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Supplementary Text

Strengths and limitations of MXB

We summarize the strengths and limitations of the MXB. Strengths include:1) large sample size; 2) the initial study population was
representative of the Mexican civilian population at state and national levels in 2000; 3) we purposefully over-selected Indigenous
populations 4) joint collection of socio-demographic, geographic, anthropometric, clinical, biochemical, and genetic data; 5) some of
the clinical and biochemical markers have become public health problems in the present day (diabetes, obesity)” and thus this study
may contribute to a better understanding of the epidemiology and causal factors; 6) representativeness of the data set allows
correlation with diseases that were unknown at the time of the survey and that have now been characterized (e.g. COVID-19).
Limitations include: 1) the study is cross-sectional, thus limiting causal inferences (e.g., age and glucose); 2) the health survey data
(ENSA2000, see below) were collected in 2000 and thus extrapolation to the present should be done with caution; 3) the sample size
limits detection of phenotypes that are rare; 4) there are many characteristics, factors, or variables that were not studied or are
unknown that undoubtedly modify the significance of our observations; however, we are able to estimate the extent to which our
models account for the variation in the observed data.

Sampling ascertainment in the MXB

We have a sampling bias towards younger individuals in the Mexican Biobank (Fig. S36). The age distribution in rural and urban
areas is also not homogeneous (Fig. S37). Individuals in rural areas are significantly older than individuals in urban areas (Wilcoxon
test W = 3221193, p-value = 6.518x10”7), and we observe significantly higher ancestries from the Americas in rural areas compared to
those in urban areas (Fig. S38, Wilcoxon test W = 3972985, p-value < 2.2x10-%). Therefore, if there is any sampling bias, it is in the
opposite direction of the signal we observe (we observe that younger individuals have higher proportions of Indigenous ancestries
(Figs. S34, S35)); that is, it would make it such that older individuals have higher proportions of Indigenous ancestries as we have
sampled more older individuals from rural areas where the Indigenous ancestries are more prevalent. Instead, we observe that younger
individuals have higher proportions of Indigenous ancestries.

Gene-culture discordance in MXB for ancestries and languages from the Americas

We observe in the MXB that ancestries from the Americas are more frequently observed in younger individuals than in older
individuals in the biobank (Fig. S34) and that this signal is largest in rural areas. We also observe that the proportion of individuals
that speak an Indigenous language is lower in younger individuals compared to older individuals, providing an example of anti-
correlated temporal trends in the abundance of Indigenous language use vs Indigenous genetic ancestry proportions (Fig. S35). Many
linguists, artists, and human rights activists have been warning that Mexico is becoming increasingly monotone, and this is not
because of the lack of Indigenous presence today but due to discrimination and repressive assimilation policies, whereby many
Indigenous people believe it is better not to be heard speaking their Indigenous language in Mexico®. In this study, we similarly



observe an increasing presence of ancestries from the Americas going hand in hand with a decline in the passage of Indigenous
languages.

Links to software and R packages used in this study

EIGENSOFT (v7.2.1): https://github.com/dReichLab/EIG

Smartpca (part of Eigensoft v7.2.1): https://github.com/chrchang/eigensoft/tree/master/POPGEN
ADMIXTURE (v1.3.0): https://dalexander.github.io/admixture/

UMAP (repository downloaded Dec 2021): https://github.com/Imcinnes/umap

Archetypal analysis (repository downloaded Nov 2022): https://github.com/Al-sandbox/archetypal-analysis
GNOMIX (repository downloaded Oct 2021): https://github.com/Al-sandbox/gnomix

maas-MDS (repository downloaded Nov 2021): https://github.com/Al-sandbox/maasMDS/
shapeit (v2.17): https://mathgen.stats.ox.ac.uk/genetics_software/shapeit/shapeit.html

RFMIX (v2): https://github.com/slowkoni/rfmix

PCAmask (20131203): https://mybiosoftware.com/tag/pcamask

AdmixtureBayes (repository downloaded Jan 2023): https://github.com/svendvn/AdmixtureBayes
Refined-ibd (17Jan20): https://faculty.washington.edu/sguy/asibdne/

Merge-ibd-segments (17Jan20): https://faculty.washington.edu/sguy/asibdne/

Beagle (25Nov19): https://faculty.washington.edu/sguy/asibdne/

asIBDNe (19Sept19): https://faculty.washington.edu/sguy/asibdne/

Plink (v1.9): https://www.cog-genomics.org/plink/1.9/

Variant Effect Predictor (ensemble-vep-release-104): https://www.ensembl.org/info/docs/tools/vep/index.html
Regenie (v3.1.3): https://rgcgithub.github.io/regenie/

FINEMAP (v1.3): http://www.christianbenner.com/

FUMA (v1.4.1): https://github.com/Kyoko-wtnb/FUMA-webapp/

KING (v2.2.8): https://www.kingrelatedness.com/

Mxmaps (2020.1.1.9000): https://www.diegovalle.net/mxmaps/

Genesis (release 3.17): https://www.bioconductor.org/packages/release/bioc/html/GENESIS.html
Ime4qtl (development version): https://github.com/variani/lme4qtl
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Fig. S1. Map of Mexico with labels per state. The MXB project collected and genotyped samples from all 32 states of Mexico.
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Fig. S2. Number of individuals per state in the MXB. Individuals in the MXB were sampled from the 32 Mexican states. The x-axis

shows the states in Mexico and the y-axis shows the number of sampled individuals.



Fig. S3. Distribution of rural and urban samples in the MXB. Each dot represents the geographic location of a sampled locality
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Fig. S4. Number of MXB individuals that speak Spanish, an Indigenous language, or both. Spanish speakers are shown in
orange, those that speak both in green, and those that speak only an Indigenous language in blue.

11



4000 -

3000+

count

2000+

1000+

Ru ]

Ur
Living environment

Fig. S5. Number of MXB individuals from a rural or urban locality. Rural localities are shown in orange, and urban localities in
blue. Most of the individuals in the MXB live in a rural area.
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Fig. S6. PCA analysis of MXB with global reference panels. A) PCA analysis showing principal component one (PC1) in the x-axis and
principal component two (PC2) in the y-axis. B) PCA analysis showing PCI in the x-axis and PC3 in the y-axis. Predominant ancestry-proxy
clusters inferred from Admixture are used to color present-day individuals used in PCA space solely to help with visualization (in groupings used
by the reference datasets). Most of the MXB individuals lie in a cline between living Europeans and Indigenous Americans. We observe a pull
towards present-day Africans reflecting the history of the trans-Atlantic slave trade to Mexico. Americas (Zapotecs) refers to Indigenous Zapotec

individuals from Oaxaca, Mexico collected as part of the PAGE study. The other reference individuals are from the 1000 Genomes and HGDP
studies and are the same as in Fig. 1.
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Fig. S10. Admixture analysis of MXB in a principal component space defined by MXB and Indigenous individuals from the
NMDP. (A) PCA analysis of MXB samples with Indigenous groups from NMDP!2, Indigenous groups were divided into the
Mesoamerican regions. A red box indicates the samples selected for parts (B) and (C). (B) Admixture analysis of MXB samples sorted
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moving rightwards. (C) Admixture analysis of MXB samples sorted by principal component 2. This axis captures variation within
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Fig. S13. Admixture analysis of MXB and NMDP. Only individuals that had significant ancestries from the Americas were chosen
for this analysis from the analysis in Figure 1. An admixture analysis was performed with Indigenous groups from the NMDP (K=15).
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Fig. S14. Origins of ancestries from West Africa in MXB. Segments of the MXB genome inferred to have ancestries from Africa were
employed in an ancestry-specific PCA in a reference space computed using samples from different groups in Africa collected by previous
studies®'. These axes show variation within ancestries from Africa, the third most predominant source of ancestries in Mexico. Each state is
plotted at the average values for asPC1 and asPC2 of each of its individuals. Individuals from each state cluster with groups from West Africa. The
groups from Africa are labelled according to their cohort labels in previous work®'. wRHG and eRHG correspond to western and eastern rainforest
hunter-gatherers, respectively. wBSP correspond to Bantu-speaking populations from Western Central Africa.
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Fig. S15. Fsr analysis of autosomes of MXB individuals grouped by their state. The heatmap represents the results of the pairwise
Fsranalysis. The highest values of differentiation are shown in green. The largest genetic differentiation is seen along a north-to-
southeast cline.
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Fig. S16. Fsr analysis of autosomes of MXB individuals grouped by their cultural region. The heatmap represents the results of
the pairwise Fsr analysis. The highest values of differentiation are shown in green. Zero F'sr values are shown in gray to distinguish
them from very small Fst values (dark pink). The largest genetic differentiation is seen along a north-to-southeast cline.
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Fig. S17. Fsr analysis of autosomes of MXB individuals with high ancestries from the Americas grouped by their state. The
heatmap represents the results of the pairwise Fsr Analysis. Only individuals with = 90% proportion of ancestry from the Americas
(inferred using Admixture) were analyzed. Only states with a minimum of 10 individuals are shown. The highest values of
differentiation are shown in green. States in the Mayan region (Chiapas, Tabasco, Yucatan, Quintana Roo and Campeche) show the
largest Fsr values with states in other regions.
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Fig. S18. Fs7 analysis of autosomes of MXB individuals with high ancestries from the Americas grouped by cultural region.
The heatmap represents the results of the pairwise Fsr Analysis. Only individuals with > 90% proportion of ancestry from the

Americas (inferred using Admixture) were analyzed. The highest values of differentiation are shown in green. The Mayan region
shows the largest Fisr values with the other regions.
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Fig. S19. UMAP analysis of MXB samples with 10 principal components. MXB colored by Mesoamerican region. UMAP1 axis
shows the relative differentiation of the Mayan region from the rest.
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Fig. S20. UMAP analysis of MXB samples with global reference panels. Figures in the top row show global references in colors
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-
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and MXB in gray. Figures in the bottom row show only the MXB colored by Mesoamerican region and global references in gray. The

left column shows UMAP analysis with 3 principal components. The right column shows UMAP analysis with 10 principal

components.
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. North of Mexico . Occident of Mexico . Center of Mexico . Mayan region
o North of Mesoamerica . Gulf of Mexico Oaxaca region

Fig. S21. Gimbernat-Mayol et al, 2022’ analysis polygon compositional plots of the MXB (3-10 sources, indicated by A0-A10 on vertex
edges). Each panel represents a compositional plot inferred with 3 sources (top left) up to 10 sources (bottom right). Points that fall on a vertex
represent individuals whose ancestry derives from a single source. Points on the edges or diagonals represent individuals whose ancestry likely
derives from the two sources on the extremes of the edge or diagonal. The rest of the points represent individuals whose ancestry derives from
more than two sources. Most of the points that represent MXB samples fall inside the polygon between the different sources. The different colors
represent the Mesoamerican regions. The Mayan region is represented by one or more sources. Individuals from the Mayan region tend to cluster
together. The rest of the sources are shared by individuals from other regions.
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Fig. $22. Gimbernat-Mayol et al., 2022° analysis polygon compositional plots of the MXB and reference individuals (3-10 sources, indicated by A0-A10
on vertex edges). Each panel represents a compositional plot inferred with 3 sources (top left) up to 10 sources (bottom right). As mentioned in
Gimbernat-Mayol et al., 2022; points that fall on a vertex represent individuals whose ancestry derives from a single source. Points on the edges or diagonals
represent individuals whose ancestry derives from the two sources on the extremes of the edge or diagonal. The rest of the points represent individuals whose
ancestry derives from more than two sources. Individuals from a continent tend to cluster near a vertex, often overlap with individuals from other continents and
usually are seen as a gradient following a diagonal between vertices. The diversity found in the MXB is represented by multiple sources while individuals from
South Asia, Europe, the Middle East and Africa tend to share the same source(s). At higher K values, individuals from Africa begin to be represented by their
own source. Individuals from the Americas share sources along with the MXB individuals.
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Africa *  Americas (1000G) Middle East x  East Asia North of Mesoamerica Gulf of Mexico Oaxaca region
x  Americas (Zapotecs) Europe South Asia « North of Mexico e Occident of Mexico Center of Mexico e Mayan region

Fig. $23. Gimbernat-Mayol et al., 2022° analysis polygon compositional plots of the MXB colored by Mesoamerican regions and references individuals
(3-10 sources, indicated by A0-A10 on vertex edges). To further assess the multiple sources defined by the MXB individuals (Fig. S22), we visualize the
analysis in Fig. S22 with the MXB individuals colored by Mesoamerican region. Each panel represents a compositional plot inferred with 3 sources (top left) up
to 10 sources (bottom right). Individuals from a continent tend to cluster near a vertex, often overlap with individuals from other continents and usually are seen
as a gradient following a diagonal between vertices. The diversity found in the MXB is represented by multiple sources while individuals from South Asia,
Europe, the Middle East and Africa tend to share the same source(s). At higher K values, individuals from Africa begin to be represented by their own source.
Individuals from the Americas share sources along with the MXB individuals. For several regions, individuals from the same region (for example, the Mayan
region) are represented by several sources, reflecting the diversity of ancestry variation within Mesoamerican regions. Individuals from different Mesoamerican
regions also overlap in the results reflecting shared demographic histories and migrations among them. There are individuals from the Mayan region that tend to
cluster mostly together, but even here we see overlap with individuals from the Gulf of Mexico and Central Mexico. At K=10, individuals from Oaxaca from the
MXB and the reference panel (PAGE Zapotecs from Oaxaca) are mostly represented by the same source.
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Fig. S24. Origins of ancestries from the Americas in MXB. Segments of the MXB genome inferred to have ancestries from the

Americas were employed in multidimensional scaling (MDS) using MAAS-MDS in a reference space computed using samples from
Indigenous groups collected as part of NMDP (see methods). These MDS axes will be used in the complex trait modelling section of

the manuscript to study the role of fine-scale ancestry variation in complex trait variation.
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Fig. S25. asIBDNe analysis results for ancestries from the Americas are visualized for 30 or 20 years per generation. Effective
population size changes were inferred for each Mesoamerican region using ancestry-specific IBD tracts. Different histories of the
ancestries from the Americas are shown by Mesoamerican region. The figures on the left are the visualizations for 30 years per
generation while the figures on the right are the visualization for 20 years per generation. The panels are colored by chronology (see
the timeline in the upper part of the figure). Each panel represents a different region of Mexico. The solid black lines show estimated
ancestry-specific effective population sizes, and the gray regions show 95% bootstrap confidence intervals.
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Fig. S26. Estimated effective population size for ancestries from Western Europe by Mesoamerican region in Mexico (30 years per
generation). Effective population size changes were inferred for each Mesoamerican region using ancestry-specific IBD tracts. Each panel
represents a different region of Mexico. The x-axis represents the number of generations before the present and the y-axis the effective population
size. The colors in the panels represent colonial (purple) and postcolonial (light grey) periods (see timeline in the upper part of figure S25). The
solid black lines show estimated ancestry-specific effective population sizes, and the gray regions show 95% bootstrap confidence intervals.
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Fig. S27. Estimated effective population size for ancestries from Western Europe by Mesoamerican region in Mexico (20 years
per generation). Effective population size changes were inferred for each Mesoamerican region using ancestry-specific IBD tracts.
Each panel represents a different region of Mexico. The x-axis represents the number of generations before the present and the y-axis
the effective population size. The colors in the panels represent colonial (purple) and postcolonial (light grey) periods (see timeline in
the upper part of figure S25). The solid black lines show estimated ancestry-specific effective population sizes, and the gray regions
show 95% bootstrap confidence intervals.
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Fig. S28. Estimated effective population size for ancestries from West Africa by Mesoamerican region in Mexico (30 years per
generation). Effective population size changes were inferred for each Mesoamerican region using ancestry-specific IBD tracts. Each panel
represents a different region of Mexico. x-axis represents the number of generations before the present and the y-axis the effective population size.
The colors in the panels represent colonial (purple) and postcolonial (light grey) periods (see timeline in the upper part of figure S25). The solid
black lines show estimated ancestry-specific effective population sizes, and the gray regions show 95% bootstrap confidence intervals.
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Fig. S29. Estimated effective population size for ancestries from West Africa by Mesoamerican region in Mexico (20 years per
generation). Effective population size changes were inferred for each Mesoamerican region using ancestry-specific IBD tracts. Each
panel represents a different region of Mexico. The x-axis represents the number of generations before the present and the y-axis the
effective population size. The colors in the panels represent colonial (purple) and postcolonial (light grey) periods (see timeline in the
upper part of figure S25). axis the effective population size. The colors in the panels represent colonial (purple) and postcolonial (light
grey) periods (see timeline in the upper part of figure S25). The solid black lines show estimated ancestry-specific effective population
sizes, and the gray regions show 95% bootstrap confidence intervals.
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Fig. S30. Gelman-Rubin convergence plot for the AdmixtureBayes analysis.

37



= T | ooy eueuing
° E uejednA
& * . E aypadwe)
o DH_ sedeiy)
o ococcem—[[]- 00seqeL
P _H_”_ SO[BIoN
s i BOEXE0
3 ° . ll_ _ T r Elaend
- 1 L oJaLeNg
s . _”_”_ L eleoxe| |
° — _ | X9\ '0p3
oo D”_ GOIXON PO
o _H_U oBepiH
o Q UBOBOYIIN
" _H_”_ ZNIoRIBA
o o1} [ oljesenD
llEl [ oenleuens
ome o[- Bullo)
1 ooslfer
& TEI | seluaieosenby
P S IEI efen
o | Isojod sin ueg
- seosleoR7
. . '.Ev obueing
®comm [ EO[BUIS
. o ol.I_HT sedinewe|
- . |_HT uoaT orenN
o of g|Inyeo)
. oe—o-ls l_”__l BNUeNYIYD
wo—{]l BIOUOS
oh _H= L Ing eiluioye) eleg
. wme [ | Eluojie) eleg
= 2 2 g .
8 3 3 ]
g g g g
(b1) wBus| HOY [eroL
—.—H—U L ooy BUBUIND
H—H uejeony
H ayoadwe)
_H—H_ sedelyp
.o H—u 00SEqe|
C 11 SO[eI0N
1T 1 pR—" BOEXEQ
H—U Bjgend
H—H 0lalilsngy
H B[BOXE| |
11 XeN 003
_H—H_ 0OIXaP PO
L T 1 oDEPH
i C 11 UBOBOLDI
' ZNIOBIBA
— olejpiend
so-s-we _uu ojenfeuens)
* wome oo l _ _l B0
oosler

L] e ..'|Du|
o 000 OB 00000 |Du|

L] o o0 00 |ﬂ—u|
o e eI

. —O—

. .QOI|E| ”

| sslusieosenby
efeN
L Isoj0d sin7 ues
SE03)E0E7
ofueing
eofRUIS
sedinewe]
U087 0ABNN
e[inyeo)
enyenyiuy
©BI0U0S
 ing eluioye) eleg

| eluoye) eleg

Q
o}

sluswbas :mm 10 JaquinN

States

States

Fig. S31. NROH and SROH distribution by state. The x-axis shows the states of Mexico and the y-axis shows the number of Runs

of Homozygosity (nROH) segments carried by an individual (left) or the total length of ROH (in kilobases) carried by an individual’s

genome (right). The boxplots show the distributions of these values by state. Boxplots show the median value and the quartiles.

5833 biologically independent samples were

Whiskers extend the minimum and the maximum values. The dots represent outliers. n

used for both panels.
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Fig. S32. SROH are correlated with ancestries in MXB. Ancestry proxies are inferred from Admixture®”. Each panel shows the
correlation between the total length of ROH segments (sSROH) and the proportion of ancestries from the Americas, Western Europe,
West Africa, East Asia or South Asia quantified using ADMIXTURE. Spearman correlation values are shown (R and two-sided P-
values) for all ancestries.
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Fig. S34. Ancestries from the Americas as a function of birth year in rural and urban localities. Spearman correlation was
estimated between birth year (x-axis) and the inferred proportion of ancestries from the Americas computed using Admixture (y-axis)
for individuals that live in rural (orange) and urban areas (blue). A significant positive correlation between birth year and proportion
of ancestries from the Americas is seen in individuals that live in rural areas. Smoothed conditional mean line are shown using the
loess smoothing method. Error bands represent 95% confidence intervals. Spearman correlation values are shown (R and two-sided P-
values).
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Fig. S35. Proportion of individuals that speak Spanish, an Indigenous language or both, as a function of birth year. Correlation
between birthyear (x-axis) and the proportion of individuals (y-axis) that speak only Spanish (orange), both (green) and only an
Indigenous language (blue). A negative correlation is seen between birth year and the proportion of individuals that speak both
Spanish and an Indigenous language, or only an Indigenous language. Smoothed conditional mean lines are shown using a linear
model. Error bands represent 95% confidence intervals. Spearman correlation values (R and two-sided P-values), and the fitted values
for a linear model are shown for all three language categories.
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Fig. S36. Sample counts by birth year in the MXB. Histogram of the MXB samples born by year. A sampling bias towards younger
individuals is observed.
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Fig. S37. Birth year distribution by rural or urban areas. Individuals in rural areas are significantly older than individuals in urban
areas (Wilcoxon test W = 3221193, p-value = 6.518x1077). The boxplots show the median value and the quartiles. Whiskers extend the

minimum and the maximum values. The dots represent outliers. n = 5929 biologically independent samples were used for the

analysis.
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Fig. S38. Distribution of ancestries from the Americas by rural and urban areas. We observe significantly higher proportion of
ancestries from the Americas (inferred using Admixture) in rural areas compared to in urban areas (Wilcoxon test W = 3972985, p-
value < 2.2x10716). The boxplots show the median value and the quartiles. Whiskers extend the minimum and the maximum values.
The dots represent outliers. n = 5753 biologically independent samples were used for the analysis.
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Fig. S39. Mutation burden in 1000G MXL individuals as a function of their ancestries from the Americas, Western Europe, and West Africa. Colors show ancestries from
the Americas (red), Western Europe (green) or West Africa (blue). The top panel (first and second rows) shows mutation burden computed on All SNPs (Genome) while the
bottom panel (third and fourth row) shows mutation burden computed on only the subset of MEGA array SNPs. The first and third row show the analysis for rare variants (DAF
<= 5%) and the second and fourth row show the analysis for common SNPs (DAF <= 100%). Smoothed conditional mean lines are shown using a linear model. Error bands
represent 95% confidence intervals. Spearman correlation values are shown (R and two-sided P-values) for all ancestries. A significant correlation between mutation burden and
ancestry is seen for rare mutation burden in both the MEGA array SNPs and All SNPs (Genome) due to differential bottlenecking histories reflected in different ancestry proxies.
In contrast, no clear or strong significant correlations between mutation burden and ancestry are seen for total mutation burden. Thus, rare mutation burden shows a robust
correlation with ancestry proxies, while total mutation burden does not. Each column shows the analysis for a different set of variants, intergenic, synonymous, missense and
deleterious (see methods).
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Fig. S40. Rare mutation burden computed on WGS vs. array SNPs. This analysis was done using 50 genomes sequenced as part of the MXB
(second row), as well as using IBS (first row) and YRI (third row) cohorts from the 1000 Genomes Project. Rare mutation burden computed using
all SNPs in WGS or only SNPs in the array data were correlated. Each column shows the analysis for a different set of variants, synonymous,
missense and loss of function. A smoothed conditional mean line is shown using a linear model. Error bands represent 95% confidence intervals.
Spearman correlation values are shown (R and two-sided P-values). There is a significant correlation in all types of variants (synonymous,
missense and loss of function) in the three analyzed cohorts.
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scores performance
UKB GWAS

Fig. S41 Schematic for testing prediction performance of polygenic scores computed in the MXB using MXB or UKB GWAS.
GWAS was performed in only 4,000 randomly selected individuals and polygenic scores were computed for the rest of the individuals

in the MXB. UKB GWAS pan-ancestry summary statistics were also used to compute polygenic scores in the same MXB individuals.
The impact of using different GWAS was assessed (Tables S8-S10).
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Fig. S42. A conceptual framework used in this study for the role of genetics and environment in creating genetic variation and
variation in complex traits and disease risk. The top layer represents a higher-order characterization of factors affecting phenotypic
variation. The lower layers reflect the fine-grained components of these factors. Dashed lines represent potential correlations between
factors. Genetic variation (ancestries) reflects variable demographic histories (reflected in patterns of ROH, allele frequencies and
genetic diversity), environmental histories and causal variant distributions (proxied using polygenic scores). Genetic variation can
further be correlated with the environmental present. The interrelation between genetics and environment is very complex and there
are likely variables unknown or unmeasured that undoubtedly participate in the framework.
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Fig. S43. Average trait values per state visualized on the map of Mexico. Quantitative traits were inverse normalized and average

values for transformed traits per state are shown here. See methods (The Mexican Biobank Project: phenotype, lifestyle and
environmental data) for further details on the quantitative traits analyzed. Each panel shows the map for a different quantitative trait.

50



value

Height_INT

BMI_INT

Glucose_INT

Fasting_glucose_INT

Creatinine_INT

R=0.23, p<22e-16
y=-1.3+0.063 x

R=0.094, p = 2.2-12
y=-0.61+0.029 x

R=0.11, p=8.2e-14
y=-0.62+0.029 x

R=0.09, p = 0.00069
y=-0.56+0.026 x

R=0.078, p = 2.4e-07
y=-0.2+0.0098 x

y=0.13-0.0067 x

=-0.4+0.019 x

Triglycerides_INT Cholesterol_INT HDL_INT LDL_INT SBP_INT
R=0.0063,p=068 | |[R=0.12,p=7.7e-15| | R=0.089, p =3.3e-09 | R=0.11, p = 4e-14 R=0.079, p = 3.7e-09
y=-0.55+0.026 x =-0.57.+0.027 x =-0.36+0.016 x

DBP_INT

SBP_adj_INT

DBP_adj_INT

R=0.11, p<2.2e-16
y=-0.46+0.022 x

R =0.078, p = 4.4e-09
y=-0.37+0.017 x

R=0.11,p<2.2e-16
y=-0.48+0.023 x

15 20 25 30
latitude

Fig. S44. Complex trait variation by latitude. To aid with visualization, a smoothed conditional mean line is shown using the loess

smoothing method (red) or a linear model (blue). Each panel shows the results for the indicated trait. The x-axis shows the latitude
value and the y-axis shows the value of the particular trait. Spearman correlation values (R and two-sided P-values), and the fitted

values for a linear model are shown for all traits.
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Fig. S45. Complex trait variation by longitude. To aid with visualization, a smoothed conditional mean line is shown using the loess
smoothing method (red) or a linear model (blue). Each panel shows the results for the indicated trait. The x-axis shows the longitude
value and the y-axis shows the value of the particular trait. Spearman correlation values (R and two-sided P-values), and the fitted

values for a linear model are shown for all traits.

52



value

Height_INT

BMI_INT

Glucose_INT

Fasting_glucose_INT

Creatinine_INT

R=-0.012,p=0.37
y=0.017-3.3x10"°

R=-0.066, p = 9.3e-(
y=0.055-4.8x10"°

R=0.0078,p=0.61 |
=-0.014+12x10"

R=0.014, p = 0.59
=-0.024+26x10"

R=0.12,p<2.2e-16
y=-0.13+0.00014 x

Triglycerides_INT

Cholesterol _INT

HDL_INT

LDL_INT

SBP_INT

R=0.17,p<2.2e-16
=-0.2+0.00019 x

R=0.19, p<2.2e-16
y=-0.21+0.00021 x

R=0.15, p< 2.26-16
y=-0.15+0.00016 x

R=0.058, p = 0.0001
y=-0.064+7.2x10"

R=0.035, p=0.009 |
y=-0.047 +3.6x 10"

DBP_INT

SBP_adj_INT

DBP_adj_INT

R=0.035, p = 0.0086)
=-0.044+4.1x10"

R=0.03, p=0.023 |
=-0.043+3.2x107]

R=0.032,p=0.018 |
=-0.041+3.8x10"

0 1000 2000

0 1000 2000

0 1000 2000
altitude

0 1000 2000

0 1000 2000

Fig. S46. Complex trait variation by altitude. To aid with visualization, a smoothed conditional mean line is shown using the loess
smoothing method (red) or a linear model (blue). Each panel shows the results for the indicated trait. The x-axis shows the altitude
value and the y-axis shows the value of the particular trait. Spearman correlation values (R and two-sided P-values), and the fitted
values for a linear model are shown for all traits.

53



Height_INT BMI_INT Glucose_INT Fasting_glucose_INT Creatinine_INT
4 o
3 @ * =3 ¢
e - Py
2 .
0+ ¢ * .
-2
g . l 8
! :
-4 4
Triglycerides_INT Cholesterol _INT HDL_INT LDL_INT SBP_INT
41 ° ° @ ° 3
8
[}
=
2 o] e % ¢ * o o .
s
|_
-2
° ®
4t : i ; ; ! 3
Male Female Male Female
DBP_INT SBP_adj_INT DBP_adj_INT
44 2

N
'
¢ |—ams»

& |———amooe

N

]

T T
Male Female

T T
Male Female

T T
Male Female

Gender

Fig. S47. Complex trait variation by sex. Box plots of trait values are shown for males (red) and females (blue). Each subplot shows the values of the specified

trait. Box plots show median, mean and quartiles. Each panel shows the results for the indicated trait. Whiskers extend the minimum and the maximum values.

The dots represent outliers. n = 5770, 5747, 4516, 1427, 4582, 4583, 4584, 4584, 4553, 5836, 5836, 5836 and 5836 biologically independent samples were used

for each trait from Height (Height INT) to adjusted Diastolic blood pressure (DBP_adj INT) respectively (top left to bottom right).
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Fig. S48. Complex trait variation by birth year. To aid with visualization, a smoothed conditional mean line is shown using the

birthyear
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loess smoothing method (red) or a linear model (blue). Each panel shows the results for the indicated trait. The x-axis shows the birth

year and the y-axis shows the value of the particular trait. Spearman correlation values (R and two-sided P-values), and the fitted

values for a linear model are shown for all traits.
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Fig. S49. Complex trait variation by Indigenous heritage. Box plots of trait values are shown for individuals that speak only Spanish (red), that speak both
Spanish and an Indigenous language (green), and that speak only an Indigenous language (blue). Box plots show median, mean and quartiles. Each panel shows
the results for the indicated trait. Whiskers extend the minimum and the maximum values. The dots represent outliers. n = 5770, 5747, 4516, 1427, 4582, 4583,
4584, 4584, 4553, 5836, 5836, 5836 and 5836 biologically independent samples were used for each trait from Height (Height INT) to adjusted Diastolic blood
pressure (DBP_adj INT) respectively (top left to bottom right).
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Fig. S50. Complex trait variation by rural or urban living environment. Box plots of trait values are shown for individuals that live in a rural area (red) and

an urban area (blue). Box plots show median, mean and quartiles. Each panel shows the results for the indicated trait. Whiskers extend the minimum and the

maximum values. The dots represent outliers. n = 5770, 5747, 4516, 1427, 4582, 4583, 4584, 4584, 4553, 5836, 5836, 5836 and 5836 biologically independent

samples were used for each trait from Height (Height INT) to adjusted Diastolic blood pressure (DBP_adj INT) respectively (top left to bottom right).
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Fig. S51. Variograms of complex traits. Variogram was computed using a classical (method of moments) estimator, and computing
distance using longitude and latitude. Each panel shows the results for the indicated trait.
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Fig. S52. Correlation of educational attainment and income levels in the MXB. Education attainment is correlated with income
levels (in pesos). An epidemiological variable in its own right, it can also serve as a proxy for income levels in the complex trait
modeling, as this metric is available for the majority of MXB individuals compared to income levels (only available for a fraction).
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Fig. S53. An analysis of complex trait variation in Creatinine and blood pressure in the MXB. The plot shows effect size
estimates and confidence intervals from a mixed model analysis. All quantitative predictors are centered and scaled by 2 standard
deviations. Asterisks show significance at FDR < 0.05 across traits and predictors analyzed. Panels are shown for creatinine, diastolic
blood pressure (DBP adj) and systolic blood pressure (SBP adj), both adjusted for medication status (see methods). The plot shows
effect size estimates and confidence intervals (1.96*SEM) from a mixed model analysis. n = 3714, 4605 and 4605 biologically
independent samples were used for the analysis for Creatinine, adjusted Diastolic blood pressure (DBP adj) and adjusted Systolic
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Fig. S54. Mixed model results for ancestries from different global regions in the MXB. The plot shows effect size estimates and
confidence intervals from a mixed model analysis for A(Americas) (left panel), A(Africa) (middle panel) and A(East Asia) (right
panel). These reflect ancestry proxies quantified from an Admixture analysis (at K=5) and these predictors are centered and scaled by
2 standard deviations. Asterisks show significance at FDR < 0.05 across traits and predictors analyzed. The plot shows effect size
estimates and confidence intervals (1.96*SEM) from a mixed model analysis. n = 4625, 4607, 3664, 3613, 3714, 4605, 4605, 3665,
3665 and 3641 biologically independent samples were used for the analysis for Height, BMI, Triglycerides, Glucose, Creatinine,
adjusted Diastolic blood pressure (DBP adj), adjusted Systolic Blood pressure (SBP adj), total Cholesterol, HDL and LDL cholesterol

levels respectively.
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Fig. S55. Mixed model results for two MDS axes reflecting genetic variation within the Americas. The plot shows effect size
estimates and confidence intervals from a mixed model analysis for MDS axis 1 (left panel) and MDS axis 2 (right panel). MDS axes
are centered and scaled by 2 standard deviations. Asterisks show significance at FDR < 0.05 across traits and predictors analyzed. The
plot shows effect size estimates and confidence intervals (1.96*SEM) from a mixed model analysis. n = 4625, 4607, 3664, 3613,
3714, 4605, 4605, 3665, 3665 and 3641 biologically independent samples were used for the analysis for Height, BMI, Triglycerides,
Glucose, Creatinine, adjusted Diastolic blood pressure (DBP adj), adjusted Systolic Blood pressure (SBP adj), total Cholesterol, HDL

and LDL cholesterol levels respectively.
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Fig. S56. Mixed model results for SROH carried by an individual. The plot shows effect size estimates and confidence intervals
from a mixed model analysis. ROH predictor is centered and scaled by 2 standard deviations. Asterisks show significance at FDR <
0.05 across traits and predictors analyzed. The plot shows effect size estimates and confidence intervals (1.96*SEM) from a mixed
model analysis. n = 4625, 4607, 3664, 3613, 3714, 4605, 4605, 3665, 3665 and 3641 biologically independent samples were used for
the analysis for Height, BMI, Triglycerides, Glucose, Creatinine, adjusted Diastolic blood pressure (DBP adj), adjusted Systolic Blood
pressure (SBP adj), total Cholesterol, HDL and LDL cholesterol levels respectively.
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Fig. S57. Mixed model results for the polygenic score of each trait. The plot shows effect size estimates and confidence intervals
from a mixed model analysis. Polygenic scores are computed using UKB GWAS summary statistics for each trait (SNPs significant at
P < 10%), and are centered and scaled by 2 standard deviations. Asterisks show significance at FDR < 0.05 across traits and predictors
analyzed. The plot shows effect size estimates and confidence intervals (1.96*SEM) from a mixed model analysis. n = 4625, 4607,
3664, 3613, 3714, 4605, 4605, 3665, 3665 and 3641 biologically independent samples were used for the analysis for Height, BMI,
Triglycerides, Glucose, Creatinine, adjusted Diastolic blood pressure (DBP adj), adjusted Systolic Blood pressure (SBP adj), total
Cholesterol, HDL and LDL cholesterol levels respectively.
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Figure S58. Mixed model results for the environmental predictors for each trait. The plot shows effect size estimates and
confidence intervals from a mixed model analysis (see methods). Asterisks show significance at FDR < 0.05 across traits and
predictors analyzed. Top row shows the analysis for living in an urban environment (left) and altitude (right). Bottom row shows the
analysis for speaking an Indigenous language (left) and educational attainment (right). The plot shows effect size estimates and
confidence intervals (1.96*SEM) from a mixed model analysis. n = 4625, 4607, 3664, 3613, 3714, 4605, 4605, 3665, 3665 and 3641
biologically independent samples were used for the analysis for Height, BMI, Triglycerides, Glucose, Creatinine, adjusted Diastolic
blood pressure (DBP adj), adjusted Systolic Blood pressure (SBP adj), total Cholesterol, HDL and LDL cholesterol levels
respectively.
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Fig. S59. Complex trait architecture of Cholesterol related traits in the MXB. (A) C230 allele in the ABCA1 gene shows higher frequency in individuals with higher
ancestries from the Americas (top). Allele frequency is computed in deciles of individuals partitioned by their level of ancestries from the Americas as inferred from Admixture.
Higher C230 allele frequency is found in individuals with lower HDL levels (bottom). This allele has previously shown to be present primarily in the Americas and associated with
low HDL levels® similar to what is observed in the MXB. The plot shows allele frequencies and confidence intervals (1.96*SEM). n = X biologically independent samples were
used for the analysis. (B) Cholesterol (top left panel), HDL (top right panel), and LDL (bottom panel) levels are explained by several genetic and environmental factors. The plot
shows effect size estimates and confidence intervals (1.96*SEM) from a mixed model analysis. Asterisks show significance at FDR < 0.05 across all traits and predictors analyzed.
n = 3665, 3665 and 3641 biologically independent samples were used for the analysis for total Cholesterol, HDL, and LDL cholesterol levels respectively. Notably, overall,
ancestries from the Americas are associated with low LDL cholesterol levels (8 = -0.14, p = 0.013), and speaking an Indigenous language is associated with low total (8 = -0.26,
p = 1.185x10°%), HDL (8 =-0.26, p = 1.009x10%) and LDL (8 = -0.23, p = 4.928x10"%%) cholesterol levels. Despite the C230 effect, there is no association of overall ancestries

from the Americas with HDL levels (§ = 0.05, p = 0.324).
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Fig. S60. Linear regression of BMI on ancestry proxies inferred from Admixture. BMI was inverse normal transformed same as for the mixed
model analysis. A linear regression model is fit to the data, and the fitted slope, intercept and two-sided P-value are shown, along with the variance
explained (R?) by the model. Age and sex were included as covariates in the model. The fitted line is shown in red, with error bands showing 95%
confidence intervals. We observe a significant negative slope of BMI with ancestries from the Americas (top row left) and a significant positive

slope with ancestries from west Africa (top row right), western Europe (middle row left) and South Asia (bottom row). No significant slope is
observed with ancestries from East Asia (middle row right).
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Fig. S61. Segmented analysis of BMI trait variation in MXB individuals from rural or urban localities. The plot shows effect size estimates and confidence intervals from a

mixed model analysis. All quantitative predictors are centered and scaled by 2 standard deviations. Asterisks show significance at FDR < 0.05 across traits and predictors analyzed.
Top panel shows the analysis for rural localities and bottom panel shows the analysis for urban localities. The plots show effect size estimates and confidence intervals (1.96*SEM)

from a mixed model analysis. n =3192 and 1415 biologically independent samples were used for the rural and urban analysis respectively.
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Supplementary Tables

Characteristic Number (%)
Age
20-39 3295 55.13
40-59 1808 30.25
60-79 763 12.77
80+ 111 1.86
Sex
Male 1820 30.45
Female 4157 69.55

Table S1. Age and sex distribution in the Mexican Biobank. Results shown for the quality control filtered dataset used for

downstream analyses.
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Anthropometric

traits

Height

BMI

Weight

Foot size

Waist
Circumference

Urine
Biochemical
traits

pH

Leukocytes

Nitrites

Proteins

Ketones

Hemoglobin

Health-related Socioecono

traits mic
covariates

Systolic blood Salary

pressure (SBP and

DBP)

Diabetes treatment Indigenous
heritage

Diabetes diagnosis Literacy

Vaccination history Perceived
health status

History of paludism Access to
healthcare

History of Dengue Disability

Renal disease Access to
indicators safe water
Tuberculosis Mosquito
diagnosis exposure
Arthritis Proximity to

pollution

sources
Gout

Rheumatoid arthritis
Gout arthritis

Urinary tract
infection (UTI)

High cholesterol

Hypertension
Genital_warts
Gonorrhoea

Inflammatory
disease

Kidney stones
Prostate problems
Renal insufficiency
STD

Familial Health-
Disease related
History covariates

Diabetes Fertility

Hypertension Contraceptive

use
Cardiac Alcohol use
disease

Inbreeding Tobacco use

Blood
biochemical
traits

Cholesterol

High-density
Lipoproteins
(HDL)
Low-density
Lipoproteins
(LDL)

Triglycerides

Creatinine

Glucose

Table S2. List of anthropometric, disease and lifestyle variables in the Mexican Biobank. Additionally, a number of biochemical

traits analyzed in this study were measured from blood samples.
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Indigenous| European African |East Asian| South Asian
Baja California 52.8 40.7 5 1.1 0
Baja California Sur 47.6 45 4.7 2.1 0.6
Sonora 52.9 41.1 3.4 2.1 0.5
Chihuahua 41.7 51.2 5.1 1.3 0.8
Coahuila 53.1 40.2 5.5 0.7 0
Nuevo Leon 46.9 47 4.8 0.7 0.6
Tamaulipas 57.8 36.1 4.7 0.8 0.5
Sinaloa 433 50.1 4.8 1.2 0.6
Durango 51 41.5 6.1 0.9 0.5
Zacatecas 50.1 43.3 5.3 0.8 0.6
San Luis Potosi 74 22.1 3.1 0.5 0
Nayarit 48.8 43.5 6.1 1.1 0.5
Aguascalientes 52.1 41.4 5.3 0.7 0.5
Jalisco 50.1 43.6 49 0.8 0.6
Colima 50.4 42 5.9 1 0.7
Guanajuato 53.7 40.6 4.6 0.7 0
Queretaro 64.6 31 3.5 0.7 0
\Veracruz 73.8 19.8 5.2 0.8 0
Michoacan 59.9 34.5 4.3 0.7 0.6
Hidalgo 77 20.4 1.8 0.5 0
Cd. Mexico 67.9 28.1 2.9 0.7 0
Edo. Mex 69 27.4 2.4 0.8 0
Tlaxcala 79.5 18.4 1.3 0 0
Guerrero 69.9 21.7 5.4 2.3 0.7
Puebla 82.7 14.9 1.6 0 0
Oaxaca 89.9 7.8 1.7 0 0
Morelos 71.3 24.3 3.2 0.5 0.6
Tabasco 73.5 19.1 6.1 0.6 0.5
Chiapas 84 12.2 2.9 0 0.5
Campeche 78.8 16.1 3.8 0.6 0.5
Yucatan 79.3 17.2 2.4 0 0.7
Quintana Roo 77.1 18.2 3.4 0.7 0.6

Table S3. Estimation of admixture proportions by state in MXB. The state with the highest ancestries from any source is

highlighted.
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Cultural group [ID Mesoamerican region |Latitude |Longitude
Seri SER North of Mexico 29 -112.15
Tarahumara TAR North of Mexico 27.75 -107.17
Tepehuano Tep North of Mesoamerica |23.48 -104.39
Huichol HUI Occident of Mexico  [21.17 -104.08
Nahua Jaliso  [NAJ Occident of Mexico 19.5 -103.5
Purepecha PUR Occident of Mexico 19.75 -101.5
Totonac TOT Gulf of Mexico 20 -97.8
Nahua Puebla [NXP Gulf of Mexico 19.97 -97.62
Nahua_trio NFM Gulf of Mexico 19.93 -97.62
Nahua_Guerrero(NAG Occident of Mexico 17.89 -99.13
Trique TRQ Oaxaca 17.18 -97.95
Zapotec ZAPN |Oaxaca 17.41 -96.69
Zapotec ZAP.S Oaxaca 17.23 -96.23
Mazatec MAZ Oaxaca 18.33 -96.33
Tzotzil TZT Mayan region 16.83 -92.67
Tojolabal TOJ Mayan region 16.5 -92
Lacandon LAC Mayan region 16.75 -91.25
Maya MYA.Q [Mayan region 19.58 -88.58
Maya MYA.C |Mayan region 20.37 -90.05
Maya MYA.Y [Mayan region 21.17 -88.14

Table S4. NMDP cultural groups and their designation into Mesoamerican regions. This table is adapted from table S1 from

Moreno-Estrada et al (2014)!'? with permission.
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_ Indigenous ancestries African ancestries European ancestries

nROH 287675 23015
Local ancestry (Mb) 459820.79 2070.33 44006.19
nROH/localancestry (MB) 0.626 0.207 0.523

Table S5. Number of ROH by local ancestry tracts.
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Phenotype N (cases/controls)
UTI 5723 (677/5046)
Gout 5722 (156/5566)

High cholesterol

5708 (345/5363)

Hypertension 1

4783 (748/4035)

Hypertension 2

5039 (1839/3200)

Rheumatoid arthritis

5720 (205/5515)

Diabetes 5734 (291/5443)
Arthritis 5721 (268/5453)
Height 5663
Weight 5681
BMI 5642
Glucose 4418
Fasting glucose 1361
Creatinine 4482
Triglycerides 4483
Cholesterol 4484
HDL 4484
LDL 4453
SBP 5737
SBP adj 5737
DBP 5737
DBP adj 5737

Table S6. Case and control numbers for each trait. N is the number of individuals for which information is available for each trait.

Cases and controls are in parenthesis when applicable.
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Effect GWAS
Trait lead variant Chr  Pos (b38) Allele  EAF Infoscore Beta SE P Nearest Gene catalogue
Cholesterol rs7528419 1 109274570 A 0.801 0.999 0.135 0.024 1.440E-08 CELSR2 rs7528419
Cholesterol rs57502215 16 56938507 G 0.789 0.980 0.135 0.024 1.017E-08 HERPUD1
Cholesterol rs56228609 16 56953853 C 0.673  0.997 -0.110 0.020 4.284E-08 HERPUDI1,CETP rs56228609
Cholesterol rs118146573 16 56967026 G 0.854 0.995 0.155 0.027 6.030E-09 CETP rs118146573
Creatinine rs73579830 16 51055831 G 0.988 0.998 -0.456 0.082 3.304E-08 LOC107984887
HDL rs2065412 9 104836459 C 0.451  0.999 -0.122 0.019 9.692E-11 ABCA1 rs2472386
HDL rs9282541 9 104858554 G 0.883 0.987 0.219 0.030 1.645E-13 ABCA1 rs9282541
HDL rs180326 11 116753987 G 0.475 1.000 -0.122 0.019 5.863E-11 BUD13 rs180326
HDL rs200905431 11 116909318 GA 0.847 0.965 -0.166 0.026 2.050E-10 SIK3 rs188287950
HDL rs4784732 16 56860607 G 0.255 0.978 -0.124 0.022 1.677E-08 NUP93 rs78291913
HDL rs57502215 16 56938507 G 0.789 0.980 0.152 0.024 1.383E-10 HERPUD1
HDL rs56129100 16 56941862 G 0.284  0.998 0.118 0.021 1.697E-08 HERPUDI1,CETP rs9938160
HDL rs193695 16 56951244 A 0.262 0.998 -0.126  0.021 4.685E-09 HERPUD1,CETP rs9989419
HDL rs56228609 16 56953853 C 0.673 0.997 -0.205 0.020 3.268E-24 HERPUD1,CETP rs56228609
HDL rs117427818 16 56976574 C 0.883 0.985 0.234 0.030 4.522E-15 CETP rs117427818
LDL rs7528419 1 109274570 A 0.802 0.999 0.194 0.025 2.766E-15 CELSR2 rs7528419
LDL rs66505542 11 116752497 TA 0.410 0.998 -0.112 0.020 1.971E-08 BUD13 rs66505542
LDL rs7412 19 44908822 C 0.975 0.991 0.408 0.063 1.103E-10 APOE rs7412
Triglycerides rs947989 11 116702805 A 0.286  0.990 -0.111 0.020 2.729E-08 BUD13,LINC02702  rs1263056
Triglycerides rs66505542 11 116752497 TA 0.411 0.998 0.184 0.019 4.405E-23 BUD13 rs66505542
Triglycerides rs5104 11 116821618 C 0.257 0.999 0.149 0.021 6.604E-13 APOC3 rs5141
Triglycerides rs440446 19 44905910 C 0.465 0.998 -0.106 0.018 4.719E-09 APOE rs440446
Weight rs4636755 12 23536367 T 0.200 0.985 -0.116  0.021 2.03E-08 SOX5 rs4246218
Effect GWAS
Trait lead variant Chr  Pos (b38) Allele  EAF Infoscore OR 95%Cl P Nearest Gene catalogue
Arthritis rs12932003 16 81292633 A 0.600 0.990 0.572  0.47-0.7 4.86E-08 BCO1
Hypertension rs17607804 7 35350638 A 0.878 0.998 0.584  0.48-0.71 4.67E-08 LOC401324

Table S7. Lead SNPs and most significant variant found in GWAS catalogue. The statistics were generated with whole-genome regression

models as implemented in Regenie69 providing P-values, followed by Bonferroni correction for multiple tests. Lines in bold indicate loci passing Bonferroni correction.



MXB-GWAS based

UKB-GWAS based

Imputed dataset

Genotyped dataset

Imputed dataset

Genotyped dataset

R p R p R o] R p
Height 0.033 0.17 0.059 0.016 0.025 0.29 015 | 2.8x101
BMI 0.061 0.013 0.044 0.07 0.054 0.022 0.083 7x10%
Triglycerides 0.14 6.7x107 | 0.087 0.0016 -0.029 0.27 0.064 0.019
Cholesterol 0.13 2.1x10° | 0.058 0.033 0.067 0.01 0.034 0.22
HDL 0.13 4.7x10° 0.1 0.00017 0.026 0.32 0.0019 0.95
LDL 0.023 0.4 0.038 0.16 0.1 9.5X10° | 0.055 0.047
Glucose 0.12 23x105 | 0.075 0.0069 0.044 0.097 0.019 0.5
Creatinine 0.17 3.9x10%° | 0.11 3.6x105 | 0.00033 0.99 0.058 0.036
Z‘::‘S"L::eb'md -0.01 0.68 0.016 0.5 -0.0043 0.85 0.043 0.075
E:Z:Z:':: blood 0.0086 0.72 0.052 0.032 -0.0016 0.95 0.051 0.035

Table S8. Assessment of polygenic score performance using MXB-GWAS or UKB-GWAS (SNPs significant at p <0.1). We

tested the prediction performance of polygenic scores by computing the Pearson’s correlation (R and associated two-sided p-value)

between the trait value and the polygenic score.
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MXB-GWAS based

UKB-GWAS based

Imputed dataset

Genotyped dataset

Imputed dataset

Genotyped dataset

R p R p R p R p
Height 20.00007 | 1 NA | NA 013 | 8.5x10% 0.16 | 1.2x10°10
BMI NA NA NA | NA 0.065 | 0.0053 0.086 | 0.00042
Triglycerides 0.13 48x10° | 0.092 |0.00081 015 | 13x10% 015 | 3.5x10%
Cholesterol 0.019 0.5 0.016 | 0.55 013 | 2.1x107 012 | 1.2x10%
HDL 0.19 ox10° | 0.17 | 1.5x10°10 0.15 | 4.2x10% 021 |2xl01
LDL 0.081 00033 | 0.13 | 3.5x10° 0.1 9.6x10° 0.11  |3.2x10%
Glucose NA NA NA | NA 0032|022 0052 | 0.06
Creatinine NA NA NA | NA 0.076 | 0.0035 0.068 | 0.013
Systolic blood pressure [ NA NA NA NA 0.066 0.0042 0.077 0.0014
Diastolic blood 0.044 0.069 NA | NA 007 | 0.0025 0079 | 0.0012
pressure

Table S9. Assessment of polygenic score performance using MXB-GWAS or UKB-GWAS (SNPs significant at p < 10%). We
tested the prediction performance of polygenic scores by computing the Pearson’s correlation (R and associated two-sided p-value)
between the trait value and the polygenic score.
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