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Supplementary Information Methods 
 
Data acquisition: 
Training Data 
Multiple sequence alignments for fitness models 
For each viral protein, we construct multiple sequence alignments performing 5 iterations of the 
profile-HMM based homology search tool jackhmmer51 against the UniRef100 database52. As 
previously reported for EVE, DeepSequence, and EVcouplings, we generally keep sequences 
that align to at least 50% of the target sequence and columns with at least 70% coverage, 
except in the case of SARS-CoV-2 Spike where we use lower column coverage as needed (30-
70%) to maximally cover experimental positions and significant pandemic sites20–22.  
For our pre-pandemic (pre-2020) alignment used as the primary model throughout this paper, 
we remove pandemic sequences using the “date of creation” variable from UniRef. We optimize 
search depth to maximize sequence coverage and the effective number of sequences (Neff) 
included after re-weighting similar protein sequences in the alignment within a Hamming 
distance cutoff (theta) of 0.01. To select sequence depth, we prioritized alignments with 
coverage >0.7L and Neff/L>1, or if this was not attainable, relaxed the requirements for Neff/L 
(Supplementary Table 1).  
Alignments with pandemic sequences 
We construct an “evolutionary alignment” with non-SARS-CoV-2 sequences as described above 
using jackhmmer (with at least 50% sequence coverage, at least 30% column coverage, and 
theta of 0.01). We extract the full sequences pulled into the jackhammer alignment and re-align 
the sequences using super553, then remove gapped positions relative to the Wuhan sequence. 
We also construct a “pandemic alignment” with all unique Spike sequences (with count >100) 
seen up until 11/27/21 (when BA.2 first appeared in GISAID). We then concatenate that 
“pandemic alignment” with the “evolutionary alignment” to create the final alignment. 
Protein structures for accessibility calculation 
For each viral surface protein, we selected crystal structures representing known structural 
states available to B-cell and antibody interactions (extracellular conformations) (Supplementary 
Table 1). All heteroatoms and protein chains not part of the multimeric viral surface protein were 
removed. 
 
Evaluation data 
Antibody footprints 
To identify known antibody footprints of viral surface proteins in the RCSB PDB54, we queried 
the database with the protein name and the word “antibody” and required that the source 
organism contain both “Homo sapiens” and the given virus name. Then for each structure we 
identified antibody and viral protein polymer entities and computed the antibody footprint as any 
residue with any atom within 3.5 angstroms of the antibody. Finally, we mapped footprints to the 
target viral protein sequence by using SIFTS to renumber all hits according to a UniProt ID, then 
used a MUSCLE multiple sequence alignment of the different UniProt sequences to map those 
hits to the target viral protein sequence. We use this same method to identify antibody footprints 
for specific clinical antibodies. For experimental evidence of clinical antibody escape 
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susceptibility, we used the Stanford Coronavirus Antiviral & Resistance Database (CoV-RDB) 
susceptibility summary for monoclonal antibodies under emergency use authorization.55. 
Deep mutational scans 
We benchmark our models on a series of viral protein deep mutational scans2–16,25–32 
(Supplemental Tables 3, 4, 6). For each viral mutational scan, we select the variable or 
variables of protein fitness or antibody escape treated as primary in the publications. For 
mutants where the result is provided as residue frequencies observed at a given site (such as 
results expressed as preferences and processed by dms_tools2), we normalize the data at each 
site by dividing by the value of the wild-type residue. For the HIV analysis, we exclude antibody 
VRC34.01 due to its large spread of escape mutation distal to the epitope56. For SARS-CoV-2 
RBD, we use only antibodies/sera escape data from the Wuhan sequence for our primary 
results. We also utilize data provided about the antibodies tested for the SARS-CoV-2 escape 
DMS studies, including the class of each antibody as well as the SARS-CoV-2 neutralization 
potency and Sarbecovirus binding breadth8. We use the RBD dimeric ACE2 binding and 
expression DMS data for analysis30. 
Pandemic sequencing data 
We downloaded data on Spike variants and their deposit dates in the Global Initiative on 
Sharing All Influenza Data (GISAID) EpiCoV project database (www.gisaid.org)57 on 6/12/23. 
We further processed this data to get counts of combinations of mutations, the date of 
emergence, and PANGO lineage, as well as to get the month of emergence and count for each 
single mutation in Spike. We also downloaded consensus mutations for each PANGO lineage 
on 6/21/23 Covid-19 CG58.  
Lassa virus and Nipah virus antibody escape data 
We aggregated data on single mutations resulting in escape from known Lassa and Nipah virus 
antibodies from literature studies with experimentally determined reduction in antibody binding, 
reduction in antibody neutralization, or emergence in growth selection experiments45–50. 
Epistasis mutation sets 
Our convergent omicron mutation set is defining mutations in Omicron lineages at sites 346, 
444, 452, 460, and 486. This set is:  L452R, N460K, F486V, K444N, L452M, F486I, R346T, 
F490S, K444M, K444T. 
Our wastewater mutation set is the set of mutations from Smyth et al.44, which are mutations 
that were frequent in wastewater, but had rarely been seen clinically (pre-Omicron, mid 2021), 
so may be likely epistatic. This set is: Q493K, Q498Y, Q498H, T572N, H519N, H519Q. 
Strain Neutralization data 
We download neutralization data from Beguir et al.19, which contains the observed 50% 
pseudovirus neutralization titer (pVNT50) for 21 SARS-CoV-2 S protein variants. The pVNT50 

reduction is relative to Wuhan. Neutralization is measured for n ≥ 12 sera collected after primary 
2-dose vaccination by the Pfizer BioNTech vaccine (BNT162b2) and assessed against vesicular 
stomatitis virus (VSV)-based pseudoviruses with each S protein variant. 
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Modeling approach: 
Overarching framework 
We express the probability of a single amino acid substitution to lead to immune escape as the 
product of three conditional probabilities (Fig. 1a): 
 
𝑷(𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛	𝑒𝑠𝑐𝑎𝑝𝑒𝑠	𝑖𝑚𝑚𝑢𝑛𝑖𝑡𝑦)

= 	𝑷(𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛	𝑚𝑎𝑖𝑛𝑡𝑎𝑖𝑛𝑠	𝑓𝑖𝑡𝑛𝑒𝑠𝑠) ∗ 	𝑷(𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛	𝑎𝑐𝑐𝑒𝑠𝑠𝑖𝑏𝑙𝑒	𝑡𝑜	𝑎𝑛𝑡𝑖𝑏𝑜𝑑𝑦	|	𝑓𝑖𝑡) 	
∗ 	𝑷(𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛	𝑑𝑖𝑠𝑟𝑢𝑝𝑡𝑠	𝑎𝑛𝑡𝑖𝑏𝑜𝑑𝑦	𝑏𝑖𝑛𝑑𝑖𝑛𝑔	|	𝑓𝑖𝑡, 𝑎𝑐𝑐𝑒𝑠𝑠𝑖𝑏𝑙𝑒) 

 
The EVEscape index estimates the log likelihood of escape as per the above equation. The 
fitness factor is obtained via a deep generative model for fitness prediction, while the 
accessibility and dissimilarity factors are features derived respectively from the known 3D 
structures for the viral protein and chemical characteristics of the amino acids involved in the 
mutation compared to the wild-type (see below for details). 
Once selected, each factor is standardized and fed into a temperature scaled logistic function: 
 

𝑷(𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛	𝑒𝑠𝑐𝑎𝑝𝑒𝑠	𝑖𝑚𝑚𝑢𝑛𝑖𝑡𝑦)

= 	𝑙𝑜𝑔𝑖𝑠𝑡𝑖𝑐 <	
1

𝑇!"#$%&&
	 ∗ 	𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑖𝑧𝑒@𝐹!"#$%&&BC

∗ 𝑙𝑜𝑔𝑖𝑠𝑡𝑖𝑐 <	
1

𝑇'((%&&")"*"#+
	 ∗ 	𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑖𝑧𝑒@𝐹'((%&&")"*"#+BC			

∗ 𝑙𝑜𝑔𝑖𝑠𝑡𝑖𝑐 <	
1

𝑇,"&&"-"*'."#+
	 ∗ 	𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑖𝑧𝑒@𝐹,"&&"-"*'."#+BC	

 
where the standardize(.) operator corresponds to standard scaling. We then take the log 
transform of the product of the 3 terms to obtain the final EVEscape scores. 
Scaling 
Factor-specific temperature scaling helps recalibrate probability estimates for each term. We 
provide our hyperparameter grid search of these temperature hyperparameters across viruses 
in Supplementary Table 5, examining versions of the model where we either include or do not 
include glycosylation in the dissimilarity term. We run this grid search using AUROCs to 
compare model predictions to experimental escape DMS predictions for 3 viral proteins 
(Influenza H115, HIV Env16, and SARS-CoV-2 Spike RBD2–11,13,14).   We find that the fitness and 
accessibility components are already properly calibrated (Tfitness = Taccessibility = 1.0), while the 
dissimilarity component benefits from being slightly rescaled (Tdissimilarity = 2.0). The optimal 
values selected for the three temperature hyperparameters yield strong performance across the 
three viruses, suggesting they are generalizable to other viruses. 
 
Fitness metric 
Observed viral protein sequences reflect evolution under selection constraints for functional and 
infectious viruses. Generative sequence models express the probability that a sequence 
𝑥	would be generated by this process as 𝑝(𝑥|𝜃), where the parameters 𝜃 capture the constraints 
describing functional variants. A generative model trained on observed viral protein variants can 
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then be used to estimate the relative plausibility of a given mutant sequence as compared to 
wild-type by using the log ratio of sequence likelihoods as a heuristic:  
 

𝑙𝑜𝑔
𝑝(𝑥-/#'$#|𝜃)
𝑝(𝑥0"*,#+1%|𝜃)

 

 
EVE 
EVE (Evolutionary model of Variant Effects)20 is a Bayesian variational autoencoder (VAE)59, 
capable of capturing intricate higher-order interactions across sequence positions. The 
architecture consists of a symmetric encoder and decoder architecture, each with 3 layers with 
2,000-1,000-300 and 300-1,000-2,000 units respectively, as well as a 50-dimensional latent 
space (Extended Data Fig. 1). As generative models, VAEs can learn a complex distribution of 
the high-dimensional data on which they are trained, in our case, sequences from a specific 
protein family. More formally, for a protein family p, we learn a distribution P(s|θp), where s is a 
fixed-length amino-acid sequence and θp are model parameters associated with that protein 
family. Variational Autoencoders operate under the assumption that the data s are generated 
from a latent variable z. They model the conditional distribution P(s|z,θp) with a neural network 
(also known as the "decoder", with parameters θp), and leverage amortized inference to model 
the approximate posterior distribution q(z|s,φp) with another neural network (known as the 
"encoder", with parameters φp). Lastly, following Riesselman et al.22 and Frazer et al.20, our 
Bayesian VAE departs from the standard VAE architecture by learning a fully-factorized 
Gaussian distribution over the decoder weights θp. 
The fitness of a given protein sequence is then quantified via the log likelihood ratio of the 
mutated sequence x over that of the reference wild-type sequence w. Since an exact 
computation of the log likelihood of a sequence is intractable, we approximate it with the 
Evidence Lower Bound (ELBO) used to optimize the VAE: 
 

𝐸	343(𝑥) = 𝑙𝑜𝑔
𝑝(𝑥|𝜃)
𝑝(𝑤|𝜃)

~	𝐸𝐿𝐵𝑂(𝑥) − 𝐸𝐿𝐵𝑂(𝑤) 

 
The ELBO term itself is estimated via Monte Carlo sampling, using 20k samples from the 
approximate posterior distribution. These approximations have been shown to provide strong 
results in practice20. Results are obtained by ensembling scores from 5 independently trained 
EVE models with different random seeds. Note that this is the negative of the evolutionary index 
score outputted by the EVE model.  
We train the different models following the procedure from the original EVE paper (see Frazer et 
al.20, Supplementary Section 3.2), using similarly-sized EVE models and with the same training 
hyperparameters. The only difference in our training procedure is that we slightly relax the 
constraint on minimum column coverage for sequences in the training MSAs (50% instead of 
70%) as it led to superior fitness prediction performance in our hyperparameter tuning analyses 
for the different viruses modeled in this work.  
TranceptEVE 
In experiments aimed at illustrating the modularity of the EVEscape framework we leverage 
TranceptEVE, a recently developed protein language model with state-of-the-art performance 
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for mutation effects predictions43. TranceptEVE is itself based off of two key components: 1) 
Tranception60, a family-agnostic autoregressive transformer trained on a large quantity of 
unaligned protein sequences from Uniref10052 from February 2022. 2) A family-specific EVE 
model that is trained to score sequences for a family of interest, and which acts as a prior 
distribution over amino acids at each sequence position. The predicted fitness for a given 
sequence is then obtained as a weighted average of the log likelihood assigned by these two 
components – the weights depending on the depth of the alignment used to train the underlying 
EVE model (deeper alignments implying a larger weight assigned to the EVE log likelihood). 
For the experiments conducted in this work, we use the same ensemble of 5 EVE models as 
described above, as well as the large Tranception model checkpoint (~700M model parameters) 
made available in Notin et al.60 which was trained on Uniref100 (see details of the training 
procedure in the corresponding paper in Appendix B.3). 
 
Accessibility metric 
Surface accessibility plays a key role in identifying where antibodies are most likely to contact a 
protein. While relative solvent accessibility (RSA) and weighted contact number (WCN) both 
reflect features of accessibility, we selected WCN as this metric also captures protrusion from 
the core structure that corresponds with where antibodies are known to bind proteins33,61–63 
(Supplementary Table 1).  
Calculating weighted contact number 
We computed weighted contact numbers33 for each residue from structure as the sum of the 
square of the reciprocal distance between residue i and all other residues in the full protein (i.e., 
the full Spike trimer for SARS-CoV-2): 
 

𝑊𝐶𝑁"	 =P
1
𝑟"5657"

 

 
where 𝑟"5 	is the distance between the geometric centers of the residue i and residue j side 
chains. Weighted contact number, beyond capturing surface accessibility, captures protrusion 
from the core structure and conformational flexibility33,61–63. By using squared distance, this 
value focuses on the degree of local interaction, and acts as a measure of exposure to the local 
environment that would permit antibody binding. It is both a simple and fast metric. We impute 
missing values in WCN due to gaps in the protein structure using the mean of WCN values of 
the residues preceding and following the gap. We use the negative weighted contact number. 
RSA 
We also explored RSA as a potential accessibility metric. To do so, we first computed 
accessible surface area based on hypothetical exposure to solvent water molecules using 
DSSP64. To calculate relative accessible surface area (RSA), we divided accessible surface 
area by the residue maximum accessibilities determined in Sander et al65. We impute missing 
values in RSA due to gaps in the protein structure by using the mean of RSA values of the 
residues preceding and following the gap (counting residues adjacent to the gap with RSA 
values>1 as part of the gap). 
Aggregating across structures: 
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When computing antibody-binding likelihood metrics across different structural conformations 
(i.e., both open and closed structures for SARS-CoV-2 Spike) we used the maximum negative 
weighted contact numbers.  
 
Dissimilarity metric 
To predict the likelihood of a given mutation displacing an antibody interaction, we used a 
charge-hydrophobicity based measure of functional dissimilarity between the wild-type residue 
and the mutation residue. These are chosen as properties known to impact protein-protein 
interactions34,66. We compare our metric to individual chemical properties, substitution matrices, 
and the distance in the latent space of a VAE. We also experiment with incorporating 
glycosylation in our dissimilarity metric. 
Charge-hydrophobicity 
To compute a combined charge-hydrophobicity dissimilarity index, we standard-scaled the 
charge and hydrophobicity differences and then took the sum of the scaled differences. We use 
the Eisenberg-Weiss hydrophobicity consensus scale67 and amino acid charge (as 1/0/-1) at 
physiological pH.  
Chemical properties 
We compared our metric to differences in residue size (side-chain mass), hydrophobicity, and 
charge.  
Substitution Matrices 
We compared our metric to the BLOSUM6268 matrix after dropping the null transition diagonal 
values.  
Latent space distances 
We also compared our metric to a metric of mutation distance learned by the EVE variational 
autoencoder. We calculated the L1 distance between the encoded representations of the wild-
type viral protein sequence and a given single-mutation sequence in the latent space of the 
model, inspired by a similar approach first introduced by Hie et al.42 
Glycosylation 
We developed a version of our model considering glycosylation loss as a contributor to 
dissimilarity. While addition of glycosylation is also important for escape69–72, we focus here on 
loss of glycosylation for simplicity. In this version, we maximize the charge-hydrophobicity 
dissimilarity term if a mutation is likely to result in loss of a surface N-glycan site. We identified 
surface N-glycan sites as NxS/T sequons (where x is any amino acid except proline) with the N 
residue having an RSA>0.2. We consider that a mutation is likely to result in loss of 
glycosylation if the N or S/T is lost.  
We note that this can be an important factor for real-world escape even when some DMS 
experiments do not reflect the escape impacts of glycosylation loss, as is the case for SARS-
CoV-2 experiments that use yeast display, with glycans different than in mammalian cells3. For 
HIV on the other hand, a significant portion of escape mutations from DMS experiments are a 
result of escape effects of glycan gains and loss16. In the limited HIV Env dataset examining 8 
antibodies, 50% of all escape mutations are likely due to removal of a glycan16. SARS-CoV-2 
Spike (22 glycosylation sites) and Flu H1 (up to 11 glycosylation sites) are also much less 
extensively glycosylated than HIV Env (up to 30 glycosylation sites).   
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Imputing missing data 
We impute missing values of features in EVEscape using the mean value of the feature across 
the target protein. 
 
Insertions and Deletions 
Scores for indels, important for SARS-CoV-2 and other virus73, utilize tranceptEVE as the 
fitness component, negative weighted contact number as the accessibility component, and a 
maximized dissimilarity component score.  
 
Strain-level EVEscape predictions 
To compute strain-level EVEscape predictions, we use a fitness component calculated for the 
full strain sequence, while accessibility and dissimilarity components are summations of the 
single-mutation scores for each mutation in the strain. To normalize fitness scores across 
mutational depths, we take the percentile of the EVE score relative to the EVE scores of 10,000 
sequences at the same mutational depth, randomly generated by sampling single mutations 
seen over 100 times in GISAID by January 2021. We then standard scale the percentile fitness 
score relative to the percentile EVE scores of 10,000 randomly generated sequences composed 
of between 2 and 50 completely random single mutations. As in the mutation-level EVEscape 
calculation, accessibility and dissimilarity components are standard-scaled against all possible 
single mutations to Spike. Standard-scaled components are then adjusted to have only positive 
values by adding the absolute value of the minimum scaled score for that component. Finally, 
we aggregate across combinations of mutations by summing the log transform of the 
temperature scaled logistic function of each of the three components for each mutation (so, 
dissimilarity and accessibility scores are additive across mutations in the strain while the fitness 
score is a full strain score multiplied by the number of mutations in the strain). Strain-level 
EVEscape scores can be further adapted, i.e., with alternative scaling techniques or learning 
how to combine epitope-level scores.  
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Evaluation approach: 
Comparison to functional assays 
We compared model predictions to continuous experimental metrics of viral function using 
spearman’s rank correlation coefficient as our main evaluation metric, as previously 
described21,22. 
 
Comparison to escape DMS 
Data processing  
As escape data is noisy at levels of low escape and a relatively low fraction of mutants exhibit 
escape, we chose to treat the escape outcome variable as binary. We selected a threshold for 
escape by fitting a gamma distribution to the data (combined across all screened antibodies and 
sera) and selecting the threshold corresponding to a 5% false discovery rate16. As the number 
of antibodies tested for RBD is much higher than for Flu and HIV, we bootstrapped the RBD 
data selecting 8 antibodies 1000 times and fitting a gamma distribution to these samples, then 
selected the average 5% false discovery rate threshold. As these thresholds are subject to our 
choice of a false discovery rate, we also plot performance for a range of thresholds (Extended 
Data Fig. 6). We identified a mutant as “escape” if its maximum escape value across any 
antibody tested exceeded the threshold — so a mutation for RBD is “escape” if it exceeds the 
threshold for any antibodies/sera in the Bloom or the Xie datasets (Supplementary Table 4, 6). 
We use thresholds of 0.57 for Bloom RBD, 0.9 for Xie RBD, 0.054 for Flu, and 0.138 for HIV to 
make model comparisons; mutations designated as escape by these experimental thresholds 
are almost all within 5Å of the antibody they escape (Extended Data Fig. 6).  Note that the 
downloaded RBD escape datasets were already filtered using thresholds on expression and 
ACE2 binding of -1 and -2.35, respectively74. 
To define a site-wise escape value, we averaged across the maximum escape values for each 
mutant at the site. For the antibody RBD DMS data, we define the antibody class of each 
mutation/site by determining the maximum number of antibodies for a given class that escape 
that mutation/site (Supplementary Table 6).  
As the scales are different for the Bloom and Xie datasets, we focus on the original Bloom RBD 
DMS data when we need to consider the top fraction of escape mutations. We examine 
performance on Flu and HIV as a secondary analysis to confirm generalizability, as fewer 
antibodies have been tested and the distribution of these antibodies does not reflect known 
immunodominant domains. 
Metrics 
To compare computational model performance in classifying escape mutants, we computed two 
metrics. We consider area under the receiver operating curve (AUROC) and area under the 
precision-recall curve (AUPRC). A key feature of an escape mutant predictor is the quality of its 
positive ‘escape’ predictions, as in practice, the positive predictive value will influence costly 
experimental screening efforts and selection of a limited number of variants for vaccine 
incorporation. To reflect this, we focus on the area under the precision-recall curve (AUPRC) as 
a performance metric (reported relative to the AUPRC of a “null” model), although other 
measures of overall statistical performance (e.g., AUROC) are provided in supplementary 
information.  
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AUROC summarizes the tradeoff between true positives and false positives over a range of 
thresholds on the continuous model prediction score but is overly permissive in cases of 
imbalanced datasets–-although still suitable for assessing relative performance. The AUPRC 
metric summarizes the tradeoff between capturing all escape mutants (recall) and not 
incorrectly predicting escape mutants (precision). This approach is suitable for evaluating 
classification of imbalanced datasets but penalizes false positive predictions. In the case of 
escape predictors, false positive predictions may be due to insufficient sampling of the human 
antibody repertoire against the virus of interest, so this penalization is potentially too stringent. 
We normalize AUPRC by the “null” precision model AUPRC, which is equivalent to the fraction 
of escapes observed in the mutations experimentally screened. Therefore, AUPRC values are 
not comparable between viral proteins or subsets of DMS datasets with different fractions of 
escape mutations. The fraction of observed escapes in the DMS experiments are 0.17 for 
Bloom antibodies, 0.06 for Xie antibodies, and 0.003 for Bloom sera, as well as 0.19 for all the 
RBD data, 0.015 for Flu, and 0.006 for HIV – Flu and HIV data examined far fewer antibody 
samples (Supplementary Table 6). 
 
Comparison to known antibody footprints 
We also evaluated the model’s ability to predict sites of antibody binding, as quantified by 
looking at antibody footprints in the RCSB PDB within a minimum all-atom distance of 3.5Å. 
Note that this is not information that is available to the model during training. 
 
Comparison to pandemic data 
Data Processing  
We evaluate the model against occurrence of single mutations and strains in GISAID. In 
determining the set of Spike mutations to compare EVEscape scores to GISAID data, we 
consider only those mutations that are a single RNA nucleotide mutation distance from Wuhan. 
Variants are marked as high frequency VOCs if their count is greater than 5,000 and it occurs in 
the first time period (pandemic divided into 12 periods) that any strain of that PANGO lineage 
appears. We define PANGO lineages for the VOCs by the nonsynonymous Spike consensus 
mutations for that strain from COVID-19 CG that occur in greater than 70% of strain sequences, 
ignoring insertions and deletions. Number of occurrences in the pandemic is defined by raw 
counts of GISAID records with a given substitution or set of substitutions. 
Metrics 
We calculate the fraction of predicted mutations (top 10%) seen in the pandemic over 100 
times. We expect to see an increase in this fraction over the course of the pandemic, as more 
variants are observed and adaptive immune pressure increases with a growing vaccinated or 
previously infected population. We also calculate for each observed pandemic frequency 
minimum threshold, the percentage of pandemic mutants seen above that observed threshold 
that are predicted in the top 10%. We do not expect all pandemic mutants to be captured in the 
top 10% of predictions, because not all pandemic mutants are related to escape. Even amongst 
very frequent pandemic mutations mostly present in Variants of Concern, which we expect to be 
more enriched for high escape potential, we do not expect all these mutations to be related to 
escape as some instead influence ACE2 binding or structural changes. To evaluate strain 
scores, we calculate the number of strains (and the corresponding percentile) that would need 
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to be tested to have detected selected VOCs from all new strains in the two-week window they 
emerged. Unique new strains are defined by unique sets of Spike substitution mutations seen at 
least twice in the two-week window. 
Escape within clinical antibody epitopes 
We look at EVEscape predictions in the footprints (within 3.5Å) of six different clinical antibody 
epitopes. We then notate which of these mutations have already occurred in the pandemic 
(observed more than 10,000 times) and which have experimental evidence of escape for those 
clinical antibodies as seen in CoV-RDB55. We list all possible mutations, not just those a single 
nucleotide distance from Wuhan. 
 
Comparison to strain neutralization 
We show spearman correlation with experimental strain neutralization data as well as the linear 
regression line shown with a 95% confidence interval. EVEscape scores for these strains are 
calculated based on the mutations used in the experiment for each strain, ignoring indels. We 
convert percent reduction in neutralization (x) to fold reduction (1/1-x). 
 
Regional Enrichment 
We examine the distribution of EVEscape predictions throughout the Spike protein and, within 
the RBD, between the known footprints of different antibody classes from Barnes et al.75 We 
analyze enrichment of regions by comparing the average EVEscape score for the region to a 
distribution of the average EVEscape score of random regions. For comparison to full Spike, we 
compare to the scores of 500 random contiguous regions (of the same length as the region of 
interest) within Spike. For comparison to RBD, we compare to scores of 100 contiguous 
regions, using the full Spike model. We similarly compare scores of known neutralizing 
subregions to random regions in their respective full regions. We also compare enrichment of 
number of sites in the top 15% of EVEscape scores in each region relative to the length of the 
region. We consider the regions: NTD (sequence positions 14 - 306), RBD (319 - 542), S1* (543 
- 685), and S2 (686 - 1273), where S1* refers to the region in S1 between RBD and S2. NTD 
and RBD are enriched in antibody sites. We also calculate the mutational tolerance of each 
region, the average EVE fitness score. 
 
Epistasis 
We analyze epistasis by comparing EVE scores on a Wuhan full Spike model (using a pre-
pandemic alignment) and on an omicron (BA.2) full Spike model (using an alignment with data 
up to BA.2). The BA.2 epistatic shift is the Wuhan linear regression residual for a model fit to the 
two sets of EVE scores for all single mutations to full Spike. We compare the epistatic shift of 
two subsets of mutations, convergent omicron mutations and wastewater mutations44, to the full 
set of single mutations to full Spike. We also analyze the locations of the maximum epistatic 
shift, in relation to the Spike structure and to the set of sites mutated within BA.2.  
 
Comparison to other computational models 
We compare published SARS-CoV-2 RBD and Spike models predictions18,19,37,42 using metrics 
from above relevant to the intended purpose of each model (fitness or escape of either single 
mutations, sites, or strains).  
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