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Supplementary Figures

Supplementary Figure 1: Clustering of global phenotypes using phenotypic (A) and genetic (B) correlation matrices.
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Consistency of clustering approaches was assessed using 3 methods for hierarchical clustering: clustering using Ward'’s criterion, complete linkage, and average linkage.



Supplementary Figure 2: Phenotypic structural equation model
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Phenotypic SEM path diagram demonstrating the underlying latent structure of 12 of the 13 global phenotypes
and the interfactor genetic correlations. Covariance relationships = double-headed arrows connecting two
variables, variance estimates = double-headed arrows connecting variable to itself, regression relationships =
one-headed arrows pointing from independent variable to dependent variable. Circles indicate latent variables,
squares indicate measured phenotypes. Abbreviations: cortical surface area (SA), grey matter volume (Vol),
folding index (Fl), local gyrification index (LGl), mean curvature (MC), gaussian curvature (GC), fractional
anisotropy (FA), mean diffusivity (MD), intracellular volume fraction (ICVF), isotropic volume fraction (ISOVF),

and orientation dispersion index (ODI).



Supplementary Figure 3: Co-localisation lots of all clusters with cluster size > 30
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Cortical topographical plots demonstrating topographical distribution of co-localisation clusters with
cluster size 30 for volume and surface area. Clusters are coloured in black. For each plot, the relevant
phenotype and the SNP identified as the candidate causal variant for the cluster is provided.



Supplementary Figure 4: Co-localisation lots of all clusters with cluster size > 30
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Cortical topographical plots demonstrating topographical distribution of co-localisation clusters with
cluster size 30 for all phenotypes except volume and surface area. Clusters are coloured in black. For
each plot, the relevant phenotype and the SNP identified as the candidate causal variant for the cluster
is provided.



Supplementary Figure 5: Co-localisation and regional association plot for FI and ICI-
6:125424383-127540461
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A: Cortical topographic plots of two co-localised loci with ICl and Fl. B and E: Global GWAS for Fl and
ICI respectively. C and F regional GWAS (FEF region) that was part of the co-localised cluster in Fl and
ICI respectively. D and G: regional GWAS (p24 region) that was outside the co-localised cluster in Fl
and ICI.



Supplementary Figure 6: Spin permutation based enrichment of mean SNP heritability across

mesulam classes and Yeo & Krienen communit
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A. The average SNP heritability for each Mesulam class (dots) overlaid onto a null distribution of the

heritability in that class obtained by spinning the parcellation 1000 times (and computing the average

heritability within each permutation). Thus, if the
ends (5%) of the null distribution it could be conclu

real average heritability (dots) are within the tail
ded that this heritability is higher in that class and

for that feature than would be expected from a spatially random distribution of the heritability across

the cortex. Only idiotypic regions for some phenotypes (cortical thickness, volume, mean, gaussian

and intrinsic curvature, mean diffusivity and isotropic volume fraction) show this relative spatial

enrichment. B. The same type of spatial enrichment analysis for the Yeo and Krienen communities.



Supplementary Figure 7: Spin permutation based enrichment of mean genetic correlations
within mesulam classes and Yeo & Krienen communities.
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A. The average within class genetic similarity (i.e., the average of all edges in the genetic correlation
matrix for regions belonging to the same class) for each Mesulam class (dots) overlaid onto a null
distribution obtained by spinning the parcellation 1000 times (and computing the average similarity
within each permutation). Thus, if the real genetic correlations for a given class (dots) are within the
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Supplementary Figure 8: Genetic-ancestry based clustering

Figure 17A: PCA plot of the first and second genetic principal components of ABCD (Self-reported
ancestry) and the 1000 genomes ancestry.
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Supplementary notes and associated figures

Supplementary Note 1: Phenotypic factor analysis and structural equation modelling

Using the quality controlled phenotypic dataset which was included in the GWAS, we
conducted exploratory factor analysis on half of the sample (Ntotal = 28,794, Nhair = 14,397 ),
randomly selected. We conducted confirmatory factor analysis in the other half of the sample.
All phenotypes were scaled. Examination of the phenotypic correlation matrix indicated that,
with the exception of CT, most phenotypes exhibited a pattern of high absolute correlation
with at least one other phenotype and low correlations with others. In contrast, CT exhibited
moderate correlation with almost all phenotypes, in line with the idea that multiple cell types
underlie CT.

We next investigated if our data is amenable to factor analysis using Bartlett’s test of
sphericity Kaiser-Meyer-Olkin measure of sampling adequacy. The overall measure of
sampling adequacy was 0.5, which is the minimum acceptable for factor analysis. Inspecting
individual measures of sampling adequacy identified very low sampling adequacy for CT
(0.29), consistent with earlier findings that CT does not cluster very well with other
phenotypes. Excluding CT produced a better overall measure of sampling adequacy (0.57).
Bartlett’s test confidence was significant both before and after excluding CT.

Given the above points, we excluded CT from factor analysis and conducted exploratory factor
analysis on 12 of the 13 global phenotypes. Scree plot and parallel analysis indicated four
factors, in line with the number of clusters identified from hierarchical clustering. Exploratory
factor analysis identified four factors: 1: Cortical expansion; 2: Cortical curvature; 3: Neurite
density; and 4: Water diffusion (SF 3). There was significant and high (> 0.5) cross-loading of
ICI onto two factors (cortical expansion and cortical curvature). Multiple iterations of the
confirmatory factor analyses when including ICI failed to produce satisfactory models. After
removing ICl, we identified a similar four factor model relating to cortical expansion, cortical
curvature, neurite density and water diffusion with acceptable fit indices (CFl: 0.85, SRMR:
0.79).
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Supplementary Note 2: Identifying causal factors for folding using Mendelian Randomisation

An overview of MR and the methods used

Understanding the processes that underlie cortical folding has proven elusive. Several
theories have tried to explain folding including skull constraint, axonal tension, and
differential tangential growth®. Skull constraint and axonal tension do not account for the
uniform nature of folding across among humans. The cellular model for differential tangential
expansion posits that folding occurs through two mechanismes: first, the outer layers expand
more than the inner layers, causing the cortex to fold and second, there is heterogeneous
distribution of progenitors across the brains, leading to differences in neurogenesis'=. In
humans, one way to test this is to investigate if genetic variants underlying surface area
increase measures of curvature. We used multiple Mendelian Randomisation (MR) methods
to investigate this.

MR analyses require three key assumptions: (1) the genetic variant is associated with the
exposure; (2) the genetic variant is not associated with confounders; and (3) the genetic
variant will only influence the outcome through the exposure.

To address the first rule, we use only genome-wide significant SNPs, or SNPs that are near
genome-wide significant. However, addressing the second two rules are challenging. With
phenotypes such as cortical macrostructure, it is theoretically impossible to say if that the
genetic variant is not associated with a confounder or that the genetic variant influences the
outcome solely through the exposure. This is because we cannot completely rule out
pleiotropy. Therefore, to strengthen the evidence substantially, we use a suite of sensitivity
analyses to ensure that the results are robust to some violations of the MR assumptions. First
we use the gold-standard inverse-variance weighted Mendelian Randomisation to identify
significant potential causal effects. As this is prone to bias if genetic variants do not meet the
three rules above (i.e., invalid instrument), we use median-weighted MR which provides valid
estimates if a large number of (up to 50%) the genetic variants are invalid. We then use two
additional methods to account for or remove SNPs that may be pleiotropic - MR-egger and
MR-PRESSO. Consistent results across all four indicates that our findings are reasonably
robust to invalid instruments due to pleiotropy.

However, none of these methods account for reverse causality as, due to difference in
statistical power between the GWAS for the exposure and outcomes, some genetic variants
that are significant in the exposure may actually explain greater variance in the outcome. We
use Steiger filtering to identify these SNPs and remove them. We conduct all the above
analyses again, to ensure that the results are robust to reverse causal instruments. This is
particularly important in our analyses due to the high pleiotropy and shared genetics between
the cortical expansion phenotypes.
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Next, we use a relatively new method (CAUSE) to model pleiotropy as correlated (i.e.,
mediated by a confounder) and uncorrelated pleiotropy. Whilst uncorrelated pleiotropy adds
noise to the estimate, correlated pleiotropy can lead to bias and false positives. MR-Egger and
MR-PRESSO rely on the assumption that all pleiotropy is uncorrelated. CAUSE models both
correlated and uncorrelated pleiotropy. Significant results in CAUSE suggest that the causal
estimates are robust to even correlated pleiotropy.

In addition to all of these methods, to ensure that our results are replicable across datasets,
we conduct a validation by using two datasets. In the first analyses we split the UKB into two
random approximate halves and conduct MR between the two datasets. Next, we use
summary statistics from UKB as the exposure and summary statistics from ABCD as outcome.

An overview of the results

We split the UK Biobank into two datasets of roughly equal sample size to ensure that there
is limited participant overlap and conducted MR. Inverse-variance weighted MR
demonstrated that genetically predicted surface area increased genetically predicted local
gyrification index (LGl), intrinsic curvature index (ICl), and folding index (Fl) after Bonferroni
correction. These results were statistically significant after applying methods that are robust
to various assumptions: median-weighted* MR and MR-Presso®, and after removing outliers
by Steiger filtering®. These results also had consistent effect direction when using MR-Egger’,
which is statistically underpowered compared to other methods. However, in the reverse
direction, we did not obtain consistent results to indicate that genetic variants associated with
these measures increased genetically predicted surface area (SF 4). Visual inspection of the
forest plots and leave-one-out plots did not indicate that the results were driven by one or
two genetic variants (SF 5).

We confirmed our findings first by using a different method that can model both correlated
and uncorrelated pleiotropy (CAUSE)® using two sets of instruments - one created from SNPs
with p < 5x108, and another with SNPs with p < 1x1073, as previously demonstrated by the
developers of the method. CAUSE suggested that SA causally increased LGI, Fl and ICI. In the
reverse direction, CAUSE identified a shared model between LGI, Fl, and SA, and a causal
model between SA and ICl. Consistent results suggesting that genetically predicted surface
area increased genetically predicted measures of folding were obtained when MR was run
using ABCD and UKB. Altogether, MR provides support for the differential tangential growth
theory for some measures of folding, but suggests that other mechanisms may contribute to
other measures of folding.
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Supplementary Note 3: Adjusting for global phenotypes can bias regional GWAS

Following Aschard and colleagues®, we consider four scenarios in which a genetic variant may
be associated with regional phenotypes. Acyclic graphs are provided below (SF 13).

Scenario 1: A genetic variant is associated with a global phenotype but not associated with a
regional phenotype.

Scenario 2: A genetic variant is associated with a regional phenotype but not associated with
global phenotypes.

Scenario 3: A genetic variant is independently associated with both regional and global
phenotypes.

Scenario 4: The genetic effect of a variant on a regional phenotype is mediated partly or
completely by global phenotypes.

For Scenarios 2 and 4, controlling for the global phenotype will not affect the association
between the genetic variant and the regional phenotype. However, for scenarios 1 and 3,
correcting for the global phenotype will induce a correlation between the genetic variant and
the regional phenotype. The estimate will be biased by Bcpcy where Bcis the effect of the
genetic variant on the covariate (in this case the global phenotype), and pcyis the correlation
between the covariate (the global phenotype) and outcome. In our study, the B¢ for the
standardised global phenotypes range from (-1.47) to (1.16) for the genome-wide significant
loci, and the correlations between the global phenotypes and regional phenotypes are high
and displayed in (SF 14). Therefore, correcting for the global phenotypes will bias the regional
estimates.
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Supplementary Note 3, Figure 1: Acyclic graphs for the association between genetic variant
and regional phenotypes

Scenario 1l Scenario 2
Scenario 3 Scenario 4

Acyclic graphs demonstrating causal relationship between genetic variant (Xg) and regional
phenotype (Yg), in the presence of the global phenotype which is the covariate (Cs) and other
genetic and environmental factors (G/E) which contribute to the phenotypic correlation
between the regional phenotype and the global phenotype.
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Supplementary Note 3, Figure 2: Correlation between regional phenotypes and global phenotypes
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Pearson’s correlation coefficient between regional phenotypes and global phenotypes.
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Supplementary Note 4: Impact of processing pipeline and image quality

4a: Image quality

Motion and image reconstruction quality could potentially impact data quality and especially
paediatric cohorts might be more susceptible to move more in the scanner. We note that both the UK
BioBank and the ABCD datasets are of generally high-quality, i.e., less than 0.2% of individuals have an
Euler index above the threshold of 216 used by Rosen et al. 2016 °. Similarly we do indeed find that
the ABCD younger dataset exhibits relatively more motion than the older UK BioBank cohort, but
analogous to the Euler index less than 0.1% of the sample showed an average framewise displacement
above 2mm. Extreme head motion would likely result in poor image quality which will have been
reflected in either unusable scans (which are generally not uploaded to the respective repositories or
marked as unusable). In addition scans with high Euler indices or high levels of motion would likely
show extreme deviations in any of the included phenotypes. To ensure these would not be included
in any downstream analyses individuals were removed from analyses if they were more than 5 median
absolute deviations removed from the group median on any given phenotype. Furthermore, an
additional GWAS of all global phenotypes in the UK BioBank cohorts with individuals who were more
than 5 median absolute deviations away from the group median on either the Euler Index, average
framewise displacement or maximum framewise excluded yielded highly similar genome wide
associations (rg> 0.90 for all).
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Histogram plots generated using gghistostat 1. Includes computed Bayes Factors to quantify the
likelihood of each variable being significantly different from 0 (BF10) and the null hypothesis (BF01), as
well a one-sample, two-sided student’s T-test to indicate the same. In our current example, the Bayes
Factor value and T-test provide very strong evidence that all scores are above zero. Plots also indicate
a clear leftward skew towards lower scores (indicating higher quality.

4b: Strategies for parcellation alignment

There is considerable variability in processing and parcellation alignment strategies in literature. While
it is beyond the scope of the present work to provide an exhaustive evaluation of all possible
approaches to the whole processing pipeline and how they might impact downstream genetic
associations, we did evaluate the impact of direct surface based registration versus indirect surface
based registration as these may impact spatial accuracy of assigned cortical regions 2. Specifically, to
evaluate robustness of the regional diffusion-weighted imaging phenotypes, we compared surface-
based and volume-based approaches for individual subject registration. The 'bbregister' command in
FreeSurfer was used to affine transform the diffusion-weighted images to the T1-weighted MRI for
each subject using the transformation files from the original processing method. In contrast to the
volumetric approach, where the brain parcellation was aligned to the diffusion-weighted image before
averaging across voxels (using the native resolution of the diffusion-weighted image), the surface
approach aligned the diffusion-weighted image to the T1-weighted MRI before projection to the
surface. Surface projection was performed using the 'myelin-style' method in the 'volume-to-surface-
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mapping' command in Connectome Workbench and using the computed surfaces from the FreeSurfer

pipeline. Regional values were then derived by averaging across vertices using the original output

parcellation files from FreeSurfer.

Subsequently, for the five diffusion-weighted phenotypes, we calculated genetic correlations between

the indirect surface based registration and the direct surface based registration in approximately 9,650

individuals from the UK Biobank using GCTA-GREML after including the same covariates as in the

GWAS. We observed very high genetic correlations for the global

diffusion phenotypes

(Supplementary Note 4b Table 1). We also observed relatively high median genetic correlations for

the regional phenotypes, although, particularly for FA, the genetic correlations had very high standard

errors due to the low heritability of

Supplementary Note 4b Table 1: Genetic correlations for the global phenotypes.

Genetic SE N
correlation
FA 0.829 0.21 9661
MD 0.903 0.03 9649
NODDI ICVF 0.937 0.05 9654
NODDI ISOVF 0.893 0.03 9664
NODDI OD 0.966 0.08 9663

Genetic correlations were calculated between the indirect surface based registration and the direct

surface based registration for 9,650 individuals using GCTA-GREML.
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Supplementary Note 4, Figure 2: Genetic correlation of parcellation approaches.
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Genetic correlation between the direct and indirect surface-based registration for the five diffusion
MRI phenotypes. Nmax = 36,663.
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