## **Supplementary Information**

## Heat extremes in Western Europe increasing faster than simulated due to atmospheric circulation trends

Robert Vautard[1], Julien Cattiaux[2], Tamara Happé[3], Jitendra Singh [4], Rémy Bonnet[1], Christophe Cassou[5], Dim Coumou[3,1,6], Fabio D'Andrea[7], Davide Faranda[8], Erich Fischer[4], Aurélien Ribes[2], Sebastian Sippel [4], Pascal Yiou[8]

 Institut Pierre-Simon Laplace, CNRS, Université Paris-Saclay, Sorbonne Université, France
Centre National de Recherches Météorologiques, Université de Toulouse, Météo-France, CNRS, Toulouse, France.
Institute for Environmental Studies, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
Institute for Atmospheric and Climate Science, ETH Zurich, Zürich, Switzerland
Centre Européen de Recherche et de Formation Avancée en Calcul Scientifique, CNRS UMR 5318, Toulouse, France
Royal Netherlands Meteorological Institute (KNMI), De Bilt, Netherlands
Laboratoire de Météorologie Dynamique, IPSL, CNRS, Paris, France
Laboratoire des Sciences du Climat et de l'Environnement, UMR 8212 CEA-CNRS-UVSQ, Université Paris-Saclay and IPSL, 91191 Gif-sur-Yvette, France

## Observation and model data

We used ERA5 reanalysis of daily maximum temperatures and streamfunction fields. Streamfunction is calculated from u- and v- wind fields at 500 hPa on a T127 Gaussian grid, and then interpolated on a 1x1 regular grid, following:

 $u = -\frac{\partial \psi}{\partial y}$ , and  $v = \frac{\partial \psi}{\partial x}$ , where  $\psi$  is the streamfunction, u is the zonal- and v the meridional component of the wind fields.

Surface daily maximum temperatures from ERA5 are interpolated to a 0.5x0.5 grid. We also used observations from the E-OBS dataset v24e [20] for daily maximum temperature (TX). E-OBS was initially taken from a  $0.25 \times 0.25$  grid and projected onto the 0.5x0.5 grid. When considering averages over the selected Western Europe area [5W-15E;45N-60N], data are masked using the E-OBS land/sea mask (see below).

Daily maximum temperatures and streamfunction are also calculated from model simulations including all first members of each CMIP6 model ensemble. In order to increase as much as possible the estimation of capacity of models to simulate TXx and TXm trends, we used all possible CMIP6 simulations made available through the ESGF infrastructure. When considering only TXx and TXm calculations for Figure 3, we used 273 simulations made with 36 different models (see Figure 3). For Figure 4 and the analogue analysis for models, we keep only 32 models and 1 realization for which we have simultaneous 500 hPa wind fields and daily maximum temperatures.

To have an historical time series to be compared with reanalysis or observations, we concatenate historical and SSP5-8.5 scenarios available (from 2015 to 2022). Initial tests made with SSP2-4.5 showed that results presented here are insensitive to this choice.



Supplementary Figure 1: TXx trends from the E-OBS observations

Same as Figure 1 but for E-OBS maximum daily temperatures



**Supplementary Figure 2**: **Dynamical contribution to forced TXx trend in Western Europe** Black and blue lines present the area-averaged Summer maximum temperature TXx and circulation-induced TXx over western Europe (5-15E, 45-55N), respectively. The values in parenthesis indicate the trend in the corresponding TXx time series. The trends are estimated based on Sen's slope estimator.



**Supplementary Figure 3: Most representative hot anomaly patterns** 

500 hPa streamfunction anomalies (Phi 500) of the 9 most representative circulations, beyond 29/06/2019, when TXx is reached over Central France [1.5E-46.5N], by decreasing order of representativeness.



Supplementary Figure 4: Evolution of Southerly flow patterns

Evolution of the yearly number of days (a), number of events (b) and mean duration of events (c) (0 when no event found) for Southerly Flow patterns (black) (streamfunction anomalies with an ACC with the 29/06/2019 anomaly greater than 0.5). For comparison, the figure also shows (in red) the same statistics but for another pattern, that of the anomaly of the 23/07/2021, which corresponds to the date of TXx for 2021 in central France.



Supplementary Figure 5: Generalization of Figure 3 at global scale

Percentage of simulations with a trend larger than ERA5 at each grid point for (a) the annual maximum of TX (TXx) and (b) the JJA mean of TX (TXm). Green stippling indicates grid points where the mismatch between observed and simulated trends is significant at the 95% confidence level in the sense of the False Discovery Rate procedure (i.e. a two-sided multiple

test with alpha=0.1). The Western Europe box is highlighted in magenta. For the top panel, the annual (rather than JJA in Figure 3) maximum of TX is used here to capture summer heat extremes in both hemispheres; in Western Europe annual or JJA maximum are equivalent.



Supplementary Figure 6: Dynamical and thermo-dynamical TXm trends

Same as Figure 4 but for TXm instead of TXx.

| Model_realization                                  | SF<br>frequency<br>trends | TXx<br>dynamical<br>trend | Model_realization                                  | SF<br>frequency<br>trends | TXx<br>dynamic<br>al trend |
|----------------------------------------------------|---------------------------|---------------------------|----------------------------------------------------|---------------------------|----------------------------|
| ERA5<br>E-OBS                                      | 42.9%                     | 0.79<br>0.86              |                                                    | 42.9%                     |                            |
| ACCESS-CM2_r1i1p1f1                                | -16.4                     | -0.27                     | HadGEM3-GC31-MM_r2i1p1f3                           | 8.8                       | -0.04                      |
| ACCESS-CM2_r4i1p1f1                                | 9.3                       | 0.10                      | HadGEM3-GC31-MM_r3i1p1f3                           | 4.8                       | 0.59                       |
| ACCESS-CM2_r5i1p1f1                                | -29.4                     | -0.50                     | HadGEM3-GC31-MM_r4i1p1f3                           | 2.4                       | 0.46                       |
| ACCESS-ESM1-5_r10i1p1f1                            | 25.5                      | 0.05                      | INM-CM4-8_r1i1p1f1                                 | 16.4                      | 0.26                       |
| ACCESS-ESM1-5_r111p1f1                             | 11.9                      | 0.40                      | INM-CM5-0_1110111                                  | 0.7                       | 0.24                       |
| ACCESS-ESM1-5_1211p111<br>ACCESS-ESM1-5_r34i1p1f1  | 7.0                       | 0.02                      | IPSL-CM6A-LR_IT011p111                             | -5.5                      | -0.15                      |
| ACCESS-ESM1-5_r3i1p1f1                             | 17.5                      | 0.68                      | IPSI -CM6A-I R r12i1p1f1                           | -20.4                     | -0.07                      |
| ACCESS-ESM1-5 r4i1p1f1                             | 12.6                      | 0.12                      | IPSL-CM6A-LR r13i1p1f1                             | 14.7                      | 0.11                       |
| ACCESS-ESM1-5_r5i1p1f1                             | 10.0                      | 0.36                      | IPSL-CM6A-LR_r14i1p1f1                             | 21.5                      | 0.01                       |
| ACCESS-ESM1-5_r9i1p1f1                             | 28.2                      | 0.19                      | IPSL-CM6A-LR_r15i1p1f1                             | -8.8                      | 0.04                       |
| ACCESS-ESM1-5_r11i1p1f1                            | 10.8                      | 0.31                      | IPSL-CM6A-LR_r16i1p1f1                             | 9.2                       | 0.21                       |
| ACCESS-ESM1-5_F12Hp1H<br>ACCESS-ESM1-5_r13i1p1f1   | 20.7                      | -0.03                     | IPSL-CM6A-LR_F1711p1f1                             | 0.8<br>12.1               | 0.58                       |
| ACCESS-ESM1-5_r14i1p1f1                            | 25.6                      | 0.12                      | IPSI -CM6A-I R r19i1p1f1                           | 34.8                      | 0.23                       |
| ACCESS-ESM1-5_r15i1p1f1                            | 18.3                      | 0.01                      | IPSL-CM6A-LR_r1i1p1f1                              | -1.8                      | 0.26                       |
| ACCESS-ESM1-5_r16i1p1f1                            | 15.3                      | 0.31                      | IPSL-CM6A-LR_r20i1p1f1                             | -15.3                     | -0.29                      |
| ACCESS-ESM1-5_r17i1p1f1                            | 32.9                      | 0.39                      | IPSL-CM6A-LR_r21i1p1f1                             | 7.5                       | 0.16                       |
| ACCESS-ESM1-5_r18i1p1f1                            | 37.6                      | 0.63                      | IPSL-CM6A-LR_r22i1p1f1                             | 16.2                      | 0.26                       |
| ACCESS-ESM1-5_r19l1p1f1<br>ACCESS-ESM1-5_r20i1p1f1 | -2.5                      | 0.06                      | IPSL-CM6A-LR_r23i1p1f1                             | 0.9                       | -0.05                      |
| ACCESS-ESM1-5_12011p111                            | 22.9                      | 0.63                      | IPSI -CM6A-LR r25i1p1f1                            | -2.1                      | -0.10                      |
| ACCESS-ESM1-5_r22i1p1f1                            | -7.3                      | 0.23                      | IPSL-CM6A-LR_r26i1p1f1                             | -3.7                      | 0.19                       |
| ACCESS-ESM1-5_r23i1p1f1                            | 28.7                      | 0.30                      | IPSL-CM6A-LR_r27i1p1f1                             | -18.1                     | -0.21                      |
| ACCESS-ESM1-5_r24i1p1f1                            | 9.3                       | 0.03                      | IPSL-CM6A-LR_r28i1p1f1                             | 0.7                       | 0.08                       |
| ACCESS-ESM1-5_r25i1p1f1                            | 9.0                       | 0.20                      | IPSL-CM6A-LR_r29i1p1f1                             | 0.5                       | 0.04                       |
| ACCESS-ESM1-5_r26i1p1f1                            | 3.8                       | 0.30                      | IPSL-CM6A-LR_r30(1p1f1                             | -2.2                      | -0.05                      |
| ACCESS-ESM1-5_12711p111                            | 38.8                      | 0.38                      | IPSI-CM6A-LR_r32i1p1f1                             | -21.5                     | 0.40                       |
| ACCESS-ESM1-5_r29i1p1f1                            | 25.3                      | 0.58                      | IPSL-CM6A-LR_r3i1p1f1                              | 1.4                       | 0.15                       |
| ACCESS-ESM1-5_r30i1p1f1                            | 32.5                      | 0.58                      | IPSL-CM6A-LR_r4i1p1f1                              | 1.7                       | 0.13                       |
| ACCESS-ESM1-5_r31i1p1f1                            | 27.0                      | 0.27                      | IPSL-CM6A-LR_r5i1p1f1                              | 12.4                      | -0.29                      |
| ACCESS-ESM1-5_r32i1p1f1                            | 6.4                       | 0.30                      | IPSL-CM6A-LR_r6i1p1f1                              | 20.9                      | 0.48                       |
| ACCESS-ESM1-5_13311p111<br>ACCESS-ESM1-5_r35i1p1f1 | 22.4                      | 0.47                      | IPSL-CM6A-LR_ITTPTT                                | 19.0<br>-1 1              | 0.62                       |
| ACCESS-ESM1-5 r36i1p1f1                            | 20.0                      | 0.26                      | IPSL-CM6A-LR r9i1p1f1                              | -11.2                     | -0.01                      |
| ACCESS-ESM1-5_r37i1p1f1                            | 15.5                      | -0.18                     | KACE-1-0-G_r1i1p1f1                                | 17.0                      | 0.33                       |
| ACCESS-ESM1-5_r38i1p1f1                            | 17.2                      | 0.10                      | KACE-1-0-G_r2i1p1f1                                | 23.4                      | 0.58                       |
| ACCESS-ESM1-5_r39i1p1f1                            | -13.2                     | 0.18                      | KACE-1-0-G_r3i1p1f1                                | 39.5                      | 0.44                       |
| ACCESS-ESIMI-5_F40ITPTTT                           | 27.3                      | 0.55                      | MIROC6 r1i1p1f1                                    | 8.4<br>20.1               | 0.10                       |
| CanESM5 r10i1p1f1                                  | -4.9                      | -0.11                     | MIROC6 r2i1p1f1                                    | -23.4                     | -0.31                      |
| CanESM5_r10i1p2f1                                  | -2.0                      | 0.17                      | MIROC6_r3i1p1f1                                    | 26.6                      | 0.60                       |
| CanESM5_r1i1p1f1                                   | 10.6                      | 0.23                      | MIROC-ES2L_r1i1p1f2                                | 13.6                      | 0.18                       |
| CanESM5_r1i1p2f1                                   | 11.7                      | 0.01                      | MPI-ESM1-2-HR_r1i1p1f1                             | 8.0                       | 0.00                       |
| CanESM5_r2i1p1f1                                   | 9.5                       | 0.07                      | MPI-ESM1-2-LR_r10i1p1f1<br>MPI ESM1 2 LP_r1i1p1f1  | -0.8                      | -0.04                      |
| CanESM5_r3i1n1f1                                   | -7.9                      | -0.05                     | MPI-ESM1-2-LR_r2i1n1f1                             | 2.0                       | 0.33                       |
| CanESM5_r3i1p2f1                                   | 1.3                       | 0.02                      | MPI-ESM1-2-LR_r3i1p1f1                             | 35.6                      | 0.20                       |
| CanESM5_r4i1p1f1                                   | -1.8                      | 0.03                      | MPI-ESM1-2-LR_r4i1p1f1                             | 36.1                      | 0.25                       |
| CanESM5_r4i1p2f1                                   | 2.8                       | 0.04                      | MPI-ESM1-2-LR_r5i1p1f1                             | -23.3                     | -0.37                      |
| CanESM5_r5i1p1f1                                   | 4.8                       | 0.03                      | MPI-ESM1-2-LR_r6i1p1f1                             | -6.3                      | 0.04                       |
| CanESM5_r511p2f1<br>CanESM5_r6i1p1f1               | 1.3                       | 0.10                      | MPI-ESM1-2-LR_f711p1f1<br>MPI-ESM1-2-LR_r8i1p1f1   | -26.6                     | -0.12                      |
| CanESM5_r6i1p2f1                                   | 16.0                      | 0.46                      | MPI-ESM1-2-LR_r9i1p1f1                             | -19.2                     | -0.21                      |
| CanESM5_r7i1p1f1                                   | 19.4                      | 0.06                      | MPI-ESM1-2-LR_r11i1p1f1                            | 9.2                       | 0.32                       |
| CanESM5_r7i1p2f1                                   | 4.7                       | 0.18                      | MPI-ESM1-2-LR_r12i1p1f1                            | 1.4                       | -0.07                      |
| CanESM5_r8i1p1f1                                   | -4.2                      | 0.03                      | MPI-ESM1-2-LR_r13i1p1f1                            | -17.3                     | 0.11                       |
| CanESM5_r8i1p2f1                                   | -5.0                      | 0.19                      | MPI-ESM1-2-LR_r14i1p1f1                            | 1.3                       | -0.43                      |
| CanESM5_r9i1p2f1                                   | ∠⊃.ð<br>5 0               | 0.37                      | MPI-FSM1-2-LK_11011p111<br>MPI-FSM1-2-LR_r16i1n1f1 | 34.0<br>_20 2             | -0.20                      |
| CMCC-ESM2_r1i1p1f1                                 | 2.6                       | 0.10                      | MPI-ESM1-2-LR r17i1p1f1                            | 2.1                       | 0.09                       |
| CNRM-CM6-1-HR_r1i1p1f2                             | 23.2                      | -0.09                     | MPI-ESM1-2-LR_r18i1p1f1                            | -16.0                     | -0.01                      |
| CNRM-CM6-1_r1i1p1f2                                | -10.6                     | 0.05                      | MPI-ESM1-2-LR_r19i1p1f1                            | 7.9                       | 0.47                       |
| CNRM-ESM2-1_r1i1p1f2                               | 6.0                       | 0.25                      | MPI-ESM1-2-LR_r30i1p1f1                            | 0.4                       | -0.03                      |

| Model_realization                                     | SF<br>frequency<br>trends | TXx<br>dynamical<br>trend | Model_realization                                  | SF<br>frequency<br>trends | TXx<br>dynamic<br>al trend |
|-------------------------------------------------------|---------------------------|---------------------------|----------------------------------------------------|---------------------------|----------------------------|
| EC-Earth3-CC_r1i1p1f1<br>EC-Earth3_r1i1p1f1           | -14.4<br>14.2             | -0.33<br>0.16             | MPI-ESM1-2-LR_r21i1p1f1<br>MPI-ESM1-2-LR_r22i1p1f1 | 0.4<br>21.9               | 0.17<br>-0.05              |
| EC-Earth3_r4i1p1f1                                    | 3.4                       | 0.24                      | MPI-ESM1-2-LR_r23i1p1f1                            | -31.7                     | -0.47                      |
| EC-Earth3-Veg-LR_r11p111<br>EC-Earth3-Veg-LR_r2i1p1f1 | -9.3<br>9.2               | 0.20                      | MPI-ESM1-2-LR_12411p111<br>MPI-ESM1-2-LR_r25i1p1f1 | -19.1<br>-4.1             | -0.17                      |
| EC-Earth3-Veg-LR_r3i1p1f1<br>EC-Earth3-Veg_r1i1p1f1   | -15.3<br>-5.3             | -0.15<br>-0.12            | MPI-ESM1-2-LR_r26i1p1f1<br>MPI-ESM1-2-LR_r27i1p1f1 | 26.2<br>29.7              | 0.50<br>0.51               |
| EC-Earth3-Veg_r2i1p1f1                                | -16.9                     | -0.01                     | MPI-ESM1-2-LR_r28i1p1f1                            | -4.0                      | 0.18                       |
| EC-Earth3-Veg_r3i1p1f1<br>EC-Earth3-Veg_r4i1p1f1      | -14.6<br>5.0              | -0.33<br>-0.29            | MPI-ESM1-2-LR_r29i1p1f1<br>MRI-ESM2-0 r1i1p1f1     | 8.7<br>10.7               | 0.23<br>-0.12              |
| EC-Earth3-Veg_r6i1p1f1                                | -14.4                     | -0.49                     | MRI-ESM2-0_r5i1p1f1                                | 16.6                      | 0.07                       |
| FGOALS-g3_r4i1p1f1                                    | -53.1<br>-10.3            | -0.30                     | NorESM2-LM_r1i1p1f1                                | 42.7                      | 0.25                       |
| GFDL-CM4_r1i1p1f1<br>GISS-E2-1-G_r1i1p1f2             | -1.7<br>-16 3             | -0.13<br>-0.39            | NorESM2-MM_r1i1p1f1                                | -8.7<br>-4.2              | -0.19<br>-0.20             |
| HadGEM3-GC31-LL_r1i1p1f3                              | 15.9                      | 0.30                      | UKESM1-0-LL_r1i1p1f2                               | -13.1                     | 0.01                       |
| HadGEM3-GC31-LL_r2i1p1f3<br>HadGEM3-GC31-LL_r3i1p1f3  | 21.3<br>3.0               | 0.24<br>0.08              | UKESM1-0-LL_r2i1p1f2<br>UKESM1-0-LL r3i1p1f2       | -21.8<br>-3.5             | -0.05<br>-0.12             |
| HadGEM3-GC31-LL_r4i1p1f3<br>HadGEM3-GC31-MM_r1i1p1f3  | 5.1<br>13.6               | 0.02<br>0.45              | UKESM1-0-LL_r4i1p1f2<br>UKESM1-0-LL_r8i1p1f2       | -10.5<br>-3.6             | -0.01<br>-0.27             |

**Supplementary Table 1**: Southerly Flow (SF) frequency trend and summer TXx dynamical trends for ERA5, E-OBS, and 170 simulations for which the daily 500 hPa wind and the maximum surface temperature fields were available for both historical and SSP5-8.5 scenarios. TXx Trends are expressed in °C/GWD and frequency trends in %/GWD.