/beta diversity, taxonomic composition. All the visualization-related 

195 packages show in Fig. 1C. Due to the widespread use of ggplot2 (Code 2A), many 

196 extension packages have emerged to extend based on ggplot2 with a high capacity of 

197 plotting styles, colors, and themes. These packages mainly include ggtern plotting 

198 ternary graphs in Code 2B (Hamilton and Ferry, 2018), ggraph plotting network graphs 

199 in Code 2C (Si et al., 2020), ggtree plotting evolutionary tree or cladogram in Code 2D 

200 (Xu et al., 2022) , the ggalluvial package, the ggVennDiagram package (Code 2E), 

201 the ggstatsplot package plotting pie chart, and the ggpubr package providing many 

202 various themes and colors of output. In addition, the pheatmap (Kolde, 2012) and 

203 ComplexHeatmap package (Gu, 2022) based on the grid mapping system plots the 

204 relative abundance of features in different samples (Code 2F), the VennDiagram 

205 package (Chen and Boutros, 2011) could show the number of features in different 

206 samples. The Upset package (Conway et al., 2017), which draws Upset view is a new 

207 form plotting similar to Venn diagram. The base-based drawing system is complex and 

208 difficult to learn, while it is a good choice for complex graph drawing, such as the 

209 circlize (Gu et al., 2014) package (Code 2G), which draws chord diagrams composed 

210 of microbiota.

211 Additionally, there is often a lot of microbiome mapping work that involves a 

212 combination of graphics. At present, many tools in R can combine graphics, such as 

213 cowplot, patchwork, and aplot. The patchwork package has the most powerful 

214 functions and supports modular splicing graphics (Code 2H).

215 Microbial community analysis
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216 We have categorized the analysis of microbiome data into the following six major 

217 types in Fig. 1D: diversity analysis, difference analysis, biomarkers identification, 

218 correlation and network analysis, functional prediction, and other microbiome analyses 

219 (including source tracking analysis, community assembly processes, and analysis of 

220 associations between microbiota and environmental factors). Then, we would have 

221 organized, compared, and summarized all relevant R packages.

222 Diversity analysis

223 Microbial community diversity mainly includes alpha diversity (Richness, 

224 Shannon, Simpson, Chao1, ACE, etc.), rarefaction curve, beta diversity (ordination and 

225 clustering analysis), taxonomic or functional composition. Here must introduce the 

226 package vegan (Oksanen et al., 2007), an abbreviation for Vegetation Analysis, written 

227 by nine quantitative ecologists, including Oksanen from Finland, which is initially used 

228 for specifical dealing with data on community ecology. The package provides a variety 

229 of methods for data standardization and transformation. For example, data used for 

230 alpha diversity analysis can be normalized at the same sequencing depth with rrarefy(), 

231 and data for ordination analysis can be normalized with the decostant() (Code 3A). 

232 After the sequencing data are sampling normalization, diversity calculation can be more 

233 reasonable. In addition, alpha diversity metrics calculation can also be carried out with 

234 the ade4 (Dray and Dufour, 2007), adespatial (Dray et al., 2019), and picante packages 

235 (Kembel et al., 2010). For example, phylogenetic diversity can be calculated using the 

236 pd() in the picante package (Code 3A). Vegan not only allows for alpha diversity 

237 analysis, but also provides functions such as rda() for conducting principal components 
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238 analysis (PCA) and redundancy analysis (RDA), cca() for conducting correspondence 

239 analysis (CA) and canonical correspondence analysis (CCA), decorana() for conducting 

240 decision curve analysis (DCA), and metaMDS() for conducting non-metric 

241 multidimensional scaling (NMDS) for microbiome ordination analysis (Code 3B). The 

242 prcom() in stats package can be used for principal component analysis (PCA), which 

243 is a kind of dimension reduction analysis. The mca() provided by the MASS package 

244 and the MCA() provided by the FactoMineR package can be used for multiple 

245 correspondence analysis (Code 3B); the ape package provides the pcoa() function for 

246 principal coordinate analysis (PCoA); the MASS package provides lda() for linear 

247 discriminant analysis (LDA, Code 3C). Before running many ordination operations, it 

248 is often necessary for community clustering. The vegdist() in the vegan package can 

249 calculate euclidean, manhattan, bray, canberra, and other distances (Code 3B). In 

250 addition, distance calculation can also be done using dist() of stats package. The 

251 distance matrix can be used for clustering analysis in addition to ordination analysis. 

252 The hclust() in the stats package can be used for clustering analysis, a similar function 

253 can be achieved with the facteoextra, kmeans packages (Code 3D). Microbial 

254 composition analysis mainly used to display the abundance of microbes, and the dplyr 

255 package is needed to organize the data then display with ggplot2 subsequently.

256 Difference analysis

257 Difference analysis is divided into community-level analysis and feature-level 

258 (any hierarchy of taxonomy and function) analysis. Community-level difference 

259 analysis is mainly performed with functions including adonis(), anosim(), and mrpp() 
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260 in vegan package, and mantel.test() in ape package (Code 4A). The R package for 

261 compositional data difference analysis in the feature level can utilize the wilcox.test() 

262 (Code 4B) and t.test() (Code 4C) in the stats package. Subsequently, data correction 

263 algorithms were developed specifically for sequencing data, such as the upper quartile 

264 (UQ), trimmed mean of M-values (TMM) (Code 4C), and relative log expression (RLE) 

265 harbored in the edgeR package (Chen et al., 2014) (Code 4D). Median of ratios method 

266 (MED) in DESeq2 package (Love et al., 2014) (Code 4E), and cumulative-sum scaling 

267 (CSS) algorithm in metagenomeSeq (https://github.com/sirusb/metagenomeSeq) 

268 package (Code 4F). Furthermore, the ALDEx2 package provides polynomial models 

269 which can be used to infer feature abundance and calculate feature differences with 

270 non-parametric tests, t-tests, or generalized linear models (Code 4G). The ANCOM-

271 BC package attempts to address sample heterogeneity by correcting bias with a log-

272 linear model. In addition, other R packages for microbiome data correction and 

273 difference tests include limma (Smyth, 2005) (Code 4H), DR, ANCOM (Lin and 

274 Peddada, 2020) (Code 4I), corncob (Code 4J), Maaslin2 (Code 4K), etc. Nearing et al. 

275 (2022) showed that they compared these difference analysis methods and proposed that 

276 ALDEx2 and ANCOM-II (anchom_v2.1.R, Code 4L) were the best performers in the 

277 difference analysis of microbial communities. As for the significance test, different 

278 packages use different methods for significance testing. For example, Fisher test was 

279 used in edgeR package; Wald test was used in DESeq2 and corncob package; t-test 

280 was used in limma package. There was other method for significance test, likes 

281 Wilcoxon rank-sum test (ALDEx2 and ANCOM-II), ANOVA (Maaslin2) etc.
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282 Biomarker identification

283 Characteristic microbial consortia were explored to explain certain questions, such 

284 as the biomarkers of the gut in obese or hypertensive populations, or of soil in Fusarium 

285 wilt develops, etc. Microbes selected through difference analysis are often unable to 

286 determine whether they represent the main differences of concern. Therefore, weight 

287 analysis or machine learning methods are used to further distinguish the feature 

288 microbes.

289 The main ones commonly used for weighted analysis are linear discriminant 

290 analysis effect size (LEfSe), PCA, etc (Code 5A). LEfSe is developed specifically for 

291 microbiome data, and the core functionality is implemented using the packages LDA 

292 (Fisher, 1936) and MASS (Ripley et al., 2013). By extracting the loading matrix of 

293 PCA ordination, the microbiome with the greatest impact on the sample variation are 

294 found as biomarkers. (Code 5B)

295 In terms of machine learning, the random forest model, which is widely used in 

296 microbiome analysis, is implemented by using the randomforest package (Liaw and 

297 Wiener, 2002) (Code 5C). There are many other decision tree-based machine learning 

298 models, such as the mboost (Hofner et al., 2014) package provides boosting-based 

299 algorithms, the e1071 (Dimitriadou et al., 2008) package provides support vector 

300 machines svm() in Code 5D, and plain Bayes naiveBayes(). The xgboost package can 

301 integrate many tree models together to form a strong classifier, which can prevent 

302 overfitting via many strategies, including regularization terms, shrinkage, and column 

303 subsampling, etc. In addition, the pROC (Robin et al., 2011) package is used to plot 

304 the operating characteristic curve (ROC, Code 5D) to evaluate the efficiency of 
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305 machine learning models. The Caret package provides cross-validation to determine 

306 the number of features (Kuhn, 2009). Currently, Jakob et al (2021) developed an open-

307 source R package SIAMCAT, a powerful yet user-friendly computational machine 

308 learning toolkit tailored to the characteristics of microbiome data.

309 Correlation and network analysis

310 Microbial co-occurrence network analysis is used to find microbial modules that 

311 may have mutualistic relationships. Co-occurrence network analysis mainly includes 

312 the calculation of correlations, network visualization, and the calculation of network 

313 properties. The common R packages for calculation of correlations are psych (Revelle 

314 and Revelle, 2015) (Code 6A), WGCNA (Langfelder and Horvath, 2008) (Code 6B), 

315 Hmisc (Harrell Jr and Harrell Jr, 2019) (Code 6C), and SpiecEasi (Kurtz et al., 2015) 

316 (Code 6D). Among these R packages, WGCNA has the highest calculation speed, 

317 while requiring additional p-value correction; psych can calculate correlation with 

318 correct p-value, but the speed is very low; the SpiecEasi package can use the sparcc 

319 method to perform a more suitable method for microbiome data to calculate the 

320 correlation matrix, and can call multiple-threads to accelerate the calculation. R 

321 packages for network visualization and attribute calculation can use igraph (Code 6E), 

322 network, and ggraph packages (Code 6F). These R packages contain many layout 

323 algorithms for network visualization. In addition, network packages combined with 

324 ggplot2 to visualize the network are easier to modify. Sna and ggraph packages have 

325 many visualization layout algorithms to increase the styles of network visualization. 

326 With the increasing use of network analysis in the microbiome analysis, more attention 
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327 is paid to network modularity and the key groups through network modules. The 

328 WGCNA package provides a complete framework to quickly complete the correlation 

329 calculation, network module calculation, module feature vector calculation, and other 

330 network properties exploration. The recent development of the ggClusterNet (Wen et 

331 al., 2022) package (Code 6G) provides a unified framework for microbiome networks 

332 and designs a variety of unique module-based visualization algorithms to visualize the 

333 module relationships in the network.

334 Functional prediction

335 The Tax4Fun (Aßhauer et al., 2015) R package (Code 7A) for functional 

336 prediction of 16S rDNA has been developed to more accurately predict changes in 

337 microbial community function using amplicon data. The package has been updated to 

338 Tax4Fun2 (Wemheuer et al., 2020). Microeco can implement FAPROTAX (Louca et 

339 al., 2016) prediction for bacteria/archaea and FUNGuild (Nguyen et al., 2016) 

340 prediction for fungi, which is based on the database of taxonomic functional description 

341 from curated published papers. Functional prediction enables the prediction of 

342 microbial community function and subsequent statistical analysis. Additionally, vegan 

343 can be used for diversity analysis, while edgeR, DEseq2, and limma packages can be 

344 used for difference analysis. For functional enrichment, the clusterProfiler (Code 7B) 

345 package can perform GO, KEGG, GSEA and GSVA enrichment, which considers 

346 gene/pathway abundance and is recommended. Furthermore, the clusterProfiler 

347 package provides plot functions based on the ggplot syntax, allowing to plot appealing 

348 graphics in a simple manner. Gene/pathway network analysis can be performed using 

349 WGCNA for calculation, and ggClusterNet for network parameter calculation and 
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350 visualization. However, the reliability of functional prediction results, particularly for 

351 environmental samples, is currently disputed (Wemheuer et al., 2020), and therefore, 

352 further verification of analysis results is often required.

353 Other microbiome analysis

354 Analysis for microbial community formation process commonly used in the 

355 framework proposed by Stegen et al. (2013) to calculate βNTI and RC-Bray indices 

356 with R packages minpack.lm, picante, Hmisc, eulerr, FSA, ape, stats4, and others 

357 (Code 8A). Ning et al. (2020) used a phylogenetic binning-based null model analysis 

358 to infer quantitative mechanisms underlying community assembly, and developed the 

359 R package iCAMP (Code 8B). It allows for the quantitative assessment of the relative 

360 importance of different ecological processes (e.g., homogenizing selection, 

361 heterogenizing selection, dispersal, and drift) on both the entire community and each 

362 phylogenetic bin (which is usually composed of taxa from a single family or order with 

363 distinct ecological characteristics). In addition, the package also provides neutral theory 

364 models, phylogenetic and taxonomic null model analyses at both the community and 

365 clade levels, calculation of niche differences and phylogenetic distances between clades, 

366 and tests for phylogenetic signals within individual phylogenetic bins.

367 Microbial communities were often used to analyze the correlation with 

368 environment indicators, for example, mantel.test() provided by the vegan package was 

369 used to examine the correlation between microbial communities and environment 

370 indicators, and using wascores(), mantel.correlog() to detect the phylogenetic signal 

371 between microbial communities and environmental factors (Code 8C). In addition, the 

372 ggClusterNet package can be used to calculate the co-occurrence relationships 
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373 between microbes/microbiome and environmental factors, and generated publish-ready 

374 figures (Code 8D). 

375 Knights et al. (2011) proposed the microbiome traceability tool source tracker in 

376 R language. Metcalf et al. (2016) predicted the time of death and tracked the source 

377 microbes of real cadavers on microbial communities, then microbial traceability 

378 analysis gradually popular. Shenhav et al. (2019) proposed a new algorithm in R, 

379 FEAST (Code 8E), which makes microbial traceability analysis more efficient, faster, 

380 and with low false positives.

381 Integrated R packages for microbiome

382 As microbiome sequencing becomes more popular, R packages dedicated to 

383 microbiome data processing are gradually emerging (Fig. 2). McMurdie and Holmes 

384 (2013) developed the phyloseq package: a comprehensive tool for microbiome data 

385 (including feature tables, phylogenetic trees, and feature annotation) clustering, 

386 integrating data import, storage, analysis, and output. The package utilizes many tools 

387 in R for ecological and phylogenetic analyses (vegan, ade4, ape, and picante) and uses 

388 ggplot2 to output high-standard figures. The data storage structure uses a S4-like 

389 storage system to store all relevant data as a single experiment-level object, thus making 

390 it easier to share data and reproduce the analysis. Subsequently, the packages 

391 microbiome (https://github.com/microbiome/microbiome), the 

392 MicrobiomeAnalystR(Chong et al., 2020), microViz (Barnett et al., 2021), and 

393 micreobiomeSeq emerged under this framework. Subsequently, the microeco package 

394 according to the S6 framework, which provides more analysis functions. With the need 
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395 for data interactive analysis, Animalcules (Zhao et al., 2021) emerged. EasyMicroPlot 

396 (https://github.com/xielab2017/EasyMicroPlot) also uses an interactive interface for 

397 microbiome data exploration, allowing for rapid downstream analysis of the 

398 microbiome (Fig. 3; Table1).

399 Microbiome data analysis using phyloseq

400 Phyloseq, using the S4 class object, is more suitable for object-oriented 

401 programming and has had a great impact on microbiome data analysis (Figs. 2/3, Fig. 

402 S2A-I, Pipeline 1. phyloseq.Rmd). Through the S4 class object, phyloseq allows the 

403 five parts of data (the feature table, feature annotation, metadata, representative 

404 sequences, and evolutionary tree) to maintain correspondence under the same 

405 framework, and provides a variety of multiple filtering functions on microbial features 

406 and samples, allowing the five parts of data to be filtered consistently without 

407 considering different among data. It also provides microbiome analysis through 

408 microbial data filtering and normalization, diversity calculation (Fig. S2A-B), 

409 microbial composition visualization (Fig. S2C-D), evolutionary tree visualization, and 

410 network analysis (Fig. S2E). The beta diversity function provides more than 30 distance 

411 algorithms, far more than those provided by packages such as vegan. Secondly, the 

412 phyloseq package uses ggplot for graphical visualization (Fig. S2F), which is easier to 

413 generate and modify figures. Additionally, phyloseq can integrate the evolutionary tree 

414 and feature taxonomic and abundance on tree branches and leaves (Fig. S2G), which 

415 makes the tree informative and beautiful.

416 Microbiome data analysis using microbiome
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417 The microbiome package also uses S4 class objects, like phyloseq, and can also 

418 perform most of the analysis of microbiomes (Figs. 2/3, Fig. S3, Pipeline 2. 

419 Microbiome.Rmd). Compared with phyloseq, the microbiome package is richer in 

420 alpha diversity indicators, which provides more than 30 alpha diversity indicators. 

421 Secondly, it provides core microbial calculation and visualization functions. In general, 

422 it can be used as a complement to phyloseq or in conjunction with it.

423 Microbiome data analysis using MicrobiomeAnalystR

424 MicrobiomeAnalystR is an R package version according to the 

425 MicrobiomeAnalyst webserver (Figs. 2/3, Fig. S4A-I, Pipeline 3. 

426 MicrobiomeAnalystR.Rmd). These functions include diversity (Fig. S4A-E), 

427 difference (Fig. S4F), the evolutionary tree, LEfSe, machine learning (Fig. S4G-H), 

428 network analysis, etc., which are more powerful than the previous two packages. The 

429 visualization combines basic packages, ggplot plotting, and interactive plotting. In 

430 terms of network analysis, it provides the process of calculating and plotting SparCC 

431 networks that are more suitable for microbiome data. However, the package depends 

432 on many R packages from CRAN, Bioconductor, and GitHub, so a complete installation 

433 of MicrobiomeAnalystR requires a lot of effort.

434 Microbiome data analysis using Animalcules

435 The Animalcules package is an alternative way to analysis in an interactive 

436 platform (Figs. 2/3, Fig.S5A-I, Pipeline 4. Animalcules.Rmd). It is possible to calculate 

437 and plot sequence statistics (Fig. S5A) and output interactive pie charts (Fig. S5B), 

438 calculate, and visualize alpha diversity boxplot, group microbial taxonomic or 
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439 functional composition stacked histogram plotting (Fig. S5C-G), ordination analysis 

440 (Fig. S5H), cluster analysis and heatmap, difference analysis by DESep2, limma, using 

441 randomforest, logistic regression to select biomarkers, and other analyses (Fig. S5J). 

442 The results of these analyses can often be reanalyzed by interactively modifying 

443 parameters, and the images can be interactively zoomed in and out, clicked to see details, 

444 and other operations performed by the mouse for better pattern discovery. However, 

445 the results cannot be exported as vector format, which do not meet the requirements for 

446 publication. Secondly, the analysis content is too little, especially the microbiome 

447 network analysis, the correlation analysis between the microbiome and other indicators.

448 Microbiome data analysis using microeco

449 The microeco package is very powerful, using R6 class data structure (Figs. 2/3, 

450 Fig.S6A-I, Pipeline 5. microeco.Rmd). It includes microbial diversity (Fig. S6A-G), 

451 difference (Fig. S6H-I), network (Fig. S6J), biomarker (Fig. S6K), integrated microbial 

452 and environmental factor (Fig. S6L), and phylogenetic diversity analysis. It can 

453 complete almost all the current microbiome analysis contents. However, it is not 

454 suitable for novices because there is a certain threshold for using S6 class objects. In 

455 addition, due to too many functions, the requirements for input data are different, 

456 causing some functions are hard to use.

457 Microbiome data analysis using amplicon

458 The package amplicon is an analysis and plotting tool within the microbiome 

459 analysis toolkit EasyMicrobiome (Liu et al., 2023). It enables various diversity analyses, 

460 including alpha diversity, rarefaction curve, PCoA, NMDS, LDA and PCA, taxonomic 
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461 composition. Then, it can easily generate high-quality figures such as boxplots, scatter 

462 plots for diversity analysis, stacked bar plots, circlize plots, and map trees for taxonomic 

463 or functional composition (Figs. 2/3, Fig.S7A-I, Pipeline 6. Amplicon.Rmd). One of its 

464 notable features is its ability to finely adjust the presentation of figures, resulting in 

465 published-ready figures. Additionally, several tools within the amplicon package are 

466 available for microbiome data transformation, facilitating subsequent analysis using 

467 tools such as LEfSe and STAMP. However, at the current version, the amplicon 

468 package does not provide some functions for network analysis, analysis of microbiome-

469 environment interactions, and analysis of community formation processes. The authors 

470 provide some scripts in EasyAmplicon pipeline to do this, mentioned in the published 

471 paper plan to finish these functions in the future.

472 The best practice for microbiome data analysis in R

473 The abundance of R packages can hinder microbiome researchers from efficiently 

474 selecting appropriate R packages for microbiome-related analyses. Therefore, we 

475 organized and selected efficient, commonly used, and user-friendly functions for 

476 microbiome data analysis in six categories (Fig. S8): 1) diversity analysis (Figs. S9A-I; 

477 Figs.S10A-E), 2) difference analysis (Figs. S10F-I; Figs. S11A-B), 3) biomarker 

478 identification (Figs. S11C-D), 4) correlation and network analysis (Figs. S11E-I), 5) 

479 functional prediction, 6 other microbiome analyses (Figs.S12A-I). All the script can be 

480 found in the file Pipeline.BestPractice.Rmd. This led to develop a better microbiome 

481 data analysis pipeline. 

482 In this pipeline, we used the amplicon package for alpha diversity rarefaction 
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483 curve (Fig. 4A; Fig. S9A) and PCoA analysis (Fig. 4B; Fig. S9B), ggplot2 package for 

484 visualization of microbial community composition, ggClusterNet for constructing 

485 Venn network (Fig. 4C), ggtree and ggtrextre for building evolutionary trees (Fig. 4D), 

486 and LEfSe for generating cladograms (Fig. 4E). We employed the stst4, ggplot2, and 

487 cowplot packages for difference analysis and generated STAMP plots (Fig. 4F), used 

488 edgeR for difference analysis and visualized in Manhattan plots (Fig. 4G), and applied 

489 DESep2 for difference analysis and generated multi-group volcano plots (Fig. 4H). We 

490 also used the el071, caret, randomforest, ROC packages for various machine learning 

491 analyses and generated microbiome weighted plots (Fig. 4I). Furthermore, we used 

492 ggClusterNet for microbiome network analysis (Fig. 4J), constructed network graphs 

493 and combined plots to explore the associations between environmental factors and 

494 microbiome communities (Fig. 4K). Finally, we used the FEAST package to perform 

495 community source tracking analysis and constructed pie charts (Fig. 4L). Other 

496 analyses included stacked bar charts of microbial community composition (Figs. 

497 S9E/H), chord diagrams (Fig. S10A), Venn diagrams (Fig. S10C), Upset diagrams (Fig. 

498 S10D), difference analysis volcano plots (Fig. S10E), functional prediction etc.

499 Perspective and conclusions

500 In the past ten years, the R language and numerous R packages have played an 

501 important role in the microbiome data analysis. R language is easy to use and get started. 

502 It has attracted many researchers to learn about it. However, there are still some 

503 contradictions between supply and demand in the microbiome data analysis. For 

504 example, it is often difficult to support multi-threading under the Windows system; 
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505 secondly, the speed of many R packages running is relatively slow, although some R 

506 packages are written in other languages as supplements; third, the application in 

507 microbiome still needs further development. For instance, there is a shortage of 

508 packages that allow for the exploration of time-series-based microbial compositions, as 

509 well as more robust interactive packages for analyzing complex microbial data. 

510 Furthermore, ggplot2 lacks the capability to create complex and combined figures, 

511 which fails to meet the visualization requirements for relationships between multiple 

512 intricate indicators with microbial community data. Therefore, developing new R 

513 packages that are more suitable for drawing complex figures and composite figures 

514 would be necessary for microbiome data.

515 With the development of sequencing technology, data analysis methods have 

516 advanced along with the development of R packages contributed to the field of 

517 microbiome. These R packages range from classic R packages such as vegan, which 

518 has been cited more than 10,000 times, to integrated R packages such as phyloseq, 

519 which contain many functions in one package and set a unified data processing 

520 framework. These R packages have been able to implement most of the functions of 

521 microbiome analysis, from microbial diversity, difference, biomarker identification, 

522 correlation and network, phylogenetic analysis, etc. However, these R packages have 

523 some redundant functions; for example, phyloseq, microbiome, and others can do 

524 microbial diversity analysis. The difference is only in the visualization method and 

525 scheme. A similar situation has always existed in microbiome analysis R packages, so 

526 we hope that in future developments we will try to de-redundantly use the same part of 
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527 the content or similar content to highlight the advantages of R packages.

528 Although these R packages can conduct a lot of functions, they don’t do well 

529 enough in some specific analyses, for example, alpha and beta diversity analysis, and 

530 the outgoing graphs often do not add difference detection results to visualize the 

531 differences from the figures. In addition, there are still some contents that can continue 

532 to be developed, such as applying more machine learning methods to microbiome data 

533 and its learning method, model, and important variable evaluation. Secondly, 

534 metagenomes are becoming more widely used, and the support of species and 

535 functional annotation results based on Kraken (Wood and Salzberg, 2014), MEGAN 

536 (Huson et al., 2007), MetaPhlAn2 (Truong et al., 2015), HUMAnN2 (Franzosa et al., 

537 2018), eggNOG-mapper (Huerta-Cepas et al., 2017), etc. is becoming more and more 

538 important, and these make the data processed by R rise from megabyte (M) to gigabyte 

539 (G). Therefore, Faster data processing R packages should be used to the microbiome 

540 data analysis process, such as data.table, fst, tidyfst etc.

541 The use of appropriate data structures can accelerate the microbiome data 

542 processing process. At first, we used S4 class objects for microbiome data 

543 encapsulation, which can complete a variety of analyses comprehensively and 

544 efficiently. The emergence of S6 class objects and other objects has greatly impacted 

545 microbiome data processing and largely facilitates it. With the development of the tidy 

546 family of R languages, tidy-based data structures have recently emerged for 

547 microbiome data mining. For example, the MicrobiotaProcess package (Xu et al., 

548 2023). This structure is more suitable for microbiome data mining, machine learning 
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549 modeling, and other analyses, which can more easily extract the influence of 

550 experimental design, time, space, and other factors on microbiome data in analysis, to 

551 discover the deep-seated patterns. We expect the R language to make microbiome 

552 analysis more efficient and help everyone discover more about its role in humans, 

553 animals, plants, and the environment, and use it for our benefit to make the world a 

554 better place.
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Table.1 Comparison of the advantages and limitations of the six integrated R packages

R package Function Advantages Limitations

phyloseq

1. Diversity analysis including alpha / 
beta diversity, community composition, 
and phylogenetic tree analysis. 
2. Network analysis.

1. Firstly utilize S4 class objects.
2. Possess a set of data processing and analysis functions based 
on phyloseq objects.
3. Combine evolutionary trees with microbial abundance to 
display species richness (Fig.S2G).
4. Ordinate analysis can be applied to arrange the order of samples 
and microbes on heatmap rows and columns (Fig.S2F).
5. The network analysis process is simplified (Fig.S2E).
6. Offer over 30 distance algorithms.

1. Introduction to phyloseq objects can be 
challenging for beginners.
2. Statistical tests, including diversity tests 
and community/feature-level microbial 
difference analysis, are not well integrated 
into community analysis.
3. Network analysis lacks test, attribute 
calculation.

microbiome
1. Diversity analysis only including 
alpha / beta diversity, community 
composition).

1. The alpha diversity index is abundance.
2. The t-SNE and CAP ordination algorithms.
3. The stacked bar chart for community composition analysis can 
be sorted by specified microbial features (Fig.S3C).
4. Visualization of individual microbes (Fig.S2D).

1. The t-SNE and CAP ordination analyses 
frequently encounter errors.
2. The statistical tests, including diversity 
tests, community and feature-level 
differences tests is not ideal.

MicrobiomeAnalystR

1. Diversity analysis including 
alpha/beta diversity, community 
composition, and phylogenetic tree 
analysis.
2. Difference analysis.
3. Biomarker-based diagnosis.

1. Comprehensive workflow with various functions ranging from 
data cleaning to visualization.
2. Multiple algorithms to correct sequencing errors, leading more 
accurate evaluation of abundance.
3. Various analyses can be performed at different taxonomic 
levels (Fig.S2E).
4. Machine learning can be utilized to search for and extract 
feature variables (Fig.S2G).
5. Difference analysis can be conducted using multiple methods 

1. Difficulties in installing R packages 
with dependencies.
2. Some functions may not work, including 
network analysis and difference analysis of 
relative abundance.
3. Insufficient explanation of parameters 
and examples.
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such as LEfSe and metagenomeSeq.

Animalcules

1. Sequence statistics visualization.
2. Diversity analysis including alpha/ 
beta diversity, community composition.
3. Difference analysis and biomarker 
identification.

1. The commonly used objects in omics analysis, such as 
SummarizedExperiment, can be utilized.
2. It can be interactively executed in R.
3. A 3D clustering plot can be generated.

1. Unable to save vector graphics and 
completed tables.
2. Insufficient functionality.

microeco

1. Diversity analysis including alpha / 
beta diversity, community composition, 
and phylogenetic tree analysis.
2. Difference analysis.
3. Biomarker identification.
4. Network analysis.
5. Correlation analysis with other 
indicators.
6. Functional prediction.

1. R6 class more expansibility than phyloseq objects.
2. Simple function calling.
3. Rich graphical representation of diversity and difference 
analysis results (Fig.S6A-G).
4. Unique correlation analysis of other indicators.
5. Abundant network analysis algorithms with comprehensive 
functionality (Fig.S6J).
6. FAPROTAX and FUNGuild function prediction.

1. New data structures increase the cost of 
learning time.
2. So many functions and dependency 
caused frequent some malfunctioning.

EasyAmplicon

1. Diversity analysis
2. Provide script for preparing STAMP, 
LEfSe, PICRUSt 1&2, BugBase, 
FAPROTAX, iTOL
3. Provide slide tutorial for each analysis 
and QIIIME 2 pipeline

1. It can be used in both command-line mode and interactive mode 
within RStudio.
2. It offers multiple visualization styles, allowing for easy 
generation of publication-quality figures (Fig.S7).
3. Its open-source code facilitates reproducible analysis and 
allows for personalized modifications

1. Need using the most popular tools, 
STAMP, LEfSe, PICRUSt 1&2, BugBase, 
FAPROTAX, iTOL.
2. Some functions need to be development.
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Figures & Legends

Figure 1. Microbial community data analysis workflow and related R packages.

(A) Overview of microbial community data analysis workflow. Core files are feature 

table (OTU), Taxonomy, sample metadata (Metadata), phylogenetic tree (Tree), and 

representative sequences (Ref.fa). (B) Detail of microbial community analysis 

workflow. First, the raw data can be processed by using USEARCH/VSEARCH, 

QIIME 2, DADA2 packages. Then, the important files are saved and used for 

downstream analysis in R language and RStudio software. Many microbial analysis 

methods rely on numerous R packages developed with R language. The font size in the 

word cloud represents the number of citations of R packages. (C) Commonly used R 

packages for data manipulation and visualization. (D) Classification of R packages for 

six categories in microbial community analysis.

Figure 2. Introduction to the functions of integrated microbial analysis R packages.

Microbial community analysis can be divided into diversity analysis, difference 

analysis, biomarker identification, correlation and network analysis, functional 

prediction, and other microbial community analysis (community construction process, 

association analysis with other indicators).

Figure 3. Typical results of integrated microbial community analysis R packages 

and comparison of similar results.

Group the analysis results of multiple integrated R packages according to the major 

categories of microbial community analysis functions. Each main branch in the tree 

diagram represents a type of microbial community analysis, and there are a total of 10 
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main branches: feature diversity analysis including 1 alpha diversity analysis, 2 beta 

diversity analysis, 3 community taxonomic or functional composition analysis, 4 

evolutionary or taxonomic tree analysis; 5 difference analysis; 6 biomarker 

identification; 7 correlation and network analysis; 8 functional prediction; 9 community 

construction process analysis; 10 association analysis with other indicators. Each leaf 

(circle) represents a style of the result displayed in the analysis, and the circle number 

around the outside of leaf represents the package number of the integrated R package 

that the analysis result comes from.

Figure 4. Examples of the best practice results of microbial community analysis in 

R language.

The selected results include rarefaction curve (A), Principal coordinate analysis scatter 

plot (B), Venn network graph (C), evolutionary tree (D), LEfSe cladogram (E), 

difference analysis STAMP style extended error bar plot (F), difference analysis 

Manhattan plot (G), difference analysis multi-group volcano plot (H), biomarker 

selection ring-column chart (I), network graph (J), correlation connection combination 

graph (K), source tracing analysis pie chart (L).
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Fig. S1 Showcases 9 specific categories of 324 R packages required for microbiome 
analysis. These packages have been classified into the following categories: dependent, 
data cleaning, visualization, diversity analysis, difference analysis, biomarker 
identification, correlation and network analysis, functional prediction, and other 
analysis (community construction process, association analysis with other indicators).
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Fig. S2 Partial display of results from integrated R package phyloseq
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Fig. S3 Partial display of results from integrated R package microbiome
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Fig. S4 Partial display of results from integrated R package MicrobiomeAnalystR
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Fig. S5 Partial display of results from integrated R package Animalcules
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Fig. S6 Partial display of results from integrated R package microeco
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Fig. S7 Partial display of results from integrated R package amplicon
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Fig. S8 Best practice analysis flow chart for microbiome data analysis
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Fig. S9 Partial display of results from best practices in microbiome data analysis. (A-I) diversity analysis
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Fig. S10 Partial display of results from best practices in microbiome data analysis. (A-E) diversity analysis, (F-I) difference analysis
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Fig. S11 Partial display of results from best practices in microbiome data analysis. (A-B) difference analysis, (C-D) biomarker identification, (E-
I) network analysis
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Fig. S12 Partial display of results from best practices in microbiome data analysis. (A-I) other microbiome analyses
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Sup. Table. Specific classification of 324 R packages in microbiome analysis.

Package Classification
abind Data cleaning
ade4 Diversity analysis
agricolae Difference analysis
AlgDesign Diversity analysis
annotate Function prediction
AnnotationDbi Function prediction
ape Diversity analysis
aplot Visualization
askpass Dependented
assertthat Dependented
backports Dependented
base64enc Data cleaning
bayesm Biomarker identification
BH Dependented
Biobase Dependented
BiocGenerics Dependented
BiocManager Dependented
BiocParallel Data cleaning
BiocVersion Dependented
biomformat Data cleaning
Biostrings Dependented
bit Diversity analysis
bit64 Data cleaning
bitops Data cleaning
blob Data cleaning
brew Data cleaning
brio Data cleaning
broom Biomarker identification
bslib Dependented
cachem Dependented
callr Dependented
car Dependented
carData Dependented
cellranger Dependented
checkmate Dependented
circlize Visualization
classInt Dependented
cli Dependented
clipr Dependented
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clue Diversity analysis
coda Data cleaning
coin Difference analysis
colorspace Visualization
combinat Data cleaning
commonmark Dependented
compositions Diversity analysis
corrplot Visualization
cowplot Visualization
cpp11 Dependented
crayon Visualization
credentials Dependented
crosstalk Visualization
curl Dependented
data.table Data cleaning
data.tree Biomarker identification
DBI Dependented
dbplyr Data cleaning
DelayedArray Dependented
deldir Visualization
DEoptimR Dependented
desc Dependented
DESeq2 Difference analysis
devtools Dependented
diffobj Visualization
digest Dependented
dirmult Dependented
doParallel Dependented
downlit Dependented
dplyr Data cleaning
dtplyr Data cleaning
dynamicTreeCut Diversity analysis
e1071 Biomarker identification
EasyStat Difference analysis
edgeR Difference analysis
ellipsis Dependented
evaluate Dependented
fansi Dependented
farver Visualization
fastcluster Diversity analysis
fastmap Dependented
fBasics Diversity analysis
fontawesome Visualization
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forcats Data cleaning
foreach Data cleaning
formatR Dependented
Formula Dependented
fs Dependented
fst Dependented
fstcore Dependented
futile.logger Dependented
futile.options Dependented
gargle Dependented
genefilter Difference analysis
geneplotter Function prediction
generics Dependented
GenomeInfoDb Dependented
GenomeInfoDbData Dependented
GenomicRanges Function prediction
gert Dependented
ggalluvial Visualization
ggClusterNet Network analysis
ggforce Visualization
ggfun Visualization
ggnewscale Visualization
ggplot2 Visualization
ggplotify Visualization
ggpubr Visualization
ggraph Visualization
ggrepel Visualization
ggsci Visualization
ggsignif Visualization
ggstance Visualization
ggstar Visualization
ggtern Visualization
ggtree Visualization
ggtreeExtra Visualization
ggupset Visualization
ggVennDiagram Visualization
gh Dependented
gitcreds Dependented
glmnet Biomarker identification
GlobalOptions Data cleaning
glue Dependented
GO.db Function prediction
googledrive Dependented
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googlesheets4 Dependented
graphlayouts Visualization
gridExtra Visualization
gridGraphics Visualization
gss Dependented
gtable Visualization
GUniFrac Diversity analysis
haven Dependented
hexbin Visualization
highr Dependented
Hmisc Data cleaning
hms Dependented
htmlTable Dependented
htmltools Dependented
htmlwidgets Dependented
httpuv Dependented
httr Dependented
huge Data cleaning
ids Dependented
igraph Network analysis
impute Data cleaning
ini Dependented
interp Dependented
IRanges Function prediction
isoband Dependented
iterators Dependented
jpeg Visualization
jquerylib Dependented
jsonlite Dependented
KEGGREST Function prediction
klaR Biomarker identification
knitr Dependented
labeling Dependented
labelled Dependented
lambda.r Dependented
later Dependented
latex2exp Dependented
latticeExtra Visualization
lazyeval Dependented
libcoin Dependented
lifecycle Dependented
limma Difference analysis
lme4 Biomarker identification
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locfit Dependented
lubridate Dependented
magrittr Dependented
MatrixGenerics Biomarker identification
MatrixModels Biomarker identification
matrixStats Dependented
memoise Dependented
curatedMetagenomicData Dependented
MicrobiotaProcess Biomarker identification
mime Dependented
miniUI Dependented
minqa Dependented
mnormt Diversity analysis
modeest Biomarker identification
modelr Biomarker identification
modeltools Biomarker identification
multcomp Difference analysis
multcompView Difference analysis
multtest Difference analysis
munsell Visualization
mvtnorm Difference analysis
network Network analysis
networkD3 Network analysis
nloptr Dependented
numDeriv Difference analysis
openssl Dependented
packcircles Network analysis
patchwork Visualization
pbkrtest Biomarker identification
permute Difference analysis
pheatmap Difference analysis
picante Biomarker identification
pillar Dependented
pixmap Visualization
pkgbuild Dependented
pkgconfig Dependented
pkgdown Dependented
pkgload Dependented
plogr Dependented
plotly Visualization
plyr Data cleaning
png Visualization
polyclip Dependented
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polynom Dependented
praise Dependented
preprocessCore Dependented
prettyunits Dependented
processx Dependented
profvis Visualization
progress Dependented
promises Dependented
proto Dependented
proxy Dependented
ps Visualization
psych Network analysis
pulsar Visualization
purrr Data cleaning
quantreg Difference analysis
questionr Data cleaning
R.cache Dependented
R.methodsS3 Dependented
R.oo Dependented
R.utils Dependented
R6 Dependented
ragg Visualization
randomForest Biomarker identification
SIAMCAT Biomarker identification
rappdirs Dependented
rcmdcheck Dependented
RColorBrewer Visualization
Rcpp Dependented
RcppArmadillo Dependented
RcppEigen Dependented
RCurl Dependented
readr Data cleaning
readxl Data cleaning
rematch Dependented
rematch2 Dependented
remotes Dependented
reprex Dependented
reshape2 Data cleaning
rgexf Visualization
rhdf5 Dependented
rhdf5filters Dependented
Rhdf5lib Dependented
rlang Dependented
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rmarkdown Dependented
rmutil Biomarker identification
robustbase Biomarker identification
roxygen2 Dependented
rprojroot Dependented
RSQLite Dependented
rstatix Difference analysis
rstudioapi Dependented
RVenn Visualization
rversions Dependented
rvest Dependented
s2 Dependented
S4Vectors Dependented
sandwich Difference analysis
sass Dependented
scales Visualization
selectr Dependented
servr Dependented
sessioninfo Dependented
sf Dependented
shape Visualization
shiny Dependented
sna Network analysis
snow Network analysis
sourcetools Dependented
sp Visualization
SparseM Dependented
SpiecEasi Network analysis
stable Difference analysis
stabledist Difference analysis
statip Difference analysis
statmod Biomarker identification
statnet.common Dependented
stringi Data cleaning
stringr Data cleaning
styler Dependented
SummarizedExperiment Data cleaning
sys Dependented
systemfonts Dependented
Tax4Fun2 Function prediction
tensorA Dependented
testthat Dependented
textshaping Visualization
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TH.data Dependented
tibble Dependented
tidyfst Data cleaning
tidygraph Visualization
tidyr Data cleaning
tidyselect Dependented
tidytree Diversity analysis
tidyverse Data cleaning
timechange Dependented
timeDate Dependented
timeSeries Dependented
tinytex Dependented
treeio Diversity analysis
tweenr Visualization
tzdb Dependented
units Dependented
urlchecker Dependented
vegan Diversity analysis
VGAM Difference analysis
vroom Data cleaning
waldo Difference analysis
WGCNA Network analysis
adespatial Diversity analysis
minpack.lm Other analysis
eulerr Other analysis
FSA Other analysis
stats4 Other analysis
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Running title: Using R language in microbiome analysis
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Abstract
With the gradual maturity of sequencing technology, many microbiome studies have 
published, driving the emergence and advance of related analysis tools. R language is 
the widely used platform for microbiome data analysis for powerful functions. 
However, tens of thousands of R packages and numerous similar analysis tools have 
brought major challenges for many researchers to explore microbiome data. How to 
choose suitable, efficient, convenient, and easy-to-learn tools from the numerous R 
packages has become a problem for many microbiome researchers. We have 
organized 324 common R packages for microbiome analysis and classified them 
according to application categories (diversity, difference, biomarker, correlation and 
network, functional prediction, and others), which could help researchers quickly find 
relevant R packages for microbiome analysis. Furthermore, we systematically sorted 
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the integrated R packages (phyloseq, microbiome, MicrobiomeAnalystR, 
Animalcules, microeco, and amplicon) for microbiome analysis, and summarized the 
advantages and limitations, which will help researchers choose the appropriate tools. 
Finally, we thoroughly reviewed the R packages for microbiome analysis, 
summarized most of the common analysis content in the microbiome, and formed the 
most suitable pipeline for microbiome analysis. This paper is accompanied by 
hundreds of examples with 10,000 lines codes in GitHub, which can help beginners to 
learn, also help analysts compare and test different tools. This paper systematically 
sorts the application of R in microbiome, providing an important theoretical basis and 
practical reference for the development of better microbiome tools in the future. All 
the code is available at GitHub.
Keywords R package, microbiome, data analysis, visualization, amplicon, 
metagenome 

Introduction
The metagenomic analysis is used to study microbial diversity, structure, and function 
by sequencing, quantifying, annotating, and analyzing DNA and/or RNA sequences 
of microbial communities or microbiota. The commonly used high-throughput 
sequencing technology in microbiome research is mainly known as amplicon 
sequencing and shotgun metagenomic sequencing. Amplicon sequencing with the 
advantages of low cost, mature analysis system, and simple analysis process was 
widely used in microbiome research. Shotgun metagenomic sequencing provided the 
functional information of microbes and more accurate information on the microbial 
composition with the higher sequencing cost and large amount of computational 
resources needed. The detail pipeline for both sequencing have been systemically 
summarized in our previous review (Liu et al., 2021). As an important component of 
biodiversity, microbial communities play a vital role in biology, ecology, 
biotechnology, agriculture, and medicine. Various bioinformatics methods are 
required for microbial community analysis, which mainly includes three parts: 1) data 
preprocessing, 2) quantification and annotation, and 3) statistics and visualization 
(Fig. 1A). In the preprocessing step, the raw data is filtered and quality controlled to 
ensure data quality. In the quantification and annotation step, tools and databases are 
used to identify microbial representative sequences and annotate microbial taxonomy 
and function. The first two parts of microbial community analysis have been well 
discussed and could be well done according to our previous papers (Liu et al., 2023). 
Finally, in the statistics and visualization step, various statistical methods are used to 
explore microbial community diversity, structure, and potential functions.

With the development of high-throughput sequencing technology, plenty of 
studies were performed with amplicon-sequencing technology (Thompson et al., 
2017; Proctor et al., 2019) and shotgun metagenomes sequencing (Carrión et al., 
2019; Li et al., 2022; Paoli et al., 2022), which led to the development of microbiome 
analysis methodologies, software, and pipelines, e.g., QIIME (Caporaso et al., 2010), 
Mothur (Schloss et al., 2009), USEARCH (Edgar, 2010), VSEARCH (Rognes et al., 
2016), QIIME 2 (Bolyen et al., 2019) , Parallel-Meta Suite (Chen et al., 2022), 
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EasyAmplicon (Liu et al., 2023), Kraken (Wood and Salzberg, 2014), MEGAN 
(Huson et al., 2007), MetaPhlAn2 (Truong et al., 2015), HUMAnN2 (Franzosa et al., 
2018) etc. As the most crucial and basic procedure for amplicon sequencing data 
analysis, OTU (Operational taxonomic unit) clustering method was popular before the 
year of 2015 while non-clustering methods were gradually developed and widely used 
recently. Currently, the common non-clustering methods include DADA2 (Callahan 
et al., 2016), deblur (Amir et al., 2017), unoise3 (Edgar and Flyvbjerg, 2015). One of 
the most representative non-clustering algorithms among them is DADA2, which was 
created with R language. It makes the R language (Ihaka and Gentleman, 1996) 
occupy an important position in raw data processing for amplicon sequencing. 
Compared with many software that can be used in upstream steps of microbiota 
sequencing data analysis, the downstream analysis steps rely on the R language 
heavily with various packages. These analyses mainly include: 1) Diversity analysis; 
2) Difference analysis; 3) Correlation and network analysis; 4) Biomarker 
identification; 5) Functional predictions; 6) Integrative analysis of microbial 
communities with other indicators (including phylogenetic analysis, multi-omics 
integration, and environmental factor analysis, etc.). In addition to the kinds of 
multivariate statistical analysis that can be done in R, there are diversified 
data-cleaning packages that allow data to be transformed among different analyses.

R is a free, open-source language and environment for data statistical analysis 
and visualization, which was created by Ross Ihaka and Robert Gentleman from the 
University of Auckland in New Zealand and now is responsible by the “R 
Development Core Team”. Compared with other analysis tools, such as SPSS, 
MINITAB, MATLAB, which are more suitable for the statistics of processed and 
standardized data, R language can handle processed data as well as raw data. R can 
easily implement almost all analysis methods, many of the latest methods or 
algorithms were first exhibited in it. Furthermore, R shows excellent data 
visualization, particularly for complex data. The powerful and flexible interactive 
analysis is also an advantage of R, meanwhile enabling visual data exploration. The 
functionality of the R language relies heavily on thousands of R packages, which 
provide a wide variety of data processing and analysis strategies, allowing almost any 
data analysis process to be done in R. The total number of R packages published on 
CRAN is 18,981, and Bioconductor is 2,183 (by January 31, 2023). These packages 
demonstrated the powerful data process and analysis performance of R.

In recent years, numerous R packages have been developed on the R platform for 
the downstream analysis of microbiome, which have made important contributions to 
the associated-research field. However, the increasing number of downstream analysis 
R packages has reached a dizzying level (Fig. 1B). In addition, integrated R packages 
containing a large amount of microbiome analysis content, such as phyloseq 
(McMurdie and Holmes, 2013), microeco (Liu et al., 2020), and amplicon (Liu et al., 
2023), have gradually emerged. This abundance of R packages provides microbiome 
analysts with more choices, but also makes it difficult to identify the most suitable 
tools among many similar analysis tools. Furthermore, this plethora of R packages 
make it difficult for beginners to embark on a well-organized learning path for 
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microbiome analysis. Therefore, it is urgent to compare similar analysis functions, 
and extract the similarities and differences functions, to select the best process for 
microbiome analysis and help beginners learn more effectively.

This paper attempts to sort and run the 324 common R packages (Fig. S1), 
especially the integrated R packages for microbiome analysis, and complete the 
following three parts: 1) compare different R package analysis processes according to 
the functional categories of microbiome analysis, analyze the results, and summarize 
example code; 2) organize the content of six integrated R packages according to the 
functional categories of microbiome analysis, compare the analysis results, and 
generate example code; 3) based on all R packages, select the optimal analysis 
approach using R language and provide example code for reference and learning to 
researchers.

Preparing microbiome data analysis
Downstream analysis of microbiome requires the preparation of five data files, 
including a feature table, a feature annotation file, a sample metadata file, a 
phylogenetic tree, and representative sequences. For beginners, it is important to 
understand the format and basic data structure of these files and learn how to import 
these files into R language. Furthermore, different analytical contents often have 
different requirements for data, and it is necessary to learn some data manipulation 
skills to meet the demands of various functions. Finally, it is necessary to learn the 
basics of R plotting to facilitate the presentation of results.

Data preparation and cleaning
After the process of sequence data preprocessing, quantification, and annotation, 

we need to further analysis the output files, including importing these files, cleaning 
data, and converting format, which required for subsequent microbiome analysis in R. 
Before statistical analysis, we must master the basic procedure of R language to cope 
with the data input requirements of different packages. This section includes: 
importing, organizing, filtering, basic calculations, conversion, normalization, and 
modification of data. Five data forms are frequently used from raw data processing, 
including feature tables (file formats are .csv/.txt/.xlsx/.biom, typically used 
taxonomic and functional tables, including 
OTU/ASV/taxonomy/gene/module/pathway tables), feature annotation 
(.csv/.txt/.xlsx/.biom), sample metadata (.csv/.txt), evolutionary/phylogenetic trees 
(.nwk/.tree), representative sequences (.fasta/.fas/.fa). All the data cleaning-related 
packages show in Fig. 1C. Tabular data input for microbial community is primarily 
accomplished using functions such as read.table(), read.delim(), and read.csv() in the 
utils package (Code 1A, script in GitHub). The reading of evolutionary tree files 
depends on functions like read.tree() in the ape/ggtree/treeio package, or read_tree() 
in the phyloseq package. For reading representative sequence files in microbiome, the 
readDNAStringSet() in the Biostrings package (Pages et al., 2016) is typically used. 
Currently, big data integration of microbiome has become a trend, and leading to the 
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emergence of R packages for integrated data from multiple studies, likes 
curatedMetagenomicData (Pasolli et al., 2017). The package only needs to import the 
package and could re-analysis the curated data, rather than input in raw sequencing 
data.

The basic idea of data organization can be summarized as three steps: splitting 
the data, processing with functions, and combining the output results into the desired 
format. The functions of basic packages in R can be combined to meet most 
requirements of the microbiome data operations. For example, the “for loop” 
combined with the basic statistical functions [sum(), mean(), sd(), etc.] can be used to 
perform basic statistical analysis and data transformations for microbial relative 
abundance (Code 1B); the base package provides the apply family of functions, 
including apply(), sapply(), lapply(), tapply(), aggregate(), etc., which can be applied 
to quickly complete the three stages of data processing. The apply family of functions 
provides a framework that acts as an alternative to “for loop” and is much faster than 
the basic “for loop” function in R (Code 1B). A similar purr package can be used in 
place of “for loop” to perform efficient operations.

The plyr (Wickham, 2011b) package was upgraded from package of base with a 
variety of data sorting processes for kinds of data frames, lists, etc. The plyr package 

provides three data processing stages “Split–Apply–Combine” in one function, and 

the plyr package implements grouping transformations between R types (vector, list, 
and data frame) and basically replaces the apply family of functions in the base 
package. It can easily handle grouping calculations, e.g., microbial abundance at 
different taxonomy levels (Code 1C). The reshape2 (Wickham, 2007) package 
provides the long-wide format transformation during data processing, and since 
ggplot2 (Wickham, 2011a) plotting functions and most modeling functions, such as 
lm(), glm(), gam(), often use long data, microbiome data are general showed as wide 
form, so the transformation of microbiome data for plotting can be done using 
reshape2 (Code 1D), which provides the long-wide format transformation during data 
processing.

The dplyr package is a member of the tidyverse family, innovatively abandoning 
the common form of data preservation in R rather than using the tibble format (more 
powerful than data.frame format) for data processing, which can more efficiently 
complete the data frame selection, merging and statistics within row and column, and 
data frame length and width format changes, the “%>%” pipeline symbol can be used 
to complete more complex data processing. The tibble format can store data during 
the analysis and modeling process, which is important for data analysis. For example, 
we demonstrated the use of dplyr and pipeline to run random forest modeling and the 
selection process of important variables (Code 1E).

Visualization in R language
In most cases, we are used to plotting standard graphs in microbiome data display 
such as alpha/beta diversity, taxonomic composition. All the visualization-related 
packages show in Fig. 1C. Due to the widespread use of ggplot2 (Code 2A), many 
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extension packages have emerged to extend based on ggplot2 with a high capacity of 
plotting styles, colors, and themes. These packages mainly include ggtern plotting 
ternary graphs in Code 2B (Hamilton and Ferry, 2018), ggraph plotting network 
graphs in Code 2C (Si et al., 2022), ggtree plotting evolutionary tree or cladogram in 
Code 2D (Xu et al., 2022), the ggalluvial package, the ggVennDiagram package 
(Code 2E), the ggstatsplot package plotting pie chart, and the ggpubr package 
providing many various themes and colors of output. In addition, the pheatmap and 
ComplexHeatmap package (Gu, 2022) based on the grid mapping system plots the 
relative abundance of features in different samples (Code 2F), the VennDiagram 
package (Chen and Boutros, 2011) could show the number of features in different 
samples. The UpSetR package (Conway et al., 2017), which draws Upset view is a 
new form plotting similar to Venn diagram. The base-based plotting system is 
complex and difficult to learn, while it is a good choice for complex graph drawing, 
such as the circlize (Gu et al., 2014) package (Code 2G), which draws chord diagrams 
composed of microbiota.

Additionally, there is often a lot of microbiome mapping work that involves a 
combination of graphics. At present, many tools in R can combine graphics, such as 
cowplot, patchwork, and aplot. The patchwork package has the most powerful 
functions and supports modular splicing graphics (Code 2H).

Microbial community analysis
We have categorized the analysis of microbiome data into the following six major 
types in Fig. 1D: diversity analysis, difference analysis, biomarkers identification, 
correlation and network analysis, functional prediction, and other microbiome 
analyses (including source tracking analysis, community assembly processes, and 
analysis of associations between microbiota and environmental factors). Then, we 
would have organized, compared, and summarized all relevant R packages.

Diversity analysis
Microbial community diversity mainly includes alpha diversity (Richness, Shannon, 
Simpson, Chao1, ACE, etc.), rarefaction curve, beta diversity (ordination and 
clustering analysis), taxonomic or functional composition. Here must introduce the 
package vegan (Oksanen et al., 2007), an abbreviation for Vegetation Analysis, 
written by nine quantitative ecologists, including Oksanen from Finland, which is 
initially used for specifical dealing with data on community ecology. The package 
provides a variety of methods for data standardization and transformation. For 
example, data used for alpha diversity analysis can be normalized at the same 
sequencing depth with rrarefy(), and data for ordination analysis can be normalized 
with the decostant() (Code 3A). After the sequencing data are sampling 
normalization, diversity calculation can be more reasonable. In addition, alpha 
diversity metrics calculation can also be carried out with the ade4 (Dray and Dufour, 
2007), adespatial (Dray et al., 2018), and picante packages (Kembel et al., 2010). For 
example, phylogenetic diversity can be calculated using the pd() in the picante 
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package (Code 3A). Vegan not only allows for alpha diversity analysis, but also 
provides functions such as rda() for conducting principal components analysis (PCA) 
and redundancy analysis (RDA), cca() for conducting correspondence analysis (CA) 
and canonical correspondence analysis (CCA), decorana() for conducting decision 
curve analysis (DCA), and metaMDS() for conducting non-metric multidimensional 
scaling (NMDS) for microbiome ordination analysis (Code 3B). The prcom() in stats 
package can be used for principal component analysis (PCA), which is a kind of 
dimension reduction analysis. The mca() provided by the MASS package and the 
MCA() provided by the FactoMineR package can be used for multiple correspondence 
analysis (Code 3B); the ape package provides the pcoa() function for principal 
coordinate analysis (PCoA); the MASS package provides lda() for linear discriminant 
analysis (LDA, Code 3C). Before running many ordination operations, it is often 
necessary for community clustering. The vegdist() in the vegan package can calculate 
euclidean, manhattan, bray, canberra, and other distances (Code 3B). In addition, 
distance calculation can also be done using dist() of stats package. The distance 
matrix can be used for clustering analysis in addition to ordination analysis. The 
hclust() in the stats package can be used for clustering analysis, a similar function can 
be achieved with the facteoextra, kmeans packages (Code 3D). Microbial composition 
analysis mainly used to display the abundance of microbes, and the dplyr package is 
needed to organize the data then display with ggplot2 subsequently.

Difference analysis
Difference analysis is divided into community-level analysis and feature-level (any 
hierarchy of taxonomy and function) analysis. Community-level difference analysis is 
mainly performed with functions including adonis(), anosim(), and mrpp() in vegan 
package, and mantel.test() in ape package (Code 4A). The R package for 
compositional data difference analysis in the feature level can utilize the wilcox.test() 
(Code 4B) and t.test() (Code 4C) in the stats package. Subsequently, data correction 
algorithms were developed specifically for sequencing data, such as the upper quartile 
(UQ), trimmed mean of M-values (TMM) (Code 4C), and relative log expression 
(RLE) harbored in the edgeR package (Robinson et al., 2009) (Code 4D). Median of 
ratios method (MED) in DESeq2 package (Love et al., 2014) (Code 4E), and 
cumulative-sum scaling (CSS) algorithm in metagenomeSeq 
(https://github.com/sirusb/metagenomeSeq) package (Code 4F). Furthermore, the 
ALDEx2 package provides polynomial models which can be used to infer feature 
abundance and calculate feature differences with non-parametric tests, t-tests, or 
generalized linear models (Code 4G). The ANCOM-BC package attempts to address 
sample heterogeneity by correcting bias with a log-linear model. In addition, other R 
packages for microbiome data correction and difference tests include limma (Code 
4H), DR, ANCOM (Lin and Peddada, 2020) (Code 4I), corncob (Code 4J), Maaslin2 
(Code 4K), etc. Nearing et al. (2022) showed that they compared these difference 
analysis methods and proposed that ALDEx2 and ANCOM-II (anchom_v2.1.R, Code 
4L) were the best performers in the difference analysis of microbial communities. As 
for the significance test, different packages use different methods for significance 
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testing. For example, Fisher test was used in edgeR package; Wald test was used in 
DESeq2 and corncob package; t-test was used in limma package. There was other 
method for significance test, likes Wilcoxon rank-sum test (ALDEx2 and 
ANCOM-II), ANOVA (Maaslin2) etc.

Biomarker identification
Characteristic microbial consortia were explored to explain certain questions, such as 
the biomarkers of the gut in obese or hypertensive populations, or of soil in Fusarium 
wilt develops, etc. Microbes selected through difference analysis are often unable to 
determine whether they represent the main differences of concern. Therefore, weight 
analysis or machine learning methods are used to further distinguish the feature 
microbes.

The main ones commonly used for weighted analysis are linear discriminant 
analysis effect size (LEfSe), PCA, etc (Code 5A). LEfSe is developed specifically for 
microbiome data, and the core functionality is implemented using the packages LDA 
(Fisher, 1936) and MASS (Ripley et al., 2013). By extracting the loading matrix of 
PCA ordination, the microbiome with the greatest impact on the sample variation are 
found as biomarkers (Code 5B).

In terms of machine learning, the random forest model, which is widely used in 
microbiome analysis, is implemented by using the randomforest package (Liaw and 
Wiener, 2002) (Code 5C). There are many other decision tree-based machine learning 
models, such as the mboost (Hofner et al., 2014) package provides boosting-based 
algorithms, the e1071 (Dimitriadou et al., 2008) package provides support vector 
machines svm() in Code 5D, and plain Bayes naiveBayes(). The xgboost package can 
integrate many tree models together to form a strong classifier, which can prevent 
overfitting via many strategies, including regularization terms, shrinkage, and column 
subsampling, etc. In addition, the pROC (Robin et al., 2011) package is used to plot 
the operating characteristic curve (ROC, Code 5D) to evaluate the efficiency of 
machine learning models. The Caret package provides cross-validation to determine 
the number of features (Kuhn, 2008). Currently, Jakob et al (2021) developed an 
open-source R package SIAMCAT, a powerful yet user-friendly computational 
machine learning toolkit tailored to the characteristics of microbiome data.

Correlation and network analysis
Microbial co-occurrence network analysis is used to find microbial modules that may 
have mutualistic relationships. Co-occurrence network analysis mainly includes the 
calculation of correlations, network visualization, and the calculation of network 
properties. The common R packages for calculation of correlations are psych (Revelle 
and Revelle, 2015) (Code 6A), WGCNA (Langfelder and Horvath, 2008) (Code 6B), 
Hmisc (Harrell Jr and Harrell Jr, 2019) (Code 6C), and SpiecEasi (Kurtz et al., 2015) 
(Code 6D). Among these R packages, WGCNA has the highest calculation speed, 
while requiring additional p-value correction; psych can calculate correlation with 
correct p-value, but the speed is very low; the SpiecEasi package can use the sparcc 
method to perform a more suitable method for microbiome data to calculate the 
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correlation matrix, and can call multiple-threads to accelerate the calculation. R 
packages for network visualization and attribute calculation can use igraph (Code 6E), 
network, and ggraph packages (Code 6F). These R packages contain many layout 
algorithms for network visualization. In addition, network packages combined with 
ggplot2 to visualize the network are easier to modify. Sna and ggraph packages have 
many visualization layout algorithms to increase the styles of network visualization. 
With the increasing use of network analysis in the microbiome analysis, more 
attention is paid to network modularity and the key groups through network modules. 
The WGCNA package provides a complete framework to quickly complete the 
correlation calculation, network module calculation, module feature vector 
calculation, and other network properties exploration. The recent development of the 
ggClusterNet (Wen et al., 2022) package (Code 6G) provides a unified framework for 
microbiome networks and designs a variety of unique module-based visualization 
algorithms to visualize the module relationships in the network.

Functional prediction
The Tax4Fun (Aßhauer et al., 2015) R package (Code 7A) for functional prediction of 
16S rDNA has been developed to more accurately predict changes in microbial 
community function using amplicon data. The package has been updated to Tax4Fun2 
(Wemheuer et al., 2020). Microeco can implement FAPROTAX (Louca et al., 2016) 
prediction for bacteria/archaea and FUNGuild (Nguyen et al., 2016) prediction for 
fungi, which is based on the database of taxonomic functional description from 
curated published papers. Functional prediction enables the prediction of microbial 
community function and subsequent statistical analysis. Additionally, vegan can be 
used for diversity analysis, while edgeR, DEseq2, and limma packages can be used 
for difference analysis. For functional enrichment, the clusterProfiler (Code 7B) 
package can perform GO, KEGG, GSEA and GSVA enrichment, which considers 
gene/pathway abundance and is recommended. Furthermore, the clusterProfiler 
package provides plot functions based on the ggplot syntax, allowing to plot 
appealing graphics in a simple manner. Gene/pathway Pathway network analysis can 
be performed using WGCNA for calculation, and ggClusterNet for network parameter 
calculation and visualization. However, the reliability of functional prediction results, 
particularly for environmental samples, is currently disputed , and therefore, further 
verification of analysis results is often required.

Other microbiome analysis
Analysis for microbial community formation process commonly used in the 
framework proposed by Stegen et al. (2013) to calculate βNTI and RC-Bray indices 
with R packages minpack.lm, picante, Hmisc, eulerr, FSA, ape, stats4, and others 
(Code 8A). Ning et al. (2020) used a phylogenetic binning-based null model analysis 
to infer quantitative mechanisms underlying community assembly, and developed the 
R package iCAMP (Code 8B). It allows for the quantitative assessment of the relative 
importance of different ecological processes (e.g., homogenizing selection, 
heterogenizing selection, dispersal, and drift) on both the entire community and each 
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phylogenetic bin (which is usually composed of taxa from a single family or order 
with distinct ecological characteristics). In addition, the package also provides neutral 
theory models, phylogenetic and taxonomic null model analyses at both the 
community and clade levels, calculation of niche differences and phylogenetic 
distances between clades, and tests for phylogenetic signals within individual 
phylogenetic bins.

Microbial communities were often used to analyze the correlation with 
environment indicators, for example, mantel.test() provided by the vegan package was 
used to examine the correlation between microbial communities and environment 
indicators, and using wascores(), mantel.correlog() to detect the phylogenetic signal 
between microbial communities and environmental factors (Code 8C). In addition, the 
ggClusterNet package can be used to calculate the co-occurrence relationships 
between microbes/microbiome and environmental factors, and generated 
publish-ready figures (Code 8D). 

Knights et al. (2011) proposed the microbiome traceability tool source tracker in 
R language. Metcalf et al. (2016) predicted the time of death and tracked the source 
microbes of real cadavers on microbial communities, then microbial traceability 
analysis gradually popular. Shenhav et al. (2019) proposed a new algorithm in R, 
FEAST (Code 8E), which makes microbial traceability analysis more efficient, faster, 
and with low false positives.

Integrated R packages for microbiome
As microbiome sequencing becomes more popular, R packages dedicated to 
microbiome data processing are gradually emerging (Fig. 2). McMurdie and Holmes 
(2013) developed the phyloseq package: a comprehensive tool for microbiome data 
(including feature tables, phylogenetic trees, and feature annotation) clustering, 
integrating data import, storage, analysis, and output. The package utilizes many tools 
in R for ecological and phylogenetic analyses (vegan, ade4, ape, and picante) and uses 
ggplot2 to output high-standard figures. The data storage structure uses a S4-like 
storage system to store all relevant data as a single experiment-level object, thus 
making it easier to share data and reproduce the analysis. Subsequently, the packages 
microbiome (https://github.com/microbiome/microbiome), the MicrobiomeAnalystR 
(Chong et al., 2020), microViz (Barnett et al., 2021), and micreobiomeSeq emerged 
under this framework. Subsequently, the microeco package according to the S6 
framework, which provides more analysis functions. With the need for data 
interactive analysis, Animalcules (Zhao et al., 2021) emerged. EasyMicroPlot 
(https://github.com/xielab2017/EasyMicroPlot) also uses an interactive interface for 
microbiome data exploration, allowing for rapid downstream analysis of the 
microbiome (Fig. 3; Table 1).

Microbiome data analysis using phyloseq
Phyloseq, using the S4 class object, is more suitable for object-oriented programming 

and has had a great impact on microbiome data analysis (Figs. 2/, 3, Fig.  and S2A-–
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G, Pipeline 1. phyloseq.Rmd). Through the S4 class object, phyloseq allows the five 
parts of data (the feature table, feature annotation, metadata, representative sequences, 
and evolutionary tree) to maintain correspondence under the same framework, and 
provides a variety of multiple filtering functions on microbial features and samples, 
allowing the five parts of data to be filtered consistently without considering different 
among data. It also provides microbiome analysis through microbial data filtering and 
normalization, diversity calculation (Fig. S2A- and S2B), microbial composition 
visualization (Fig. S2C- and S2D), evolutionary tree visualization, and network 
analysis (Fig. S2E). The beta diversity function provides more than 30 distance 
algorithms, far more than those provided by packages such as vegan. Secondly, the 
phyloseq package uses ggplot for graphical visualization (Fig. S2F), which is easier to 
generate and modify figures. Additionally, phyloseq can integrate the evolutionary 
tree and feature taxonomic and abundance on tree branches and leaves (Fig. S2G), 
which makes the tree informative and beautiful.

Microbiome data analysis using microbiome
The microbiome package also uses S4 class objects, like phyloseq, and can also 

perform most of the analysis of microbiomes (Figs. 2/, 3, Fig. and S3A-–G, Pipeline 

2. Microbiome.Rmd). It includes microbial diversity analysis (Fig. S3A-–E), and 

difference analysis (Fig. S3F- and S3G). Compared with phyloseq, the microbiome 
package is richer in alpha diversity indicators, which provides more than 30 alpha 
diversity indicators. Secondly, it provides core microbial calculation and visualization 
functions. In general, it can be used as a complement to phyloseq or in conjunction 
with it.

Microbiome data analysis using MicrobiomeAnalystR
MicrobiomeAnalystR is an R package version according to the MicrobiomeAnalyst 

webserver (Figs. 2/, 3, Fig. and S4A-–J, Pipeline 3. MicrobiomeAnalystR.Rmd). 

These functions include diversity analysis (Fig. S4A-–F), difference analysis (Fig. 

S4G), biomarker identification (Fig. S4H- and S4I), sample sequencing library size 
overview (Fig. S4J), which are more powerful than the previous two packages. The 
visualization combines basic packages, ggplot plotting, and interactive plotting. In 
terms of network analysis, it provides the process of calculating and plotting SparCC 
networks that are more suitable for microbiome data. However, the package depends 
on many R packages from CRAN, Bioconductor, and GitHub, so a complete 
installation of MicrobiomeAnalystR requires a lot of effort.

Microbiome data analysis using Animalcules
The Animalcules package is an alternative way to analysis in an interactive platform 

(Figs. 2/, 3, Fig.  and S5A-–J, Pipeline 4. Animalcules.Rmd). It is possible to 
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calculate and plot sample statistics in bar plot (Fig. S5A) or interactive pie charts (Fig. 
S5B), calculate, and visualize alpha diversity dot plot (Fig. S5C), group microbial 
taxonomic or functional composition heatmap and stack plot (Fig. S5D- and S5E), 
feature abundance in boxplot (Fig. S5F), genus bray distance heatmap (Fig. S5G), 
ordination analysis (Fig. S5H- and S5I), using randomforest, logistic regression to 
select biomarkers (Fig. S5J), and other analyses. The results of these analyses can 
often be reanalyzed by interactively modifying parameters, and the images can be 
interactively zoomed in and out, clicked to see details, and other operations performed 
by the mouse for better pattern discovery. However, the results cannot be exported as 
vector format, which do not meet the requirements for publication. Secondly, the 
analysis content is too little, especially the microbiome network analysis, the 
correlation analysis between the microbiome and other indicators.

Microbiome data analysis using microeco
The microeco package is very powerful, using R6 class data structure (Figs. 2/, 3, Fig.  

and S6A-–L, Pipeline 5. microeco.Rmd). It includes microbial diversity (Fig. S6A/B) 

taxonomic composition (Fig. S6C-–E), difference (Fig. S6F-–H), biomarker (Fig. S6I- 

and S6J), network (Fig. S6K), integrated community structure with environmental 
factor (Fig. S6L), and phylogenetic diversity analysis. It can complete almost all the 
current microbiome analysis contents. However, it is not suitable for novices because 
there is a certain threshold for using S6 class objects. In addition, due to too many 
functions, the requirements for input data are different, causing some functions are 
hard to use.

Microbiome data analysis using amplicon

The package amplicon is an analysis and plotting tool (Figs. 2/, 3, Fig. and S7A-–I, 

Pipeline 6. Amplicon.Rmd) within the microbiome analysis toolkit EasyMicrobiome 
(Liu et al., 2023). It enables various diversity analyses, including alpha diversity (Fig. 
S7A), rarefaction curve (Fig. S7B), clustering distance heatmap (Fig. S7C) and PCoA 
(Fig. S7D), NMDS, LDA and PCA, taxonomic composition (Fig. S7E/ and S7F), 
difference analysis (Fig. S7G/ and S7H). Then, it can easily generate high-quality 
figures such as boxplots, scatter plots for diversity analysis, stacked bar plots, circlize 
plots, and map trees for taxonomic or functional composition. One of its notable 
features is its ability to finely adjust the presentation of figures, resulting in 
published-ready figures. Additionally, several tools within the amplicon package are 
available for microbiome data transformation, facilitating subsequent analysis using 
tools such as LEfSe and STAMP. However, at the current version, the amplicon 
package does not provide some functions for network analysis, analysis of 
microbiome-environment interactions, and analysis of community formation 
processes. The authors provide some scripts in EasyAmplicon pipeline to do this, 
mentioned in the published paper plan to finish these functions in the future.
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The best practice for microbiome data analysis in R
The abundance of R packages can hinder microbiome researchers from efficiently 
selecting appropriate R packages for microbiome-related analyses. Therefore, we 
organized and selected efficient, commonly used, and user-friendly functions for 
microbiome data analysis in six categories (Fig. S8): 1) diversity analysis (Figs. 

S9A-–I; Figs. and S10A-–E), 2) difference analysis (Figs. S10F-–I,; Figs.  S11A- 

and S11B), 3) biomarker identification (Figs. S11C- and S11D), 4) correlation and 
network analysis (Figs. S11E-I), 5) functional prediction, 6 other microbiome 

analyses (Figs. S12A-–I). All the script can be found in the file 

Pipeline.BestPractice.Rmd. This led to develop a better microbiome data analysis 
pipeline. 

In this pipeline, we used the amplicon package for alpha diversity rarefaction 
curve (Figs. 4A; Fig. and S9A) and PCoA analysis (Figs. 4B; Fig. and S9B), ggplot2 
package for visualization of microbial community composition, ggClusterNet for 
constructing Venn network (Chen et al., 2021) (Fig. 4C), ggtree and ggtrextre for 
building evolutionary trees (Fig. 4D), and LEfSe for generating cladograms (Fig. 4E). 
We employed the stst4, ggplot2, and cowplot packages for difference analysis and 
generated STAMP plots (Fig. 4F), used edgeR for difference analysis and visualized 
in Manhattan plots (Fig. 4G), and applied DESep2 for difference analysis and 
generated multi-group volcano plots (Fig. 4H). We also used the el071, caret, 
randomforest, ROC packages for various machine learning analyses and generated 
microbiome weighted plots (Fig. 4I). Furthermore, we used ggClusterNet for 
microbiome network analysis (Fig. 4J), constructed network graphs and combined 
plots to explore the associations between environmental factors and microbiome 
communities (Fig. 4K). Finally, we used the FEAST package to perform community 
source tracking analysis and constructed pie charts (Fig. 4L). Other analyses included 
stacked bar charts of microbial community composition (Figs. S9E/H), chord 
diagrams (Fig. S10A), Venn diagrams (Fig. S10C), Upset diagrams (Fig. S10D), 
difference analysis volcano plots (Fig. S10F), functional prediction etc.

Perspective and conclusions
In the past ten years, the R language and numerous R packages have played an 

important role in the microbiome data analysis. R language is easy to use and get 
started. It has attracted many researchers to learn about it. However, there are still 
some contradictions between supply and demand in the microbiome data analysis. For 
example, it is often difficult to support multi-threading under the Windows system; 
secondly, the speed of many R packages running is relatively slow, although some R 
packages are written in other languages as supplements; third, the application in 
microbiome still needs further development. For instance, there is a shortage of 
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packages that allow for the exploration of time-series-based microbial compositions, 
as well as more robust interactive packages for analyzing complex microbial data. 
Furthermore, ggplot2 lacks the capability to create complex and combined figures, 
which fails to meet the visualization requirements for relationships between multiple 
intricate indicators with microbial community data. Therefore, developing new R 
packages that are more suitable for drawing complex figures and composite figures 
would be necessary for microbiome data.

With the development of sequencing technology, data analysis methods have 
advanced along with the development of R packages contributed to the field of 
microbiome. These R packages range from classic R packages such as vegan, which 
has been cited more than 10,000 times, to integrated R packages such as phyloseq, 
which contain many functions in one package and set a unified data processing 
framework. These R packages have been able to implement most of the functions of 
microbiome analysis, from microbial diversity, difference, biomarker identification, 
correlation and network, phylogenetic analysis, etc. However, these R packages have 
some redundant functions; for example, phyloseq, microbiome, and others can do 
microbial diversity analysis. The difference is only in the visualization method and 
scheme. A similar situation has always existed in microbiome analysis R packages, so 
we hope that in future developments we will try to de-redundantly use the same part 
of the content or similar content to highlight the advantages of R packages.

Although these R packages can conduct a lot of functions, they don’t well 
enough in some specific analyses, for example, alpha and beta diversity analysis, and 
the outgoing graphs often not add difference detection results to visualize the 
differences from the figures. In addition, there are still some contents that can 
continue to be developed, such as applying more machine learning methods to 
microbiome data and its learning method, model, and important variable evaluation. 
Secondly, metagenomes are becoming more widely used, and the support of species 
and functional annotation results based on Kraken (Wood and Salzberg, 2014), 
MEGAN (Huson et al., 2007), MetaPhlAn2 (Truong et al., 2015), HUMAnN2 
(Franzosa et al., 2018), eggNOG-mapper (Huerta-Cepas et al., 2017), etc. is becoming 
more and more important, and these make the data processed by R rise from 
megabyte (M) to gigabyte (G). Therefore, Faster data processing R packages should 
be used to the microbiome data analysis process, such as data.table, fst, tidyfst etc.

The use of appropriate data structures can accelerate the microbiome data 
processing. At first, we used S4 class objects for microbiome data encapsulation, 
which can complete a variety of analyses comprehensively and efficiently. The 
emergence of S6 class objects and other objects has greatly impacted microbiome data 
processing and largely facilitates it. With the development of the tidy family of R 
languages, tidy-based data structures have recently emerged for microbiome data 
mining. For example, the MicrobiotaProcess package (Xu et al., 2023). This structure 
is more suitable for microbiome data mining, machine learning modeling, and other 
analyses, which can more easily extract the influence of experimental design, time, 
space, and other factors on microbiome data in analysis, to discover the deep-seated 
patterns. We expect the R language to make microbiome analysis more efficient and 
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help everyone discover more about its role in humans, animals, plants, and the 
environment, and use it for our benefit to make the world a better place.

Supplementary information

The online version contains Figure S1-–12, and Table S1.
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Table 1. Comparison of the advantages and limitations of the six integrated R packages.
R package Function Advantages Limitations

phyloseq

1. Diversity analysis including 
alpha / beta diversity, community 
composition, and phylogenetic 
tree analysis. 
2. Network analysis.

1. Firstly utilize S4 class objects.
2. Possess lots of analysis functions based on phyloseq 
objects.
3. The network analysis process is simplified (Fig. 
S2E).
4. Ordinate analysis can be applied to arrange the order 
of samples and microbes on heatmap rows and 
columns (Fig. S2F).
5. Combine evolutionary trees with microbial 
abundance to display species richness (Fig. S2G).
6. Offer over 30 distance algorithms.

1. Introduction to phyloseq objects can 
be challenging for beginners.
2. Statistical tests, including diversity 
tests and community/feature-level 
microbial difference analysis, are not 
well integrated into community analysis.
3. Network analysis lacks test, attribute 
calculation.

microbiomeMicrobiome
1. Diversity analysis only 
including alpha / beta diversity, 
community composition.

1. The alpha diversity index is abundance.
2. The t-SNE and CAP ordination algorithms.
3. The stacked bar chart for community composition 
analysis can be sorted by specified microbial features 
(Fig. S3C).
4. Visualization of individual microbes (Fig. S3D).

1. The t-SNE and CAP ordination 
analyses frequently encounter errors.
2. The statistical tests, including 
diversity tests, community and 
feature-level differences tests is not 
ideal.

Microbiome
AnalystR

1. Diversity analysis including 
alpha/beta diversity, community 
composition, and phylogenetic 
tree analysis.
2. Difference analysis.
3. Biomarker identification.

1. Various functions ranging from data cleaning to 
visualization.
2. Multiple algorithms to correct sequencing errors, 
leading more accurate evaluation of abundance.
3. Machine learning can be utilized to extract feature 
variables (Fig. S4H).
4. Difference analysis using multiple methods, such as 

1. Difficulties in installing R packages 
with dependencies.
2. Some functions may not work, 
including network analysis and 
difference analysis of relative 
abundance.
3. Insufficient explanation of parameters 
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LEfSe or metagenomeSeq. and examples.

Animalcules
1. Diversity analysis.
2. Difference analysis and 
biomarker identification.

1. SummarizedExperiment package supported.

2. Interactively executed in R (Fig. S5A-–J).

3. A 3D clustering plot can be generated.

1. Unable to save vector graphics and 
completed tables.
2. Insufficient functionality.

microeco

1. Diversity analysis.
2. Difference analysis.
3. Biomarker identification.
4. Network, correlation analysis 
with other indicators.
5. Functional prediction.

1. R6 class more expansibility than phyloseq objects.
2. Simple function calling.
3. Rich plots of diversity and difference analysis (Fig. 

S6A-–H).

4. Unique correlation analysis of other indicators.
5. Network analysis functionality (Fig. S6K).
6. FAPROTAX and FUNGuild function prediction.

1. New data structures increase the cost 
of learning time.
2. So many functions and dependency 
caused frequent some malfunctioning.

EasyAmplicon

1. Diversity analysis.
2. Provide script for preparing 
STAMP, LEfSe, PICRUSt 1&2, 
BugBase, FAPROTAX, iTOL.
3. Provide slide tutorial for many 
analyses, such as QIIIME 2.

1. It can be used in both command-line mode and 
interactive mode within RStudio.
2. It offers multiple visualization styles, allowing for 
easy generation of publication-quality figures (Fig. 
S7).
3. Its open-source code facilitates reproducible 
analysis and allows for personalized modifications.

1. Need using the most popular tools, 
STAMP, LEfSe, PICRUSt 1&2, 
BugBase, FAPROTAX, and iTOL.
2. Some functions need to be 
development.
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Figures & Legends
Figure 1. Microbial community data analysis workflow and related R packages. 
(A) Overview of microbial community data analysis workflow. Core files are feature 
table (OTU), Taxonomy, sample metadata (Metadata), phylogenetic tree (Tree), and 
representative sequences (Rep.fa). (B) Detail of microbial community analysis 
workflow. First, the raw data can be processed by using USEARCH/VSEARCH, 
QIIME 2, DADA2 packages. Then, the important files are saved and used for 
downstream analysis in R language and RStudio software. Many microbial analysis 
methods rely on numerous R packages developed with R language. The font size in 
the word cloud represents the number of citations of R packages. (C) Commonly used 
R packages for data cleaning/manipulation and visualization. (D) Classification of R 
packages for six categories in microbial community analysis.

Figure 2. Introduction to the functions of integrated microbial analysis R 
packages. 
Microbial community analysis can be divided into diversity analysis, difference 
analysis, biomarker identification, correlation and network analysis, functional 
prediction, and other microbial community analysis (community building/construction 
process, association analysis with other indicators).

Figure 3. Typical results of integrated microbial community analysis R packages 
and comparison of similar results. 
Group the analysis results of multiple integrated R packages according to the major 
categories of microbial community analysis functions. Each main branch in the tree 
diagram represents a type of microbial community analysis, and there are a total of 10 
main branches: feature diversity analysis including 1 alpha diversity analysis, 2 beta 
diversity analysis, 3 features (community taxonomic or functional) composition 
analysis, 4 evolutionary or taxonomic tree analysis; 5 difference analysis; 6 biomarker 
identification; 7 correlation and network analysis; 8 functional prediction; 9 
community building/construction process analysis; 10 other analysis, such as 
association analysis with other indicators. Each leaf (circle) represents a style of the 
result displayed in the analysis, and the circle number around the outside of leaf 
represents the package number of the integrated R package that the analysis result 
comes from.

Figure 4. Examples of the best practice results of microbial community analysis 
in R language. 
The selected results include rarefaction curve (A), principal coordinate analysis 
scatter plot (B), Venn network graph (C), evolutionary tree (D), LEfSe cladogram (E), 
difference analysis extended error bar plot in STAMP style (F), difference analysis 
Manhattan plot (G), difference analysis multi-group volcano plot (H), biomarker 
selection ring-column chart (I), network graph (J), correlation connection combination 
graph (K), source tracing analysis pie chart (L).
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