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Supplementary Figures 

Supplementary Figure 1: Clustering of global phenotypes using phenotypic (A) and genetic (B) correlation matrices.  

 

 

Consistency of clustering approaches was assessed using 3  methods for hierarchical clustering: clustering using Ward’s criterion, complete linkage, and average linkage.
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Supplementary Figure 2: Phenotypic structural equation model 

 

 
Phenotypic SEM path diagram demonstrating the underlying latent structure of 12 of the 13 global phenotypes 
and the interfactor genetic correlations. Covariance relationships = double-headed arrows connecting two 
variables, variance estimates = double-headed arrows connecting variable to itself, regression relationships = 
one-headed arrows pointing from independent variable to dependent variable. Circles indicate latent variables, 
squares indicate measured phenotypes. Abbreviations: cortical surface area (SA), grey matter volume (Vol), 
folding index (FI), local gyrification index (LGI), mean curvature (MC), gaussian curvature (GC), fractional 
anisotropy (FA), mean diffusivity (MD), intracellular volume fraction (ICVF),  isotropic volume fraction (ISOVF), 
and orientation dispersion index (ODI).
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Supplementary Figure 3: Co-localisation lots of all clusters with cluster size > 30 

 
Cortical topographical plots demonstrating topographical distribution of co-localisation clusters with 
cluster size 30 for volume and surface area. Clusters are coloured in black. For each plot, the relevant 
phenotype and the SNP identified as the candidate causal variant for the cluster is provided. 
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Supplementary Figure 4: Co-localisation lots of all clusters with cluster size > 30 

 

 
Cortical topographical plots demonstrating topographical distribution of co-localisation clusters with 
cluster size 30 for all phenotypes except volume and surface area. Clusters are coloured in black. For 
each plot, the relevant phenotype and the SNP identified as the candidate causal variant for the cluster 
is provided. 
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Supplementary Figure 5: Co-localisation and regional association plot for FI and ICI- 
6:125424383-127540461 

 
A: Cortical topographic plots of two co-localised loci with ICI and FI. B and E: Global GWAS for FI and 
ICI respectively. C and F regional GWAS (FEF region) that was part of the co-localised cluster in FI and 
ICI respectively. D and G: regional GWAS (p24 region) that was outside the co-localised cluster in FI 
and ICI. 
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Supplementary Figure 6: Spin permutation based enrichment of mean SNP heritability across 
mesulam classes and Yeo & Krienen communities. 

 
 
A. The average SNP heritability for each Mesulam class (dots) overlaid onto a null distribution of the 
heritability in that class obtained by spinning the parcellation 1000 times (and computing the average 
heritability within each permutation). Thus, if the real average heritability (dots) are within the tail 
ends (5%) of the null distribution it could be concluded that this heritability is higher in that class and 
for that feature than would be expected from a spatially random distribution of the heritability across 
the cortex. Only idiotypic regions for some phenotypes (cortical thickness, volume, mean, gaussian 
and intrinsic curvature, mean diffusivity and isotropic volume fraction) show this relative spatial 
enrichment. B. The same type of spatial enrichment analysis for the Yeo and Krienen communities. 
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Supplementary Figure 7: Spin permutation based enrichment of mean genetic correlations 
within mesulam classes and Yeo & Krienen communities. 

 
A. The average within class genetic similarity (i.e., the average of all edges in the genetic correlation 
matrix for regions belonging to the same class) for each Mesulam class (dots) overlaid onto a null 
distribution obtained by spinning the parcellation 1000 times (and computing the average similarity 
within each permutation). Thus, if the real genetic correlations for a given class (dots) are within the 
tail ends (5%) of the null distribution it could be concluded that this genetic correlation within regions 
belonging to the same class is higher in that class and for that feature than would be expected from a 
spatially random distribution across the cortex. B. The same type of spatial enrichment analysis for 
the Yeo and Krienen communities.   
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Supplementary Figure 8: Genetic-ancestry based clustering 

Figure 17A: PCA plot of the first and second genetic principal components of ABCD (Self-reported 
ancestry) and the 1000 genomes ancestry. 
 

 
 
 
 
Figure 18B: UMAP of the 1000 genomes populations and ABCD using the first five genetic PCs 
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Supplementary notes and associated figures 

Supplementary Note 1: Phenotypic factor analysis and structural equation modelling 

Using the quality controlled phenotypic dataset which was included in the GWAS, we 
conducted exploratory factor analysis on half of the sample (Ntotal = 28,794, Nhalf = 14,397 ), 
randomly selected. We conducted confirmatory factor analysis in the other half of the sample. 
All phenotypes were scaled. Examination of the phenotypic correlation matrix indicated that, 
with the exception of CT, most phenotypes exhibited a pattern of high absolute correlation 
with at least one other phenotype and low correlations with others. In contrast, CT exhibited 
moderate correlation with almost all phenotypes, in line with the idea that multiple cell types 
underlie CT. 
 
We next investigated if our data is amenable to factor analysis using Bartlett’s test of 
sphericity Kaiser-Meyer-Olkin measure of sampling adequacy. The overall measure of 
sampling adequacy was 0.5, which is the minimum acceptable for factor analysis. Inspecting  
individual measures of sampling adequacy identified very low sampling adequacy for CT 
(0.29), consistent with earlier findings that CT does not cluster very well with other 
phenotypes. Excluding CT produced a better overall measure of sampling adequacy (0.57). 
Bartlett’s test confidence was significant both before and after excluding CT.  
 
Given the above points, we excluded CT from factor analysis and conducted exploratory factor 
analysis on 12 of the 13 global phenotypes. Scree plot and parallel analysis indicated four 
factors, in line with the number of clusters identified from hierarchical clustering. Exploratory 
factor analysis identified four factors: 1: Cortical expansion; 2: Cortical curvature; 3: Neurite 
density; and 4: Water diffusion (SF 3). There was significant and high (> 0.5) cross-loading of 
ICI onto two factors (cortical expansion and cortical curvature). Multiple iterations of the 
confirmatory factor analyses when including ICI failed to produce satisfactory models. After 
removing ICI, we identified a similar four factor model relating to cortical expansion, cortical 
curvature, neurite density and water diffusion with acceptable fit indices (CFI: 0.85, SRMR: 
0.79).  
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Supplementary Note 2: Identifying causal factors for folding using Mendelian Randomisation 

 
An overview of MR and the methods used 
Understanding the processes that underlie cortical folding has proven elusive. Several 
theories have tried to explain folding including skull constraint, axonal tension, and 
differential tangential growth1. Skull constraint and axonal tension do not account for the 
uniform nature of folding across among humans. The cellular model for differential tangential 
expansion posits that folding occurs through two mechanisms: first, the outer layers expand 
more than the inner layers, causing the cortex to fold and second, there is heterogeneous 
distribution of progenitors across the brains, leading to differences in neurogenesis1–3. In 
humans, one way to test this is to investigate if genetic variants underlying surface area 
increase measures of curvature. We used multiple Mendelian Randomisation (MR)  methods 
to investigate this.  
 
MR analyses require three key assumptions: (1) the genetic variant is associated with the 
exposure; (2) the genetic variant is not associated with confounders; and (3) the genetic 
variant will only influence the outcome through the exposure.  
 
To address the first rule, we use only genome-wide significant SNPs, or SNPs that are near 
genome-wide significant. However, addressing the second two rules are challenging.  With 
phenotypes such as cortical macrostructure, it is theoretically impossible to say if that the 
genetic variant is not associated with a confounder or that the genetic variant influences the 
outcome solely through the exposure. This is because we cannot completely rule out 
pleiotropy. Therefore, to strengthen the evidence substantially, we use a suite of sensitivity 
analyses to ensure that the results are robust to some violations of the MR assumptions. First 
we use the gold-standard inverse-variance weighted Mendelian Randomisation to identify 
significant potential causal effects. As this is prone to bias if genetic variants do not meet the 
three rules above (i.e., invalid instrument), we use median-weighted MR which provides valid 
estimates if a large number of (up to 50%) the genetic variants are invalid. We then use two 
additional methods to account for or remove SNPs that may be pleiotropic - MR-egger and 
MR-PRESSO. Consistent results across all four indicates that our findings are reasonably 
robust to invalid instruments due to pleiotropy.  
 
However, none of these methods account for reverse causality as, due to difference in 
statistical power between the GWAS for the exposure and outcomes, some genetic variants 
that are significant in the exposure may actually explain greater variance in the outcome. We 
use Steiger filtering to identify these SNPs and remove them. We conduct all the above 
analyses again, to ensure that the results are robust to reverse causal instruments. This is 
particularly important in our analyses due to the high pleiotropy and shared genetics between 
the cortical expansion phenotypes.  

https://paperpile.com/c/nbAeDV/XPgAt
https://paperpile.com/c/nbAeDV/qNI6o+LlHtk+XPgAt
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Next, we use a relatively new method (CAUSE) to model pleiotropy as correlated (i.e., 
mediated by a confounder) and uncorrelated pleiotropy. Whilst uncorrelated pleiotropy adds 
noise to the estimate, correlated pleiotropy can lead to bias and false positives. MR-Egger and 
MR-PRESSO rely on the assumption that all pleiotropy is uncorrelated. CAUSE models both 
correlated and uncorrelated pleiotropy. Significant results in CAUSE suggest that the causal 
estimates are robust to even correlated pleiotropy.  
 
In addition to all of these methods, to ensure that our results are replicable across datasets, 
we conduct a validation by using two datasets. In the first analyses we split the UKB into two 
random approximate halves and conduct MR between the two datasets. Next, we use 
summary statistics from UKB as the exposure and summary statistics from ABCD as outcome.  
 
An overview of the results 
We split the UK Biobank into two datasets of roughly equal sample size to ensure that there 
is limited participant overlap and conducted MR. Inverse-variance weighted MR 
demonstrated that genetically predicted surface area increased genetically predicted local 
gyrification index (LGI), intrinsic curvature index (ICI), and folding index (FI) after Bonferroni 
correction. These results were statistically significant after applying methods that are robust 
to various assumptions: median-weighted4 MR and MR-Presso5, and after removing outliers 
by Steiger filtering6. These results also had consistent effect direction when using MR-Egger7, 
which is statistically underpowered compared to other methods. However, in the reverse 
direction, we did not obtain consistent results to indicate that genetic variants associated with 
these measures increased genetically predicted surface area (SF 4). Visual inspection of the 
forest plots and leave-one-out plots did not indicate that the results were driven by one or 
two genetic variants (SF 5). 
 
We confirmed our findings first by using a different method that can model both correlated 
and uncorrelated pleiotropy (CAUSE)8 using two sets of instruments - one created from SNPs 
with p < 5x10-8, and another with SNPs with p < 1x10-3, as previously demonstrated by the 
developers of the method. CAUSE suggested that SA causally increased LGI, FI and ICI. In the 
reverse direction, CAUSE identified a shared model between LGI, FI, and SA, and a causal 
model between SA and ICI. Consistent results suggesting that genetically predicted surface 
area increased genetically predicted measures of folding were obtained when MR was run 
using ABCD and UKB. Altogether, MR provides support for the differential tangential growth 
theory for some measures of folding, but suggests that other mechanisms may contribute to 
other measures of folding.  
 

 

https://paperpile.com/c/nbAeDV/peMuA
https://paperpile.com/c/nbAeDV/3vPyA
https://paperpile.com/c/nbAeDV/uOyeA
https://paperpile.com/c/nbAeDV/ySTGp
https://paperpile.com/c/nbAeDV/mJpF6
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Supplementary Note 3: Adjusting for global phenotypes can bias regional GWAS 

 
Following Aschard and colleagues9, we consider four scenarios in which a genetic variant may 
be associated with regional phenotypes. Acyclic graphs are provided below (SF 13).  
 
Scenario 1: A genetic variant is associated with a global phenotype but not associated with a 
regional phenotype.  
 
Scenario 2: A genetic variant is associated with a regional phenotype but not associated with 
global phenotypes. 
 
Scenario 3: A genetic variant is independently associated with both regional and global 
phenotypes. 
 
Scenario 4: The genetic effect of a variant on a regional phenotype is mediated partly or 
completely by global phenotypes.  
 
For Scenarios 2 and 4, controlling for the global phenotype will not affect the association 
between the genetic variant and the regional phenotype. However, for scenarios 1 and 3, 
correcting for the global phenotype will induce a correlation between the genetic variant and 
the regional phenotype. The estimate will be biased by βCρCY where βC is the effect of the 
genetic variant on the covariate (in this case the global phenotype), and ρCY is the correlation 
between the covariate (the global phenotype) and outcome. In our study, the βC for the 
standardised global phenotypes range from (-1.47) to (1.16) for the genome-wide significant 
loci, and the correlations between the global phenotypes and regional phenotypes are high 
and displayed in (SF 14). Therefore, correcting for the global phenotypes will bias the regional 
estimates.  
 

https://paperpile.com/c/nbAeDV/bYWcK
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Supplementary Note 3, Figure 1: Acyclic graphs for the association between genetic variant 
and regional phenotypes 

 

 
Acyclic graphs demonstrating causal relationship between genetic variant (Xg) and regional 
phenotype (YR), in the presence of the global phenotype which is the covariate (CG) and other 
genetic and environmental factors (G/E) which contribute to the phenotypic correlation 
between the regional phenotype and the global phenotype. 
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Supplementary Note 3, Figure 2: Correlation between regional phenotypes and global phenotypes 

 

 
Pearson’s correlation coefficient between regional phenotypes and global phenotypes.  
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Supplementary Note 4: Impact of processing pipeline and image quality 

4a: Image quality 
Motion and image reconstruction quality could potentially impact data quality and especially 
paediatric cohorts might be more susceptible to move more in the scanner. We note that both the UK 
BioBank and the ABCD datasets are of generally high-quality, i.e., less than 0.2% of individuals have an 
Euler index above the threshold of 216 used by Rosen et al. 2016 10. Similarly we do indeed find that 
the ABCD younger dataset exhibits relatively more motion than the older UK BioBank cohort, but 
analogous to the Euler index less than 0.1% of the sample showed an average framewise displacement 
above 2mm. Extreme head motion would likely result in poor image quality which will have been 
reflected in either unusable scans (which are generally not uploaded to the respective repositories or 
marked as unusable). In addition scans with high Euler indices or high levels of motion would likely 
show extreme deviations in any of the included phenotypes. To ensure these would not be included 
in any downstream analyses individuals were removed from analyses if they were more than 5 median 
absolute deviations removed from the group median on any given phenotype. Furthermore, an 
additional GWAS of all global phenotypes in the UK BioBank cohorts with individuals who were more 
than 5 median absolute deviations away from the group median on either the Euler  Index, average 
framewise displacement or maximum framewise excluded yielded highly similar genome wide 
associations (rg > 0.90 for all). 
 
 

https://paperpile.com/c/nbAeDV/B8gI
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  Supplementary Note, Figure 1: Histograms of included covariates

 
Histogram plots generated using gghistostat 11. Includes computed Bayes Factors to quantify the 
likelihood of each variable being significantly different from 0 (BF10) and the null hypothesis (BF01), as 
well a one-sample, two-sided student’s T-test to indicate the same. In our current example, the Bayes 
Factor value and T-test provide very strong evidence that all scores are above zero. Plots also indicate 
a clear leftward skew towards lower scores (indicating higher quality. 
 
4b: Strategies for parcellation alignment 
There is considerable variability in processing and parcellation alignment strategies in literature. While 
it is beyond the scope of the present work to provide an exhaustive evaluation of all possible 
approaches to the whole processing pipeline and how they might impact downstream genetic 
associations, we did evaluate the impact of direct surface based registration versus indirect surface 
based registration as these may impact spatial accuracy of assigned cortical regions 12. Specifically, to 
evaluate robustness of the regional diffusion-weighted imaging phenotypes, we compared  surface-
based and volume-based approaches for individual subject registration. The 'bbregister' command in 
FreeSurfer was used to affine transform the diffusion-weighted images to the T1-weighted MRI for 
each subject using the transformation files from the original processing method. In contrast to the 
volumetric approach, where the brain parcellation was aligned to the diffusion-weighted image before 
averaging across voxels (using the native resolution of the diffusion-weighted image), the surface 
approach aligned the diffusion-weighted image to the T1-weighted MRI before projection to the 
surface. Surface projection was performed using the 'myelin-style' method in the 'volume-to-surface-

https://paperpile.com/c/nbAeDV/Hhpk
https://paperpile.com/c/nbAeDV/mtSd
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mapping' command in Connectome Workbench and using the computed surfaces from the FreeSurfer 
pipeline. Regional values were then derived by averaging across vertices using the original output 
parcellation files from FreeSurfer.  
 
Subsequently, for the five diffusion-weighted phenotypes, we calculated genetic correlations between 
the indirect surface based registration and the direct surface based registration in approximately 9,650 
individuals from the UK Biobank using GCTA-GREML after including the same covariates as in the 
GWAS. We observed very high genetic correlations for the global diffusion phenotypes 
(Supplementary Note 4b Table 1). We also observed relatively high median genetic correlations for 
the regional phenotypes, although, particularly for FA, the genetic correlations had very high standard 
errors due to the low heritability of  
 

Supplementary Note 4b Table 1: Genetic correlations for the global phenotypes.  

 

 Genetic 
correlation 

SE N 

FA 0.829 0.21 9661 

MD 0.903 0.03 9649 

NODDI ICVF 0.937 0.05 9654 

NODDI ISOVF 0.893 0.03 9664 

NODDI OD 0.966 0.08 9663 

 
Genetic correlations were calculated between the indirect surface based registration and the direct 

surface based registration for 9,650 individuals using GCTA-GREML.  
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Supplementary Note 4, Figure 2: Genetic correlation of parcellation approaches. 

 
Genetic correlation between the direct and indirect surface-based registration for the five diffusion 
MRI phenotypes. Nmax  = 36,663. 
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