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Supplementary Note 

Discovery and replication populations quality control 
While the discovery population consisted exclusively of patients with MS, the replication population 
included MS cases and controls assembled as part of the MultipleMS consortium. To maximize 
subsequent phasing and imputation accuracy, all individuals were included in the quality control process. 
MS cases without disability measures and controls were excluded following imputation and did not 
contribute to the analyses (Supplementary Fig. 1). 
 
Cohort-level quality control. Each cohort was mapped to the GRCh37 reference genome and oriented to 
the forward strand, using strand information from the Illumina array manifest files. Mitochondrial variants 
and insertions and deletions were excluded. We removed individuals with sample missingness greater 
than 0.05. We also removed individuals with a mismatch between genetic and reported sex, after 
selecting a linkage disequilibrium (LD) pruned (PLINK1 --indep-pairphase 20000 2000 0.5) set of high-
quality chromosome X variants with missingness < 0.02 and minor allele frequency (MAF) > 0.05. 
Following inspection of chromosome X F statistic histograms, thresholds for genetic sex determination 
were set to < 0.55 for females and > 0.8 for males. In the replication population, 4 out of 17 cohorts did 
not include sex chromosome data. 
 
To account for the effects of population structure2, we performed variant quality control using the subset 
of participants drawn from the largest ancestral group in each cohort. To define this group, we first 
selected high-confidence autosomal markers based on the following criteria: 

● MAF > 0.05, 
● Genotype missingness < 0.01, 
● Hardy Weinberg equilibrium P > 10-10, 
● Non-palindromic variants (excluding AT or CG variants), 
● Retained following LD-pruned (PLINK23 --indep-pairwise 1000 kb 1 0.01), 
● Outside regions with high principal component (PC) loadings4, 
● Common with 1000 Genomes phase 35. 

 
The resulting set of variants was used to compute PC loadings from 2,534 unrelated (PLINK2 --king-
cutoff 0.1) individuals from 1000 Genomes phase 3, onto which samples from each cohort were projected. 
Clustering was then performed on the PCs using the ‘aberrant’ package6 in R, setting the parameter 
lambda to 30. The largest group comprised 85-100% of cohort participants closely matching the 1000 
Genomes European superpopulation. The following variant filter criteria were then applied: 

● Genotype missingness < 0.02 (0.05 in the replication cohort; threshold based on inspection of the 
empirical cumulative distribution function), 

● Deviation from HWE P > 10-10 (10-6 for controls in the replication cohorts), 
● MAF > 0.01, 
● In the discovery only, between-cohort absolute allele frequency difference < 0.1 and absolute log2 

fold-change < 5, 
● In the replication only, differential missingness between cases and controls P > 10-4. 
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For the sample quality control, we excluded individuals with an absolute inbreeding coefficient > 0.05, as 
well as those needed to resolve pairs of relatedness at the third degree or closer (PLINK2 --king-cutoff 
0.0442). Finally, cohorts were merged into strata based on genotyping platforms (n=1 for discovery, n=4 
for replication). 
 
Stratum-level quality control. Stringent sample quality control was applied to each stratum. Cross-cohort 
duplicates and related samples were removed following the same approach as above. Population 
structure was assessed using a two-step approach. We applied PC analysis (PCA) as implemented in 
EIGENSOFT7 to exclude outliers (> 6 standard deviations from stratum mean on PC1-10 across 5 
iterations). Second, we calculated PCs on all 1000 Genomes phase 3 samples, projected our samples 
onto that space, and excluded outliers that fell 6 standard deviations away from the mean of the European 
1000 Genomes superpopulation (N=503) on PC1-10. PCs after removal of outliers are presented in 
Extended Data Fig. 2 and Supplementary Fig. 2. 
 
Additional variant quality control was performed by applying the following criteria:  

● Genotype missingness < 0.05, 
● Deviation from HWE P > 10-10, 
● For palindromic variants, alternate allele frequency < 0.4 or > 0.6, 
● Absolute alternate allele frequency difference < 0.2 compared to European samples in the 

Haplotype Reference Consortium (HRC; version 1.1) imputation reference panel8. 
 
The number of variants and individuals passing quality control prior to imputation is described in 
Supplementary Tables 3 and 4. 
 
Phasing and imputation. Phasing was performed using Eagle2 (version v2.4.1) in chunks of 20 Mb with 
5 Mb overlapping flanking regions. The parameter for the number of conditioning haplotypes (--Kpbwt, 
default 10,000) was set to 20,000, with other parameters kept as default. Stratum samples were merged 
with HRC (n = 27,166) to maximize accuracy. Imputation of the phased genotypes was then performed 
using Minimac49. We applied a range of analyses to examine chromosome continuity, imputation quality 
by chromosome position, and allele frequency difference compared to the reference panel. Across strata, 
the median imputation quality (R2) was 0.965 to 0.985 for MAF ≥ 0.01 and the median imputation accuracy 
for genotyped variants (EmpR) was 0.977 to 0.997. Imputed variants with MAF < 0.01 or R2 < 0.3 were 
excluded, resulting in a total of 7,722,279 to 7,830,995 autosomal variants for further analysis 
(Supplementary Fig. 3 and Supplementary Table 4). 
 

Sensitivity analysis of longitudinal disability outcomes 
Given that the longitudinal analyses presented in Figure 3 were performed in individuals that partially 
overlapped with the ARMSS score-based GWAS (N = 5,565), and that rs10191329 was selected based 
on its association in that GWAS, we conducted sensitivity analyses to ensure that this overlap did not 
bias the time-to-event and linear mixed model interaction results. First, we excluded all 5,565 EDSS 
scores (out of 54,113 in total, or 10%) that had been included in the cross-sectional GWAS. The A allele 



 5 

for rs10191329 remained associated with 24-week confirmed disability worsening (HR = 1.12, 95% CI 
1.03 to 1.20, P = 0.005), time to EDSS 6.0 (HR = 1.27, 95% CI 1.11 to 1.45, P = 0.0006) and rate of 
EDSS worsening (P = 0.01). Second, we examined if including participants from the initial GWAS could 
have caused bias beyond those overlapping EDSS scores, potentially due to correlation across EDSS 
scores. Here we leveraged the fact that a third of the participants in the longitudinal analyses (N = 2,760) 
were sourced from the replication cohort to compare the association of rs10191329 with each longitudinal 
outcome between participants who overlapped with the initial GWAS and those who did not. We 
introduced a variable indicating the cohort of origin (discovery or replication) and fitted a Cox regression 
with an interaction term between this indicator and rs10191329. The interaction term was not associated 
with 24-week confirmed disability worsening (P = 0.86) or time to EDSS 6.0 (P = 0.79), indicating that the 
association between rs10191329 and these outcomes is not different based on the original cohort. 
Similarly for the rate of EDSS worsening, a three-way interaction analysis indicated that the faster 
disability worsening observed among risk allele carriers was consistent across both cohorts (P = 0.35). 
Next, we analyzed the discovery and replication cohorts separately and tested for equivalence of the 
coefficients between cohorts using the formula: 
 

𝑍	 = 	
𝛽! 	− 	𝛽"

&(𝑆𝐸𝛽!)" 	+ 	(𝑆𝐸𝛽")"	
	 

 
where 𝛽 is the regression coefficient and 𝑆𝐸𝛽 is the corresponding standard error (ref10). The results 
indicated that the differences in the coefficients for rs10191329 between the discovery and replication 
cohorts were not different from zero for 24-week confirmed disability worsening (P = 0.73), time to EDSS 
6 (P = 0.78), and rate of EDSS change (P = 0.36). 
 
Lastly, we restricted the analysis to the replication cohort assuming a directionally concordant effect. 
Despite the considerably reduced power, rs10191329 remained associated with each outcome: 24-week 
confirmed disability worsening HR = 1.13, P = 0.033; time to EDSS 6.0 HR = 1.24, P = 0.026; rate of 
EDSS worsening β = 0.02, P = 0.009. 
 
In summary, while two-thirds of the participants in the analyses of longitudinal disability outcomes 
overlapped with the initial GWAS, only 10% of the observations were shared. The exclusion of these 
EDSS scores did not impact the results. Moreover, associations derived from overlapping and non-
overlapping individuals did not differ in direction or magnitude, and the findings were retained when 
considering only individuals from the replication cohorts. Consequently, we conclude that these analyses 
were not biased by this overlap. 
 

Differential expression of prioritized genes in MS lesions and control tissues 
We analyzed the expression of the prioritized genes identified from our MS severity GWAS in two single-
nucleus RNA sequencing datasets from MS patients and controls. The first examined 17,799 nuclei from 
post-mortem white matter tissue samples collected from four individuals with progressive MS and five 
controls. In the MS samples, nuclei were isolated from four different white matter areas: normal appearing 
white matter (N = 3), active (N = 3), chronic active (N = 4), chronic inactive edge (N = 3), and remyelinated 
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(N = 2) lesions11. The second study examined 66,432 nuclei from three controls and five individuals with 
progressive MS (sampling two lesion cores, and four each of periplaque white matter tissue, chronic 
active and chronic inactive lesion edges)12. Processed unique molecular identifier counts were obtained 
from the original publications. Using a Bonferroni-corrected Wilcoxon Rank Sum two-tailed test, we 
compared the expression of the four prioritized severity genes in MS lesion types and white matter 
(normal-appearing and periplaque) to their respective control tissue from each study. This analysis 
revealed significant differential expression of all four genes (DYSF, ZNF638, DNM3, PIGC; 
Supplementary Fig. 6), with normal-appearing and periplaque white matter exhibiting the least 
difference (range of log2 fold-change between -1 and 1).  
 

Exploratory analysis of genomics-driven drug discovery 
We adopted a dual strategy to identify drug compounds and classes that could potentially reduce the 
severity of MS and slow its progression. First, we leveraged the scalable precision medicine open 
knowledge engine (SPOKE)13 to search for approved or experimental compounds that regulate the 
expression of genes prioritized from our GWAS, or that bind to the proteins encoded by these genes (this 
knowledge graph integrates information from 41 biomedical databases). The regulatory effects of 
compounds on genes were obtained from perturbation experiments conducted using the L1000 assay 
platform as part of the NIH Library of Integrated Network-Based Cellular Signatures (LINCS) initiative14. 
Protein binding data was sourced from ChEMBL15 and BindingDB16. We further screened for additional 
compounds by querying DrugBank17, Therapeutic Target Database18, PharmGKB19, and the Open 
Targets Platform20. After controlling for the number of SPOKE edges between compounds and regulated 
genes (N = 968,460), two of our prioritized genes located in different loci, DYSF and DNM3, were found 
to be regulated by the same compound, entinostat, a small molecule histone deacetylase (HDAC) 
inhibitor. No additional compounds were identified in the other data sources. 
 
Second, considering the limitations of single GWAS locus-based drug discovery21, we applied Trans-
Phar22 to screen for compounds with gene expression regulatory profiles that negatively correlate with 
genetically determined expression associated with MS severity, with the notion that reversing the effects 
of the genetic variation could have therapeutic potential21. In brief, genetically regulated gene expression 
for MS severity was inferred in GTEx tissues (version 7) using FOCUS23. Genes with the top 10% 
absolute z-score were selected and compared against compound-perturbed gene expression in tissue-
matched cell lines from the LINCS L1000 library14 using Spearman’s rank correlation tests. Given the 
prior evidence that significant associations are enriched in disease-relevant tissue22, we initially focused 
our analysis on CNS tissues in GTEx (N = 10) and CNS cell lines in LINCS (N = 5; MNEU.E, NEU, NPC, 
NPC.CAS9, NPC.TAK), resulting in 82,680 correlation tests for pairs of genetically determined and 
compound-perturbed gene expression profiles. At an FDR of 0.1 (as recommended by the method 
developers24), we identified a significant negative correlation for the compound pracinostat, another small 
molecule HDAC inhibitor, in neural progenitor cells. Moreover, we observed apparent inflation in test 
statistics in CNS cell-type-compound pairs (Supplementary Figure 7). To verify that this was not the 
case in other tissues, we extended the analysis to additional GTEx tissues (N = 19) and LINCS cell types 
(N = 72) outside the CNS, and found no evidence of inflation (Supplementary Figure 7). A CNS 
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enrichment was further supported by significantly higher rankings for cell-type-compound pairs in the 
CNS compared to non-CNS tissues (Wilcoxon rank-sum test P = 3.1×10-4). 
 
While currently approved MS therapies primarily target the peripheral immune system and offer limited 
or no benefit for progression, our analysis revealed significant signal enrichment for CNS-acting 
compounds, supporting the rationale for pursuing neuroprotection as a therapeutic strategy to slow MS 
progression. Additionally, using separate approaches we identified two small-molecule compounds, 
entinostat and pracinostat, belonging to the HDAC inhibitors class. HDACs regulate chromatin 
remodeling and are dysregulated in neurodegenerative diseases25. Although mainly indicated for cancer 
treatment and despite their lack of target specificity, HDAC inhibitors have demonstrated neuroprotective 
effects in cell and animal models25,26, and have shown benefits in preclinical models of MS27–30. Lastly, a 
low frequency missense variant in HDAC7 has also been associated with MS risk31.  
 

MS severity polygenic score and association with neurological diseases in UK Biobank 
To estimate the aggregate impact of genetic factors that determine MS severity on other brain-related 
phenotypes, we constructed a polygenic score (PGS) for MS severity and evaluated its association with 
nervous system disorders in the UK Biobank (application number 61342). We first estimated the expected 
predictive power E(R2) of this PGS in relation to our modest GWAS sample size and calculated 
heritability, using the formula32,33: 
 

𝐸(𝑅") 	= 	
(	ℎ#$%" 	)"

ℎ#$%" 	+ 	𝑀𝑁
 

 
where h2SNP is the SNP heritability, M is the effective number of independent markers, and N is the GWAS 
sample size. Based on previous estimates we set M to be 60,00034. This formula has been shown to 
provide a strong correlation between estimated and observed R2 in a set of 26 phenotypes tested in the 
UK biobank32. Using a 95% confidence interval around our GRM heritability estimate, the E(R2) for an 
MS severity PGS based on our GWAS was 0.00035 to 0.0051. We then constructed a PGS using PRSice-
2 (with default settings)35. The best model fit incorporated 143,368 independent variants with P < 0.36 
and demonstrated an R2 of 0.001 (P = 4×10-3) in the replication cohort, consistent with the above 
theoretical predictions. In comparison, the variance explained by the top GWAS variant (rs10191329) in 
the replication population was 5.0×10-4. 
 
Next, we selected 408,817 individuals of white British ancestry as defined in the UK Biobank2 and 
extracted case status for 67 conditions falling under Chapter VI Diseases of the nervous system of the 
ICD-10 (UK Biobank Category 2406). Cases were sourced from primary care and hospital inpatient data, 
death registry records, and self-reports. Data fields with fewer than 275 cases (first quartile) were 
excluded. The median number of cases for the 50 remaining conditions was 1,462 with a range of 276 to 
26,417. Mean age was 56.9 years (standard deviation 8.0) and 45.9% of participants were male. 
Individuals were scored for the MS severity PGS using PLINK2 and 142,985 (99.7%) overlapping 
variants. Logistic regression adjusted for age, sex, and the first 10 PCs (as provided by the UK Biobank) 
showed no association between the MS severity PGS and neurological phenotypes (FDR ≤ 0.43). To 
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summarize, the MS severity PGS demonstrated limited predictive capacity in accordance with the GWAS 
sample size and heritability, and was specific to MS outcomes when evaluated against a range of case-
control neurological disorders in a populational biobank. 
 

Observational cohorts and variables in educational attainment analysis 
The Epidemiological Investigation of Multiple Sclerosis (EIMS) study recruited incident MS cases aged 
16 to 70 years from 42 neurological clinics in Sweden from April 2005 to June 2011. The Genes and 
Environment in MS (GEMS) study comprised prevalent cases identified from the Swedish MS registry 
between November 2009 and November 201136,37. Participants in EIMS and GEMS provided written 
informed consent and ethical approval was obtained from the Regional Ethical Review Board in 
Stockholm. Supplementary Table 20 reports the characteristics of MS participants included in the 
present study from each cohort. 
  
Clinical characteristics, including age at onset, disease course, and disability level measured by the 
EDSS were extracted from the Swedish MS registry37. EDSS scores were converted to rank inverse 
normal transformed age-related MS severity score (ARMSS) as in the GWAS. Data on education and 
income was extracted from Statistics Sweden. Using the Swedish Educational Terminology (SUN 2000), 
the highest educational level commenced by individuals was coded as years of study (Supplementary 
Table 24). Data on education outside Sweden was not available. Individualized disposable income was 
characterized by five ordinal categories based on data from 27,644 MS patients and 285,676 controls 
matched by age, sex, and residential area. Smoking was assessed through questionnaires and 
individuals were categorized as ever (past and current) or never smokers. Additional covariates including 
year of birth and sex were obtained using government-issued personal identification numbers. Individuals 
with missing data were excluded from the analysis. 
 

CNS cell-type heritability enrichment 
In light of our finding of enrichment for MS severity associations in genes with high relative expression in 
CNS tissue, we extended our analysis to individual cell types following the approach by Bryois et al.38 We 
collected publicly available single-nucleus RNA sequencing data from two different studies. The first 
sampled 19,550 nuclei from human prefrontal cortex and the hippocampus39; the second examined 
36,166 nuclei from human frontal and visual cortex, and the cerebellum40. We replicated the processing 
steps outlined in Bryois et al.38 by adapting code provided with the paper. Briefly, non-protein-coding 
genes and those not expressed in any cell type were excluded. After scaling, cell type specificity was 
quantified by dividing the expression level of each gene by its total expression across cell types. The top 
10% most specific genes for each cell type were then selected, followed by annotation of 100-kb genomic 
regions upstream and downstream of these genes. Analysis was performed using stratified LDSC 
adjusted for the baseline model41. We found no significant cell type enrichment after multiple testing 
correction for the number of cell types (FDR > 0.3, Supplementary Fig. 10). As demonstrated in a recent 
comparative analysis of previous and current GWAS of schizophrenia42, statistically significant cell type-
specific enrichment may emerge for MS severity as the sample size increases in future iterations. 
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Relative contribution of relapses and progression to MS severity 
In principle, relapses and progression could both influence the MS severity outcomes used in this study. 
However, although relapses typically lead to transient increase in disability, it is recognized that their 
contribution to long-term disability and confirmed disability progression is limited, especially after the first 
few years post diagnosis43. In addition, relapse frequency spontaneously diminishes over time44. In this 
context, a recent study of relapse activity in MS reported distinct genetic association signals and alternate 
pathways45. Given the average age and disease duration of our population (respectively 51.7 and 18.2 
years), as well as the associations with time to EDSS 6.0 and cortical pathology, our findings are likely 
to reflect independent mechanisms underlying MS progression. Nevertheless, additional longitudinal 
analyses will be required to further refine the effects of these severity variants on MS phenotypes, 
including molecular and imaging.  
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Supplementary Figures 
 
 

 
 
 
Supplementary Figure 1 | Flowchart of study participants. Each chart details the number of participants 
submitted to quality control and total number of cases included in the analysis for the discovery (a) and replication 
(b) populations. Note that the replication population included MS cases and controls genotyped as part of the same 
effort. To maximize subsequent phasing and imputation accuracy, all individuals were included in the quality control 
process. MS cases without measures of disability and controls were excluded prior to analysis, resulting in the final 
sample count. 
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Supplementary Figure 2 | Principal component projections per stratum including 1000 Genomes reference 
populations. a, Principal component scores for African (AFR), East Asian (EAS) and European (EUR) samples in 
1000 Genomes phase 3. b-f, Using a common set of high-quality variants, individuals included in the GWAS 
following quality control are plotted along their projected principal components (red) based on the same 1000 
Genomes reference populations (gray). Stratum 1 (b) corresponds to the discovery population, whereas strata 2 
through 5 (c-f) represent the replication population. Cases consistently overlap with the European cluster in 1000 
Genomes. 
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Supplementary Figure 3 | Imputation quality and accuracy. Imputation accuracy was estimated by examining 
the empirical correlation (EmpR) between true genotypes and imputed dosages for directly genotyped variants. 
Genome-wide imputation quality was evaluated using the square correlation (Rsq) between imputed dosages and 
true, unobserved genotypes. Left, EmpR and Rsq metrics are presented for variants with MAF > 0.01; Right, Rsq 
distribution for imputed variants with MAF > 0.01 and Rsq ≥ 0.3. a, Imputation metrics for the discovery population. 
b-e, Imputation metrics for each of the four strata part of the replication population. The number of variants used to 
construct the EmpR and Rsq boxplots for each panel were respectively: (a) 456,478 and 7,947,413; (b) 455,932 
and 7,917,572; (c) 458,542 and 7,914,432; (d) 579,565 and 7,888,480; and (e) 719,165 and 7,987,450. Box plots 
show median, first, and third quartiles; whiskers represent the smallest and largest values within 1.5-times the 
interquartile range; outliers are not depicted. MAF, minor allele frequency.  
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Supplementary Figure 4 | Quantile-quantile plot for the ARMSS score discovery GWAS. Quantile-quantile plot 
of the observed two-sided -log10(P) from linear regression analyses versus the expectation under the null 
hypothesis. The genomic control inflation factor (λGC) was 1.016, while the LD score regression intercept was not 
significantly different from 1 (1.009, 95% CI 0.996 to 1.022). ARMSS, age-related MS severity; CI, confidence 
interval; LD, linkage disequilibrium. 
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Supplementary Figure 5 | Fine mapping of the MS severity loci. a, Statistical fine-mapping at the DYSF–ZNF638 
locus identified the rs10191329 as the most likely causal variant with a high posterior inclusion probability (PIP). b, 
Statistical fine-mapping at the suggestive DNM3-PIGC locus found rs149097173 as the most likely causal variant. 
MS, multiple sclerosis. 
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Supplementary Figure 6 | Differential expression of prioritized severity genes in MS lesions. a, Heatmap of 
the log2-fold change in expression of the four prioritized severity genes across different MS lesion types and normal 
appearing white matter (NAWM) compared to control white matter. Samples originated from a study of four 
individuals with progressive MS and five controls11. b, Repeated analysis in a study of five individuals with 
progressive MS and three controls12. All comparisons were statistically significant (P < 0.05/36) using a Wilcoxon 
Rank Sum two-tailed test adjusted for the number of genes (N = 4) and sampling conditions across studies (N = 9). 
FC, fold-change; WM, white matter.   
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Supplementary Figure 7 | Quantile-quantile plot for correlation tests between genetically determined 
expression associated with MS severity and compound-perturbed gene expression. Each data point 
represents a cell-type-compound pair, with those in CNS tissues showing a departure from the expected distribution 
under the null hypothesis. One-sided P values were calculated using negative Spearman’s rank correlation. 
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Supplementary Figure 8 | ARMSS score and MS susceptibility PGS (PGSMS). a, An increased burden of MS 
susceptibility variants, as reflected by the PGSMS, modestly increased ARMSS scores. This effect was similar for 
MHC and non-MHC variants. b, The PGSMS had a stronger inverse association with age at onset. c, After adjusting 
for age of onset (in addition to baseline covariates), the effect of the PGSMS on ARMSS scores was attenuated. The 
regression coefficients and two-sided P values were calculated using linear regression models. The R2 values 
represent the gain in coefficient of determination (incremental R2). ARMSS and PGSMS scores were standardized 
to facilitate comparison. ARMSS, age-related multiple sclerosis severity score (rank-based inverse-normal 
transformed); MHC, major histocompatibility complex; PGS, polygenic score.  
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Supplementary Figure 9 | ARMSS score and age at onset. Earlier age at onset is associated with increased MS 
severity when comparing individuals of the same age. The regression coefficient and its corresponding two-sided 
P value were calculated using a linear regression model adjusted for age, sex, date of birth, EDSS source, center, 
genotyping batch, and the first ten principal components. The R2 value represents the gain in coefficient of 
determination (incremental R2) when age at onset is added as a variable to a regression of ARMSS score on the 
baseline covariates. ARMSS, age-related MS severity score (rank-based inverse-normal transformed). 
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Supplementary Figure 10 | Association between MS severity and CNS cell types by heritability enrichment. 
a, Enrichment of MS severity associations in genes with high expression, by single-nucleus RNA sequencing, in 15 
human cell types from human prefrontal cortex and the hippocampus. exPFC, glutamatergic neurons from the 
prefrontal cortex; GABA, GABAergic interneurons; exCA, pyramidal neurons from the hippocampus Cornu 
Ammonis region; exDG, granule neurons from the hippocampus dentate gyrus region; ASC, astrocytes; MG, 
microglia; ODC, oligodendrocytes; OPC, oligodendrocyte precursor cells; NSC, neuronal stem cells; END, 
endothelial cells. b, Repeated analysis in 24 cell types from the human frontal and visual cortex, as well as the 
cerebellum. Ex, cortical excitatory neuronal subtypes; In, cortical inhibitory neuronal subtypes; Gran, cerebellar 
granule cells; Purk, Purkinje neurons; End, endothelial cells; Per, pericytes; Ast, astrocytes; Oli, oligodendrocytes; 
OPC, oligodendrocytes their precursor cells; Mic, microglia; Ast_Cer, cerebellar-specific Ast; OPC_Cer, cerebellar-
specific OPC. For both panels, one-sided P values for cell type heritability enrichment were obtained using 
partitioned LD score regression. 
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