

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

Developing a machine learning algorithm to predict the probability of aseptic loosening of the glenoid component after anatomic total shoulder arthroplasty: a protocol for a retrospective, multicentre study.

	1
Journal:	BMJ Open
Manuscript ID	bmjopen-2023-074700
Article Type:	Protocol
Date Submitted by the Author:	14-Apr-2023
Complete List of Authors:	Macken, Arno; Erasmus Medical Center, Department of Orthopaedics and Sports Medicine; Clinique Generale Annecy, Orthopaedic Surgery Macken, Loïc; Vrije Universiteit Amsterdam, Faculty of Science Oosterhoff, Jacobien; Delft University of Technology, Department of Engineering Systems and Services Boileau, Pascal; Centre Hospitalier Universitaire de Nice Athwal, George; Schulich School of Medicine and Dentistry Doornberg, Job; University Medical Centre Groningen, Orthopaedic Surgery Lafosse, Laurent; Clinique Générale Annecy, Orthopaedic Surgery Lafosse, Thibault; Clinique Generale Annecy, Orthopaedic surgery van den Bekerom, Michel; Vrije Universiteit Amsterdam, Department of Human Movement Sciences; OLVG, Department of Orthopaedic Surgery Buijze, Geert Alexander; Clinique Générale Annecy, Orthopaedic Surgery; Hôpital Lapeyronie, Department of Orthopedic Surgery
Keywords:	ORTHOPAEDIC & TRAUMA SURGERY, Shoulder < ORTHOPAEDIC & TRAUMA SURGERY, Health informatics < BIOTECHNOLOGY & BIOINFORMATICS, Clinical Decision-Making, Risk Factors
	1

SCHOLARONE[™] Manuscripts

BMJ Open

TITLE: Developing a machine learning algorithm to predict the probability of aseptic loosening of the glenoid component after anatomic total shoulder arthroplasty: a protocol for a retrospective, multicentre study.

MESH KEYWORDS: "Arthroplasty, Replacement, Shoulder", "Shoulder Prosthesis", "Glenoid

Cavity", "Prosthesis Failure", "Reoperation", "Artificial Intelligence", "Machine Learning"

ABSTRACT

Introduction

Despite technological advancements in recent years, glenoid component loosening remains a common complication after anatomic total shoulder arthroplasty (ATSA) and is one of the main causes for revision surgery. Increasing emphasis is placed on the prevention of glenoid component failure. Previous studies have successfully predicted range of motion, patient-reported outcomes, and short-term complications after ATSA using machine learning methods, but an accurate predictive model for (glenoid component) revision is currently lacking. This study aims to use a large international database to accurately predict aseptic loosening of the glenoid component after ATSA using machine learning algorithms.

Methods and analysis

For this multi-centre retrospective study, individual patient data will be compiled from previously published studies reporting revision of ATSA. A systematic literature search will be performed in Medline (PubMed) identifying all studies reporting outcomes of ATSA. Authors will be contacted and invited to participate in the Machine Learning Consortium by sharing their anonymised databases. All databases reporting revisions after ATSA will be included and individual patients with a follow-up less than 2 years or a fracture as the indication for ATSA will be excluded. First, features (predictive variables) will be identified using a random forest feature selection. The resulting features from the compiled database will be used to train various machine learning algorithms (Stochastic Gradient Boosting, Random Forest, Support Vector Machine, Neural Network and Elastic-Net Penalized Logistic Regression). The developed and validated algorithms will be evaluated across discrimination (c-statistic), calibration, the Brier score, and the decision curve analysis. The best-performing algorithm will be used to create an open-access online prediction tool.

Ethics and dissemination

32 Data will be collected adhering to the World Health Organisation (WHO) regulation on data sharing.
 33 The study will be published in a peer-reviewed journal. An Institutional Review Board (IRB) review

- is not applicable.

36 STRENGTHS AND LIMITATIONS OF THIS STUDY

- A large international database will be collected, which increases accuracy, validity, and
 external applicability.
- A clinical prediction model using machine learning algorithms will be developed to estimate
 the probability of aseptic loosening of the glenoid after ATSA.
- An open-access prediction tool based on the best performing algorithm will be made available
 online that can guide medical professionals in personalised treatment decision-making.
- 43 The study is dependent on data provided by third parties, which is a potential source of bias.
- Input variables will be selected and categorised based on completeness and uniformity across
 data sources, potentially decreasing the amount of detail in the study.

47 INTRODUCTION

Anatomic total shoulder arthroplasty (ATSA) is used for glenohumeral arthropathy causing pain
and/or a reduction in range of motion. Despite technological advancements in recent years, glenoid
component loosening remains a common complication after ATSA and is one of the main causes for
revision surgery. Glenoid loosening can be a trying complication to manage and the optimal course of
treatment remains unclear.[1]

Consequently, increasing emphasis is placed on the prevention of loosening. The predicted chance of glenoid component failure plays an important role in clinical decision-making such as patient selection for ATSA or which implants and techniques to use. Several previous studies assessing risk factors of glenoid component loosening identified patient, treatment and prosthesis characteristics related to glenoid component loosening. For example, male sex and a higher critical shoulder angle have been associated with higher rates of loosening and revisions.[2,3] Glenoid retroversion did not impact implant survivorship in one study of ATSA with minimal, noncorrective reaming.[4] However, a larger degree of retroversion may have more impact. Several previous studies have also identified aspects of the glenoid component design that correlated with the rate of loosening, such as whether the poly-ethylene is cross-linked, whether the component is pegged or keeled, or the usage of cement.[5–9] In spite of these studies identifying influential factors, accurate prediction of aseptic loosening of the glenoid component remains a challenge with conventional methods.

Page 3 of 12

BMJ Open

In recent years, machine learning or artificial intelligence has been used with increasing precision to predict outcomes after ATSA. A previous study using machine learning was able to accurately predict range of motion and patient-reported outcomes after ATSA. The most influential factors they reported were follow-up time, pre-operative range of motion and patient-reported outcome measures (PROMs), patients' sex, and surgery on the dominant upper limb.[10] Another study was able to accurately predict the improvement in ASES scores after shoulder arthroplasty using machine learning.[11] The most relevant predictive factors were pre-operative ASES scores, pre-operative pain scores, Walch classification, fatty infiltration in the supra- and infraspinatus, and age. A previous study using artificial intelligence to predict patient satisfaction two years after shoulder arthroplasty found baseline Single Assessment Numeric Evaluation score, exercise and activity, workers' compensation status, diagnosis, symptom duration prior to surgery, body mass index, age, smoking status, anatomic versus reverse TSA, and diabetes to be predicting factors.[12] Two studies report predictive models on short-term complications after ATSA. One study using machine learning to predict complications and 30-day unplanned readmissions found that a history of implant complication, severe chronic kidney disease, teaching hospital status, coronary artery disease and male sex were the most important features.[13] The machine learning model found teaching hospital status and male sex as a markedly more important predictor compared to a logistic regression analysis of the same data. Another study on short-term complications after total shoulder arthroplasty found percentage haematocrit, BMI, and operative time were of highest importance in outcome prediction.[14] These studies demonstrate that machine learning may provide accurate predictions for the outcomes after ATSA. Machine learning is most effective with large amounts of data and is very dependent on the amount of detail. Furthermore, the algorithm needs to be widely applicable; a varied and international database provides the highest external validity. To our knowledge, there are no studies predicting the long-term complications such as aseptic

loosening of the glenoid component using advanced machine learning techniques. Furthermore, previous machine learning studies are limited in accuracy and validity due to the sample size and homogeneity. Therefore, this study aims to develop a clinical prediction model for aseptic loosening of the glenoid component using machine learning algorithms trained on a large international database using clustered data. The large combined dataset is less prone to overfitting, and allows direct validation of models across a range of populations and settings, thereby increasing generalisability.[15] The predictive algorithm will be made available for clinical use through a publicly available online prediction tool.

98 METHODS AND ANALYSIS

60 99 Data collection

For this multi-centre retrospective study individual patient data (IPD) will be collected from previously published studies reporting failure and revision of ATSA. A systematic literature search will be performed in Medline (PubMed) identifying all studies that report a cohort of ATSA including revision as an outcome, the full search term is available in appendix 1. All original studies reporting revision or failure rates after ATSA will be included. Reviews and letters to the editor will be excluded, as well as studies published in languages other than English, Italian, Dutch, and French. Authors will be requested to share the databases used for the identified studies. After sharing their data, the authors will be included in in the Machine Learning Consortium. Inclusion criteria for individual patients within the provided databases are a minimum age of 18 years and a minimum follow-up of 2 years. Patients that underwent ATSA with a fracture as the indication or patients that underwent concomitant procedures such as a cuff repair, tendon transfer or bone graft will be excluded. The aim is to combine the IPD from previously published studies to create a large international cohort which can be used to train a machine learning algorithm to predict aseptic loosening of the glenoid component after anatomic total shoulder arthroplasty. Based on previous studies, we estimate a glenoid revision rate of approximately 2%, resulting in a required cohort of at least 5000 patients to achieve sufficient power for a model with up to 10 predictive variables.[6,16]

²⁹ 116 Data curation and missing data ³⁰

Completeness across data sources will be assessed for each variable in the compiled multi-centre database and variables with sufficient completeness (>70% complete) will be selected as input for the machine learning algorithms. Variables with >30% missing data will be excluded. For the remaining variables, missing data will be completed by imputation using multivariate imputation by chained equations (MICE).[17] Uniformity in reporting will be assessed for each variable. If possible, variables will be adjusted or categorised to ensure uniform reporting. In case uniformity of the reported variable across data sources cannot be achieved without guaranteeing correctness, the variable will be excluded. Eighty percent of the data will be randomly selected (stratified by outcome) and used as the training dataset for developing the algorithms and the remaining 20% will be used as the test dataset to assess the algorithm's performance. Data curation and imputation will be performed using R (R foundation for statistical computing, Vienna, Austria).

49 50 128 Variable Selection

The primary outcome is a revision of the glenoid component for aseptic glenoid loosening. The input variables for both methods are dependent on the uniformity and completeness of the gathered data but will include demographics (eg. age, sex and ethnicity), patient-specific factors (eg. preoperative Body Mass Index, comorbidity, smoking, dominance, previous surgery), disease-specific factors (eg. affected side, indication, Walch classification, fatty-infiltration of cuff muscles) and surgical characteristics (eg, corrective reaming, component design and type, component materials, cementing,

Page 5 of 12

BMJ Open

and sizes). Before training the machine learning models, relevant variables will be selected using
random forest algorithms with recursive selection.[18] At least 10 events for each predictor variable
will be included in the model, adhering to the rule of thumb in predictive models of binary
variables.[19]

10139Development of prediction models11

The following machine learning algorithms were chosen for modelling based on prior research [20– 24]: Stochastic Gradient Boosting (SGM), Random Forest (RF), Support Vector Machine(SVM), Neural Network (NN) and Elastic-Net Penalized Logistic Regression (PLR). The algorithms will be trained on the training dataset with ten-fold cross-validation repeated 3 times. Cross-validation means dividing data into a selected number of groups, also called folds. First, the data will be divided into 10 equally sized folds. Then, the algorithms will be trained on 9 of the 10 folds (90% of the training data) and tested on the remaining fold (10% of the training data). Results will be averaged across all repetitions of this sequence. Machine learning algorithms will be developed using Python (The Python Software Foundation, Fredericksburg, United States of America). Hyper parameter tuning will be performed as recommended in the Python libraries. The statistician who performs the machine learning analysis will be blinded to the origin of the data, but the anonymised data source will be available to be included as a potential confounding factor.

32 152 Model Performance 33

After training all models, the model performance will be analysed according to a proposed framework
 by Steyerberg et al. including discrimination with the c-statistic, calibration slope and intercept and
 the overall performance with the Brier score.[25]

The c-statistic (area under the curve of a receiver operating characteristic curve) is a score ranging from 0.50 to 1.0 with 1.0 indicating the highest discrimination score and 0.50 indicating the lowest. The higher the discrimination score, the better the model's ability to distinguish patients with and without the outcome of interest. [20,26] A calibration plot plots the estimated versus the observed probabilities for the primary outcome. A perfect calibration plot has an intercept of 0 (<0 reflects overestimation and >0 reflects underestimation of the probability of the outcome) and a slope of 1 (model is performing similarly in training and test datasets).[20,25,26] The null-model Brier score, which equals the probability of glenoid revision in the dataset, will be used to benchmark the algorithm's Brier score. A Brier score lower than the null-model Brier score indicates superior performance of the prediction model to this null benchmark. Perfect prediction would have a Brier score of 0, whereas a Brier score of 1 would indicate the poorest possible prediction.[25] In addition, the decision curve analysis will be performed and visualized to investigate the net benefit

(weighted average of true positives and false positives) of the conducted algorithms over the range of

1 2		
3	169	risk thresholds for clinical decision-making.[20,25,27] The net benefit is a weighted average of true
4 5	170	positives and false positives, formula = sensitivity x prevalence – $(1$ -specificity) x $(1$ – prevalence) x
6	171	(odds at the threshold probability). The decision curve of the model will be compared to decision
7 8 9	172	curves of treating everyone as being at risk and treating no one as being at risk.[20]
10 11	173	Due to the large heterogeneity of the compiled dataset from different international sources and the
12	174	internal validation of the prediction models, the generalisability of the model can be intrinsically
13 14	175	confirmed using the above-mentioned performance tests. Therefore, it is not strictly necessary to
15 16	176	externally validate the final algorithm.
17 18	177	Open-access clinical prediction tool
19 20	178	The best performing prediction algorithm will be used to create an open-access clinical prediction
21	179	tool, in the form of a publicly available web application accessible on desktops, tablets, and
22 23	180	smartphones.
24 25	181	Patients and public involvement
26 27 28	182	Patients and the public were not involved in the making of this protocol.
29 30	183	Statistical analysis
31 32	184	Categorical variables will be described as absolute numbers with frequencies, and continuous
33	185	variables as medians with interquartile ranges (IQR). The model performance metrics will be
34 35	186	calculated with 95% confidence interval (CI). Given the retrospective study design, post hoc power
36 37	187	analyses will be conducted to evaluate the sample size of the study with an alpha value of 0.05.
38 39	188	Guidelines
40 41	189	The study set-up will be performed following the Transparent Reporting of Multivariable Prediction
42 43	190	Models for Individual Prognosis or Diagnosis Guideline for Clustered data (TRIPOD-Cluster).[15]
44 45	191	ETHICS AND DISSEMINATION
46 47	192	For safe multicentre data exchange and analysis, our Machine Learning Consortium will adhere to the
48 49	193	World Health Organisation (WHO) regulation 'Policy on Use and Sharing of Data Collected by WHO
50	194	in Member States Outside the Context of Public Health Emergencies'.[28] The study results will be
51 52	195	disseminated through publication in a peer-reviewed journal. An Institutional Review Board (IRB)
53	196	approval has been obtained for each of the included studies and the provided data are anonymised and
54 55	197	de-identified, no IRB review is required for this study. Patient consent for publication is not
56 57	198	applicable to this study.
58 59 60	199	CURRENT STATUS

BMJ Open

Data collection for this project is currently ongoing. The analysis will start in July 2023. The expected
time of completion for the project is December of 2023.

202 DISCUSSION

For an informed decision when considering ATSA, it is important to be able to make an accurate prediction of arthroplasty failure. Previous studies have demonstrated several factors that affect complications and revision after ATSA, including male sex, comorbidities such as chronic kidney disease or coronary artery disease, percentage haematocrit, a higher critical shoulder angle, teaching hospital status, operative time, and the material and design of the prosthesis. [2,3,5–9,13,14] Psychological studies have shown that in human judgement only a limited amount of variables can be taken into account, and that prediction models are generally more accurate and less subject to bias.[29] Machine learning algorithms have been shown to be an effective method in developing patient-specific prediction tools, which may complement human judgement when counselling patients in clinic.[30] Creating an online tool for aseptic loosening of the glenoid component after ATSA can help guide surgeons in selecting patients who will most benefit from this treatment, and considering alternatives in cases of high risk estimates.

The strength of this project is the large amount of data that will be gathered from authors participating in the Machine Learning Consortium, aiming to include a minimum of 5000 patients in total. Using a large, heterogenous international database for development of the algorithm and prediction tool will result in high external validity and may improve applicability world-wide.[15] However, in gathering data retrospectively from various sources, the study is subject to variances in the included variables. Low completeness and large variability of reporting may introduce bias. However, only variables that are consistently reported in multiple data sources will be included in the final analysis, variables will be categorised to increase uniformity and missing data will be imputed where possible. The exclusion and categorisation of variables will have to be balanced with the amount of detail in the final analysis. Furthermore, the accuracy of data collection is dependent on third parties providing the data, the method of data collection cannot be verified for all sources. However, the data source will be considered as a confounder. Furthermore, the variety in data sources will increase the external applicability of the algorithm.

REFERENCES

Sharareh B, Yao JJ, Matsen FA, *et al.* What is the Optimal Management of a Loose Glenoid
 Sharareh B, Yao JJ, Matsen FA, *et al.* What is the Optimal Management of a Loose Glenoid
 Component after Anatomic Total Shoulder Arthroplasty: A Systematic Review. *J shoulder Elb Surg* 2022 2023;**32(3)**:653-661. doi:10.1016/J.JSE.2022.10.006

233 2 Tabeayo E, Chan PH, Prentice HA, *et al.* The association between critical shoulder angle and

1			
2 3	234		revision following anatomic total shoulder arthroplasty: a matched case-control study. J
4 5 6 7	235		shoulder Elb Surg 2022; 31 :1796–802. doi:10.1016/J.JSE.2021.08.003
	236	3	Aibinder W, Schoch B, Parsons M, et al. Risk factors for complications and revision surgery
8 9	237		after anatomic and reverse total shoulder arthroplasty. J Shoulder Elb Surg 2021; 30 :e689–701.
10	238		doi:10.1016/J.JSE.2021.04.029
11 12	239	4	Dekker TJ, Grantham WJ, Lacheta L, et al. Glenoid retroversion does not impact clinical
13 14	240		outcomes or implant survivorship after total shoulder arthroplasty with minimal, noncorrective
15 16	241		reaming. JSES Int 2022;6:596–603. doi:10.1016/J.JSEINT.2022.02.011
17 18	242	5	Page RS, Alder-Price AC, Rainbird S, et al. Reduced Revision Rates in Total Shoulder
19	243	C	Arthroplasty With Crosslinked Polyethylene: Results From the Australian Orthopaedic
20 21	244		Association National Joint Replacement Registry. <i>Clin Orthop Relat Res</i> 2022; 480 :1940–9.
22	245		doi:10.1097/CORR.00000000002293
23 24	243		
25	246	6	Dillon MT, Chan PH, Prentice HA, et al. The association between glenoid component design
26 27	247		and revision risk in anatomic total shoulder arthroplasty. J shoulder Elb Surg 2020;29:2089-
28 29	248		96. doi:10.1016/J.JSE.2020.02.024
30 31 32	249	7	Welsher A, Gohal C, Madden K, et al. A comparison of pegged vs. keeled glenoid components
	250		regarding functional and radiographic outcomes in anatomic total shoulder arthroplasty: a
33 34	251		systematic review and meta-analysis. JSES open access 2019;3:136-144.e1.
35 36	252		doi:10.1016/J.JSES.2019.04.002
37	253	8	Page RS, Pai V, Eng K, et al. Cementless versus cemented glenoid components in
38 39	254		conventional total shoulder joint arthroplasty: analysis from the Australian Orthopaedic
40 41	255		Association National Joint Replacement Registry. J shoulder Elb Surg 2018;27:1859-65.
42	256		doi:10.1016/J.JSE.2018.03.017
43 44	257	9	Sharplin PK, Frampton CMA, Hirner M. Cemented vs. uncemented glenoid fixation in total
45 46	258		shoulder arthroplasty for osteoarthritis: a New Zealand Joint Registry study. J shoulder Elb
47 48	259		Surg 2020; 29 :2097–103. doi:10.1016/J.JSE.2020.03.008
49 50	260	10	Kumar V, Roche C, Overman S, et al. What Is the Accuracy of Three Different Machine
51	261		Learning Techniques to Predict Clinical Outcomes After Shoulder Arthroplasty? Clin Orthop
52 53	262		<i>Relat Res</i> 2020; 478 :2351–63. doi:10.1097/CORR.00000000001263
54	202		
55 56	263	11	McLendon PB, Christmas KN, Simon P, et al. Machine Learning Can Predict Level of
57	264		Improvement in Shoulder Arthroplasty. JBJS Open Access 2021;6.
58 59	265		doi:10.2106/JBJS.OA.20.00128
60			

1 2			
3	266	12	Polce EM, Kunze KN, Fu MC, et al. Development of supervised machine learning algorithms
4 5	267		for prediction of satisfaction at 2 years following total shoulder arthroplasty. J Shoulder Elb
6	268		<i>Surg</i> 2021; 30 :e290–9. doi:10.1016/j.jse.2020.09.007
7 8	200	10	
9 10	269	13	Devana SK, Shah AA, Lee C, <i>et al.</i> Development of a Machine Learning Algorithm for
11	270		Prediction of Complications and Unplanned Readmission Following Primary Anatomic Total
12 13	271		Shoulder Replacements. J Shoulder Elb Arthroplast 2022;6:247154922210754.
14	272		doi:10.1177/24715492221075444
15 16	273	14	Gowd AK, Agarwalla A, Amin NH, et al. Construct validation of machine learning in the
17	274		prediction of short-term postoperative complications following total shoulder arthroplasty. J
18 19 20	275		Shoulder Elb Surg 2019;28:e410–21. doi:10.1016/J.JSE.2019.05.017
21	276	15	Debray TPA, Collins GS, Riley RD, et al. Transparent reporting of multivariable prediction
22 23	277		models developed or validated using clustered data: TRIPOD-Cluster checklist. BMJ
24	278		2023; 380 :e071018. doi:10.1136/BMJ-2022-071018
25 26			
27	279	16	Papadonikolakis A, Neradilek MB, Matsen FA. Failure of the glenoid component in anatomic
28 29	280		total shoulder arthroplasty : A systematic review of the english-language literature between
30	281		2006 and 2012. <i>J Bone Jt Surg</i> 2013; 95 :2205–12. doi:10.2106/JBJS.L.00552
31 32	282	17	van Buuren S, Groothuis-Oudshoorn K. mice: Multivariate Imputation by Chained Equations
33	283		in R. J Stat Softw 2011;45:1-67. doi:10.18637/JSS.V045.I03
33 34 35			in R. J Stat Softw 2011;45:1–67. doi:10.18637/JSS.V045.I03
34 35 36	284	18	DeBaun MR, Chavez G, Fithian A, et al. Artificial Neural Networks Predict 30-Day Mortality
34 35	284 285	18	DeBaun MR, Chavez G, Fithian A, <i>et al.</i> Artificial Neural Networks Predict 30-Day Mortality After Hip Fracture: Insights From Machine Learning. <i>J Am Acad Orthop Surg</i> 2021; 29 :977–
34 35 36 37 38 39	284	18	DeBaun MR, Chavez G, Fithian A, et al. Artificial Neural Networks Predict 30-Day Mortality
34 35 36 37 38 39 40 41	284 285	18 19	DeBaun MR, Chavez G, Fithian A, <i>et al.</i> Artificial Neural Networks Predict 30-Day Mortality After Hip Fracture: Insights From Machine Learning. <i>J Am Acad Orthop Surg</i> 2021; 29 :977–
34 35 36 37 38 39 40	284 285 286		DeBaun MR, Chavez G, Fithian A, <i>et al.</i> Artificial Neural Networks Predict 30-Day Mortality After Hip Fracture: Insights From Machine Learning. <i>J Am Acad Orthop Surg</i> 2021; 29 :977– 83. doi:10.5435/JAAOS-D-20-00429
34 35 36 37 38 39 40 41 42 43 44	284 285 286 287 288	19	DeBaun MR, Chavez G, Fithian A, <i>et al.</i> Artificial Neural Networks Predict 30-Day Mortality After Hip Fracture: Insights From Machine Learning. <i>J Am Acad Orthop Surg</i> 2021; 29 :977– 83. doi:10.5435/JAAOS-D-20-00429 Riley RD, Ensor J, Snell KIE, <i>et al.</i> Calculating the sample size required for developing a clinical prediction model. <i>BMJ</i> 2020; 368 . doi:10.1136/BMJ.M441
34 35 36 37 38 39 40 41 42 43	284 285 286 287 288 288		 DeBaun MR, Chavez G, Fithian A, <i>et al.</i> Artificial Neural Networks Predict 30-Day Mortality After Hip Fracture: Insights From Machine Learning. <i>J Am Acad Orthop Surg</i> 2021;29:977– 83. doi:10.5435/JAAOS-D-20-00429 Riley RD, Ensor J, Snell KIE, <i>et al.</i> Calculating the sample size required for developing a clinical prediction model. <i>BMJ</i> 2020;368. doi:10.1136/BMJ.M441 Oosterhoff JHF, Savelberg ABMC, Karhade AV, <i>et al.</i> Development and internal validation of
34 35 36 37 38 39 40 41 42 43 44 45 46 47	284 285 286 287 288 289 290	19	 DeBaun MR, Chavez G, Fithian A, <i>et al.</i> Artificial Neural Networks Predict 30-Day Mortality After Hip Fracture: Insights From Machine Learning. <i>J Am Acad Orthop Surg</i> 2021;29:977– 83. doi:10.5435/JAAOS-D-20-00429 Riley RD, Ensor J, Snell KIE, <i>et al.</i> Calculating the sample size required for developing a clinical prediction model. <i>BMJ</i> 2020;368. doi:10.1136/BMJ.M441 Oosterhoff JHF, Savelberg ABMC, Karhade AV, <i>et al.</i> Development and internal validation of a clinical prediction model using machine learning algorithms for 90 day and 2 year mortality
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49	284 285 286 287 288 289 290 291	19	 DeBaun MR, Chavez G, Fithian A, <i>et al.</i> Artificial Neural Networks Predict 30-Day Mortality After Hip Fracture: Insights From Machine Learning. <i>J Am Acad Orthop Surg</i> 2021;29:977– 83. doi:10.5435/JAAOS-D-20-00429 Riley RD, Ensor J, Snell KIE, <i>et al.</i> Calculating the sample size required for developing a clinical prediction model. <i>BMJ</i> 2020;368. doi:10.1136/BMJ.M441 Oosterhoff JHF, Savelberg ABMC, Karhade AV, <i>et al.</i> Development and internal validation of a clinical prediction model using machine learning algorithms for 90 day and 2 year mortality in femoral neck fracture patients aged 65 years or above. <i>Eur J Trauma Emerg Surg</i>
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50	284 285 286 287 288 289 290	19	 DeBaun MR, Chavez G, Fithian A, <i>et al.</i> Artificial Neural Networks Predict 30-Day Mortality After Hip Fracture: Insights From Machine Learning. <i>J Am Acad Orthop Surg</i> 2021;29:977– 83. doi:10.5435/JAAOS-D-20-00429 Riley RD, Ensor J, Snell KIE, <i>et al.</i> Calculating the sample size required for developing a clinical prediction model. <i>BMJ</i> 2020;368. doi:10.1136/BMJ.M441 Oosterhoff JHF, Savelberg ABMC, Karhade AV, <i>et al.</i> Development and internal validation of a clinical prediction model using machine learning algorithms for 90 day and 2 year mortality
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52	284 285 286 287 288 289 290 291	19	 DeBaun MR, Chavez G, Fithian A, <i>et al.</i> Artificial Neural Networks Predict 30-Day Mortality After Hip Fracture: Insights From Machine Learning. <i>J Am Acad Orthop Surg</i> 2021;29:977– 83. doi:10.5435/JAAOS-D-20-00429 Riley RD, Ensor J, Snell KIE, <i>et al.</i> Calculating the sample size required for developing a clinical prediction model. <i>BMJ</i> 2020;368. doi:10.1136/BMJ.M441 Oosterhoff JHF, Savelberg ABMC, Karhade AV, <i>et al.</i> Development and internal validation of a clinical prediction model using machine learning algorithms for 90 day and 2 year mortality in femoral neck fracture patients aged 65 years or above. <i>Eur J Trauma Emerg Surg</i>
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53	284 285 286 287 288 289 290 291 292	19 20	 DeBaun MR, Chavez G, Fithian A, <i>et al.</i> Artificial Neural Networks Predict 30-Day Mortality After Hip Fracture: Insights From Machine Learning. <i>J Am Acad Orthop Surg</i> 2021;29:977– 83. doi:10.5435/JAAOS-D-20-00429 Riley RD, Ensor J, Snell KIE, <i>et al.</i> Calculating the sample size required for developing a clinical prediction model. <i>BMJ</i> 2020;368. doi:10.1136/BMJ.M441 Oosterhoff JHF, Savelberg ABMC, Karhade AV, <i>et al.</i> Development and internal validation of a clinical prediction model using machine learning algorithms for 90 day and 2 year mortality in femoral neck fracture patients aged 65 years or above. <i>Eur J Trauma Emerg Surg</i> 2022;48:4669–82. doi:10.1007/s00068-022-01981-4
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55	284 285 286 287 288 289 290 291 292 293	19 20	 DeBaun MR, Chavez G, Fithian A, <i>et al.</i> Artificial Neural Networks Predict 30-Day Mortality After Hip Fracture: Insights From Machine Learning. <i>J Am Acad Orthop Surg</i> 2021;29:977– 83. doi:10.5435/JAAOS-D-20-00429 Riley RD, Ensor J, Snell KIE, <i>et al.</i> Calculating the sample size required for developing a clinical prediction model. <i>BMJ</i> 2020;368. doi:10.1136/BMJ.M441 Oosterhoff JHF, Savelberg ABMC, Karhade AV, <i>et al.</i> Development and internal validation of a clinical prediction model using machine learning algorithms for 90 day and 2 year mortality in femoral neck fracture patients aged 65 years or above. <i>Eur J Trauma Emerg Surg</i> 2022;48:4669–82. doi:10.1007/s00068-022-01981-4 Oosterhoff JHF, Karhade A V., Oberai T, <i>et al.</i> Prediction of Postoperative Delirium in
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54	284 285 286 287 288 289 290 291 292 293 294 295	19 20 21	 DeBaun MR, Chavez G, Fithian A, <i>et al.</i> Artificial Neural Networks Predict 30-Day Mortality After Hip Fracture: Insights From Machine Learning. <i>J Am Acad Orthop Surg</i> 2021;29:977– 83. doi:10.5435/JAAOS-D-20-00429 Riley RD, Ensor J, Snell KIE, <i>et al.</i> Calculating the sample size required for developing a clinical prediction model. <i>BMJ</i> 2020;368. doi:10.1136/BMJ.M441 Oosterhoff JHF, Savelberg ABMC, Karhade AV, <i>et al.</i> Development and internal validation of a clinical prediction model using machine learning algorithms for 90 day and 2 year mortality in femoral neck fracture patients aged 65 years or above. <i>Eur J Trauma Emerg Surg</i> 2022;48:4669–82. doi:10.1007/s00068-022-01981-4 Oosterhoff JHF, Karhade A V., Oberai T, <i>et al.</i> Prediction of Postoperative Delirium in Geriatric Hip Fracture Patients: A Clinical Prediction Model Using Machine Learning Algorithms. <i>Geriatr Orthop Surg Rehabil</i> 2021;12. doi:10.1177/21514593211062277
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56	284 285 286 287 288 289 290 291 292 293 293 294	19 20	 DeBaun MR, Chavez G, Fithian A, <i>et al.</i> Artificial Neural Networks Predict 30-Day Mortality After Hip Fracture: Insights From Machine Learning. <i>J Am Acad Orthop Surg</i> 2021;29:977– 83. doi:10.5435/JAAOS-D-20-00429 Riley RD, Ensor J, Snell KIE, <i>et al.</i> Calculating the sample size required for developing a clinical prediction model. <i>BMJ</i> 2020;368. doi:10.1136/BMJ.M441 Oosterhoff JHF, Savelberg ABMC, Karhade AV, <i>et al.</i> Development and internal validation of a clinical prediction model using machine learning algorithms for 90 day and 2 year mortality in femoral neck fracture patients aged 65 years or above. <i>Eur J Trauma Emerg Surg</i> 2022;48:4669–82. doi:10.1007/s00068-022-01981-4 Oosterhoff JHF, Karhade A V., Oberai T, <i>et al.</i> Prediction of Postoperative Delirium in Geriatric Hip Fracture Patients: A Clinical Prediction Model Using Machine Learning

2							
3 4	298		2019;477:2296-303. doi:10.1097/CORR.000000000000748				
5 6	299	23	Karhade A V., Ogink PT, Thio QCBS, et al. Development of machine learning algorithms for				
7	300		prediction of prolonged opioid prescription after surgery for lumbar disc herniation. Spine J				
8 9	301		2019; 19 :1764–71. doi:10.1016/J.SPINEE.2019.06.002				
10 11	302	24	Karhade A V., Ogink PT, Thio QCBS, et al. Discharge Disposition After Anterior Cervical				
12	302	24	Discectomy and Fusion. <i>World Neurosurg</i> 2019; 132 :e14–20.				
13 14	304		doi:10.1016/J.WNEU.2019.09.026				
15	504						
16 17	305	25	Steyerberg EW, Vickers AJ, Cook NR, et al. Assessing the performance of prediction models:				
18 19	306		A framework for traditional and novel measures. <i>Epidemiology</i> 2010; 21 :128–38.				
20	307		doi:10.1097/EDE.0b013e3181c30fb2				
21 22	308	26	Oosterhoff JHF, Gravesteijn BY, Karhade A V., et al. Feasibility of Machine Learning and				
23 24	309		Logistic Regression Algorithms to Predict Outcome in Orthopaedic Trauma Surgery. J Bone Jt				
25	310		Surg - Am Vol 2022;104:544–51. doi:10.2106/JBJS.21.00341				
26 27	311	27	Steyerberg EW, Vergouwe Y. Towards better clinical prediction models: seven steps for				
28 29	312		development and an ABCD for validation. Eur Heart J 2014;35:1925–31.				
30 31	313		doi:10.1093/EURHEARTJ/EHU207				
32 33	314	28	World Health Organization. Who policy statement on Data Sharing [Internet]. Policy on use				
34	315		and sharing of data collected in Member States by the World Health Organization (WHO)				
35 36	316		outside the context of public health emergencies. WHO; [cited 2023Apr13]. Available from:				
37	317		https://www.who.int/docs/default-source/publishing-policies/who-policy-statement-on-data-				
38 39	318		sharing.pdf?sfvrsn=71a41493_0				
40 41	319	29	Daniel Kahneman, Olivier Sibony, Cass R. Sunstein. Noise: A Flaw in Human Judgment				
42	320	2)	Little, Brown Spark; Hachette Book Group, version 1, 2021				
43 44	520						
45 46	321	30	A Machine Learning Algorithm to Identify Patients with Tibial Shaft Fractures at Risk for				
47	322		Infection After Operative Treatment. J Bone Joint Surg Am 2021;103:532–40.				
48 49	323		doi:10.2106/JBJS.20.00903				
50 51	324						
52	275	ATT	HOR'S CONTRIBUTIONS				
53 54	325	AUT	HOR 5 CONTRIBUTIONS				
55	326	Autho	ors AM, GB, and MP contributed to the conception, methods, planning, and writing and				
56 57	327	reviewing of the protocol. LM and JO contributed to the statistical and machine learning methods of					
58	328	the study. JO, PB, GA, JD, LL, and TL reviewed the draft of the protocol and provided supervision.					
59 60	329	All au	uthors revised the final version of the protocol and gave approval for publication.				

3 4	330
5	331
6 7	332
8 9	
10	333
11 12	334
13	335
14 15	336
16 17	337
17 18	557
19 20	338
21	339
22 23	340
24	341
25 26	342
27 28	512
29	343
30 31	344
32	
33 34	345
35	346
36 37	347
38 39	348
40	349
41 42	350
43	351
44 45	352
46 47	352
47 48	
49 50	
51	
52 53	
54	
55 56	
57 58	
58 59	

60

330 ACKNOWLEDGEMENTS

The authors would like to thank Dr. Laurens Allaart and Dr. Sanne van Spanning for providingexamples and inspiration for this study based on their previous work.

333 FUNDING STATEMENT

334 This work was supported by Stichting Prof. Michaël-van Vloten fonds, VSBfonds grant number

335 VSB.22/00098, Prins Bernard Cultuurfonds grant number 40042437/NOD, and Stichting Erasmus

336 Trustfonds grant number 97030.2021.101.577/193/RB.

7 337 COMPETING INTERESTS STATEMENT

338 LL received consultancy fees from Depuy Stryker and royalties from Depuy-Synthes. TL received
 339 consultancy fees from Depuy Mitek and Stryker. GB received consultancy fees from Depuy-Synthes
 340 and Stryker. The remaining authors certify that he or she has received no funding or has commercial
 341 associations that might pose a conflict of interest in connection with the submitted article.

- 0 1 344 **APPENDIX 1**
- 345 Search strategy:

⁵ 346 ("Arthroplasty, Replacement, Shoulder"[Mesh] OR "Total shoulder arthroplasty"[tiab] OR "Anatomic

347 shoulder arthroplasty"[tiab] OR "TSA"[tiab] OR "ATSA"[tiab] OR "Total shoulder prosthes*"[tiab]

348 OR "Anatomic shoulder prosthes*"[tiab]) AND ("Reoperation"[Mesh] OR "reoperation"[tiab] OR

349 "re-operation"[tiab] OR "revision"[tiab] OR "survival"[tiab] OR "implant-survival"[tiab] OR

350 "Prosthesis Failure"[Mesh] OR "failure"[tiab] OR "loosening"[tiab] OR "aseptic"[tiab] OR

351 "Postoperative Complications"[Mesh] OR "complication"[tiab])

352 Filters: Clinical study, Clinical trial, Controlled clinical trial, Comparative study, Dataset

TRIPOD Checklist: Prediction Model Development and Validation

	Pa	age 12	2 of 12
$\prec \Lambda$			
/ / / \			

Section/Topic Title and abstract	ltem		Checklist Item	Pag
Title and abstract	1	D;V	Identify the study as developing and/or validating a multivariable prediction model, the target population, and the outcome to be predicted.	x
Abstract	2	D;V	Provide a summary of objectives, study design, setting, participants, sample size,	x
ntroduction			predictors, outcome, statistical analysis, results, and conclusions.	
			Explain the medical context (including whether diagnostic or prognostic) and rationale	
Background and objectives	3а	D;V	for developing or validating the multivariable prediction model, including references to existing models.	X
and objectives	3b	D;V	Specify the objectives, including whether the study describes the development or validation of the model or both.	x
Methods				
Source of data	4a	D;V	Describe the study design or source of data (e.g., randomized trial, cohort, or registry data), separately for the development and validation data sets, if applicable.	x
	4b	D;V	Specify the key study dates, including start of accrual; end of accrual; and, if applicable, end of follow-up.	x
Derticinente	5a	D;V	Specify key elements of the study setting (e.g., primary care, secondary care, general population) including number and location of centres.	x
Participants	5b	D;V	Describe eligibility criteria for participants.	X
	5c	D;V	Give details of treatments received, if relevant.	X
Outcome	6a	D;V	Clearly define the outcome that is predicted by the prediction model, including how and when assessed.	x
	6b	D;V	Report any actions to blind assessment of the outcome to be predicted.	X
Predictors	7a	D;V	Clearly define all predictors used in developing or validating the multivariable prediction model, including how and when they were measured.	x
	7b	D;V	Report any actions to blind assessment of predictors for the outcome and other predictors.	x
Sample size	8	D;V	Explain how the study size was arrived at.	X
Missing data	9	D;V	Describe how missing data were handled (e.g., complete-case analysis, single	X
wissing data		,	imputation, multiple imputation) with details of any imputation method.	
	10a	D	Describe how predictors were handled in the analyses.	X
Statistical	10b	D	Specify type of model, all model-building procedures (including any predictor selection), and method for internal validation.	X
analysis	10c	V	For validation, describe how the predictions were calculated.	X
methods			Specify all measures used to assess model performance and, if relevant, to compare	
	10d	D;V	multiple models.	X
Diala ana	10e	V	Describe any model updating (e.g., recalibration) arising from the validation, if done.	X
Risk groups Development	11	D;V	Provide details on how risk groups were created, if done. For validation, identify any differences from the development data in setting, eligibility	X
vs. validation	12	V	criteria, outcome, and predictors.	X
Results				
	13a	D;V	Describe the flow of participants through the study, including the number of participants with and without the outcome and, if applicable, a summary of the follow-up time. A diagram may be helpful.	N//
Participants	13b	D;V	Describe the characteristics of the participants (basic demographics, clinical features, available predictors), including the number of participants with missing data for predictors and outcome.	N//
	13c	V	For validation, show a comparison with the development data of the distribution of important variables (demographics, predictors and outcome).	N/
Madal	14a	D	Specify the number of participants and outcome events in each analysis.	N/
Model development	14b	D	If done, report the unadjusted association between each candidate predictor and outcome.	N/
Model	15a	D	Present the full prediction model to allow predictions for individuals (i.e., all regression coefficients, and model intercept or baseline survival at a given time point).	N/
specification	15b	D	Explain how to the use the prediction model.	N/
Model performance	16	D;V	Report performance measures (with CIs) for the prediction model.	N//
Model-updating	17	V	If done, report the results from any model updating (i.e., model specification, model performance).	N/
Discussion				1
Limitations	18	D;V	Discuss any limitations of the study (such as nonrepresentative sample, few events per predictor, missing data).	x
Interpretation	19a	V	For validation, discuss the results with reference to performance in the development data, and any other validation data.	x
	19b	D;V	Give an overall interpretation of the results, considering objectives, limitations, results from similar studies, and other relevant evidence.	N//
Implications	20	D;V	Discuss the potential clinical use of the model and implications for future research.	x
Other information		.,.		
Supplementary information	21	D;V	Provide information about the availability of supplementary resources, such as study protocol, Web calculator, and data sets.	x
	22	D;V	Give the source of funding and the role of the funders for the present study.	X

*Items relevant only to the development of a prediction model are denoted by D, items relating solely to a validation of a prediction model are denoted by V, and items relating to both are denoted D;V. We recommend using the TRIPOD Checklist in conjunction with the TRIPOD Explanation and Elaboration document.

BMJ Open

Developing a machine learning algorithm to predict the probability of aseptic loosening of the glenoid component after anatomic total shoulder arthroplasty: a protocol for a retrospective, multicentre study.

Journal:	BMJ Open
Manuscript ID	bmjopen-2023-074700.R1
Article Type:	Protocol
Date Submitted by the Author:	02-Sep-2023
Complete List of Authors:	Macken, Arno; Erasmus Medical Center, Department of Orthopaedics and Sports Medicine; Clinique Generale Annecy, Orthopaedic Surgery Macken, Loïc; Vrije Universiteit Amsterdam, Faculty of Science Oosterhoff, Jacobien; Delft University of Technology, Department of Engineering Systems and Services Boileau, Pascal; Centre Hospitalier Universitaire de Nice Athwal, George; Schulich School of Medicine and Dentistry Doornberg, Job; University Medical Centre Groningen, Orthopaedic Surgery Lafosse, Laurent; Clinique Générale Annecy, Orthopaedic Surgery van den Bekerom, Michel; Vrije Universiteit Amsterdam, Department of Human Movement Sciences; OLVG, Department of Orthopaedic Surgery Buijze, Geert Alexander; Clinique Générale Annecy, Orthopaedic Surgery
Primary Subject Heading :	Surgery
Secondary Subject Heading:	Health informatics, Research methods
Keywords:	ORTHOPAEDIC & TRAUMA SURGERY, Shoulder < ORTHOPAEDIC & TRAUMA SURGERY, Health informatics < BIOTECHNOLOGY & BIOINFORMATICS, Clinical Decision-Making, Risk Factors

SCHOLARONE[™] Manuscripts

1		
2 3		
4	1	TITLE: Developing a machine learning algorithm to predict the probability of aseptic loosening of
5	2	the glenoid component after anatomic total shoulder arthroplasty: a protocol for a retrospective,
6 7	3	multicentre study.
8 9	4	AUTHORS: Arno A. Macken ^{1,2} , Loïc C. Macken ³ , Jacobien H.F. Oosterhoff ⁴ , Pascal Boileau ⁵ ,
10 11	5	George S. Athwal ⁶ , Job N. Doornberg ⁷ , Laurent Lafosse ¹ , Thibault Lafosse ¹ , Michel P.J. van den
12 13	6	Bekerom ^{8,9} , Geert Alexander Buijze ^{1,10,11} , on behalf the Machine Learning Consortium.
13 14	7	1. Alps Surgery Institute, Clinique Générale d'Annecy, France
15	8	 Department of Orthopaedic Surgery and Sports medicine, Erasmus Medical Centre,
16	9	Rotterdam, the Netherlands
17	10	3. Faculty of Science, Vrije Universiteit Amsterdam, the Netherlands
18		
19	11	4. Department of Engineering Systems and Services, Faculty of Technology Policy and
20	12	Management, Delft University of Technology, the Netherlands
20	13	5. Institut de Chirurgie Réparatrice, Locomoteur & Sports, Centre Hospitalier Universitaire de
	14	Nice, France
22	15	6. Roth McFarlane Hand and Upper Limb Center, Schulich School of Medicine and Dentistry,
23	16	London, Ontario, Canada
24	17	7. Departments of Orthopaedic and Trauma Surgery, University Medical Center Groningen, the
25	18	Netherlands
26		
27	19	8. Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences,
28	20	Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, the Netherlands
29	21	9. Shoulder and Elbow Unit, Joint Research, Department of Orthopaedic Surgery, OLVG,
30	22	Amsterdam, The Netherlands
31	23	10. Department of Orthopedic Surgery, Amsterdam Movement Sciences, Amsterdam UMC,
32	24	location AMC, University of Amsterdam, Amsterdam, The Netherlands
33	25	11. Department of Orthopedic Surgery, Montpellier University Medical Center, Lapeyronie
34	26	Hospital, University of Montpellier, Montpellier, France
35	20	Hospital, Oniversity of Montpenier, Montpenier, Plance
36	27	Corresponding author: Arno A. Macken
37		
	20	4 Cham de la Tarrella Dairez 74000 Annarez Frances
38	28	4 Chem. de la Tour la Reine, 74000 Annecy, France
39 40 41	29	+33 4 50 33 04 69
41 42		
	30	arnomacken@gmail.com
43		+33 4 50 33 04 69 arnomacken@gmail.com
44	31	
45	21	
46 47	32	MESH KEYWORDS: "Arthroplasty, Replacement, Shoulder", "Shoulder Prosthesis", "Glenoid
48		
49	33	Cavity", "Prosthesis Failure", "Reoperation", "Artificial Intelligence", "Machine Learning"
50		
51	34	
52		
53	25	WORD COUNT: 2972
	35	WORD COUNT: 2972
54 55		
55	36	
56		
57	37	
58	57	
59	22	
60	38	

ABSTRACT

Introduction

Despite technological advancements in recent years, glenoid component loosening remains a common complication after anatomic total shoulder arthroplasty (ATSA) and is one of the main causes for revision surgery. Increasing emphasis is placed on the prevention of glenoid component failure. Previous studies have successfully predicted range of motion, patient-reported outcomes, and short-term complications after ATSA using machine learning methods, but an accurate predictive model for (glenoid component) revision is currently lacking. This study aims to use a large international database to accurately predict aseptic loosening of the glenoid component after ATSA using machine learning algorithms.

Methods and analysis

For this multi-centre retrospective study, individual patient data will be compiled from previously published studies reporting revision of ATSA. A systematic literature search will be performed in Medline (PubMed) identifying all studies reporting outcomes of ATSA. Authors will be contacted and invited to participate in the Machine Learning Consortium by sharing their anonymised databases. All databases reporting revisions after ATSA will be included and individual patients with a follow-up less than 2 years or a fracture as the indication for ATSA will be excluded. First, features (predictive variables) will be identified using a random forest feature selection. The resulting features from the compiled database will be used to train various machine learning algorithms (Stochastic Gradient Boosting, Random Forest, Support Vector Machine, Neural Network and Elastic-Net Penalized Logistic Regression). The developed and validated algorithms will be evaluated across discrimination (c-statistic), calibration, the Brier score, and the decision curve analysis. The best-performing algorithm will be used to create an open-access online prediction tool.

Ethics and dissemination

Data will be collected adhering to the World Health Organisation (WHO) regulation on data sharing. The study will be published in a peer-reviewed journal. An Institutional Review Board (IRB) review is not applicable.

STRENGTHS AND LIMITATIONS OF THIS STUDY

- A large international database will be collected, which increases accuracy, validity, and external applicability.
- A clinical prediction model using machine learning algorithms will be developed to estimate the probability of aseptic loosening of the glenoid after ATSA.

Page 3 of 14

BMJ Open

An open-access prediction tool based on the best performing algorithm will be made available online that can guide medical professionals in personalised treatment decision-making. The study is dependent on data provided by third parties, which is a potential source of bias. -Input variables will be selected and categorised based on completeness and uniformity across data sources, potentially decreasing the amount of detail in the study.

INTRODUCTION

Anatomic total shoulder arthroplasty (ATSA) is used for glenohumeral arthropathy causing pain and/or a reduction in range of motion. Despite technological advancements in recent years, glenoid component loosening remains a common complication after ATSA and is one of the main causes for revision surgery. Glenoid loosening can be a trying complication to manage and the optimal course of treatment remains unclear.[1]

Consequently, increasing emphasis is placed on the prevention of loosening. The predicted chance of glenoid component failure plays an important role in clinical decision-making such as patient selection for ATSA or which implants and techniques to use. Several previous studies assessing risk factors of glenoid component loosening identified patient, treatment and prosthesis characteristics related to glenoid component loosening. For example, male sex and a higher critical shoulder angle have been associated with higher rates of loosening and revisions.[2,3] Glenoid retroversion did not impact implant survivorship in one study of ATSA with minimal, noncorrective reaming.[4] However, a larger degree of retroversion may have more impact. Several previous studies have also identified aspects of the glenoid component design that correlated with the rate of loosening, such as whether the poly-ethylene is cross-linked, whether the component is pegged or keeled, or the usage of cement.[5–9] In spite of these studies identifying influential factors, accurate prediction of aseptic loosening of the glenoid component remains a challenge with conventional methods.

In recent years, machine learning or artificial intelligence has been used with increasing precision to predict outcomes after ATSA. A previous study using machine learning was able to accurately predict range of motion and patient-reported outcomes after ATSA. The most influential factors they reported were follow-up time, pre-operative range of motion and patient-reported outcome measures (PROMs), patients' sex, and surgery on the dominant upper limb.[10] Another study was able to accurately predict the improvement in ASES scores after shoulder arthroplasty using machine learning.[11] The most relevant predictive factors were pre-operative ASES scores, pre-operative pain scores, Walch classification, fatty infiltration in the supra- and infraspinatus, and age. A previous study using artificial intelligence to predict patient satisfaction two years after shoulder arthroplasty found baseline Single Assessment Numeric Evaluation score, exercise and activity, workers' compensation status, diagnosis, symptom duration prior to surgery, body mass index, age, smoking status, anatomic

versus reverse TSA, and diabetes to be predicting factors.[12] Two studies report predictive models on short-term complications after ATSA. One study using machine learning to predict complications and 30-day unplanned readmissions found that a history of implant complication, severe chronic kidney disease, teaching hospital status, coronary artery disease and male sex were the most important features.[13] The machine learning model found teaching hospital status and male sex as a markedly more important predictor compared to a logistic regression analysis of the same data. Another study on short-term complications after total shoulder arthroplasty found percentage haematocrit, BMI, and operative time were of highest importance in outcome prediction.[14] These studies demonstrate that machine learning may provide accurate predictions for the outcomes after ATSA. Machine learning is most effective with large amounts of data and is very dependent on the amount of detail. Furthermore, the algorithm needs to be widely applicable; a varied and international database provides the highest external validity.

To our knowledge, there are no studies predicting the long-term complications such as aseptic loosening of the glenoid component using advanced machine learning techniques. Furthermore, previous machine learning studies are limited in accuracy and validity due to the sample size and homogeneity. Therefore, this study aims to develop a clinical prediction model for aseptic loosening of the glenoid component using machine learning algorithms trained on a large international database using clustered data. The large combined dataset is less prone to overfitting, and allows direct validation of models across a range of populations and settings, thereby increasing generalisability.[15] The predictive algorithm will be made available for clinical use through a publicly available online prediction tool.

METHODS AND ANALYSIS

Data collection

For this multi-centre retrospective study individual patient data (IPD) will be collected from previously published studies reporting failure and revision of ATSA. A systematic literature search will be performed in Medline (PubMed) identifying all studies that report a cohort of ATSA including revision as an outcome, published between January 2000 and June 2023. The full search term is available in appendix 1. All original studies reporting revision or failure rates after primary ATSA will be included. Reviews and letters to the editor will be excluded, as well as studies published in languages other than English, Italian, Dutch, and French. Authors will be requested to share the anonymised databases used for the identified studies. Only de-identified databases used for previous studies are included, authors are not required to gather additional data or access patient files. After sharing their data, the authors will be included in in the Machine Learning Consortium. Inclusion criteria for individual patients within the provided databases are a minimum age of 18 years and a

BMJ Open

minimum follow-up of 2 years. Patients that underwent ATSA with a fracture as the indication or patients that underwent concomitant procedures such as a cuff repair, tendon transfer or bone graft will be excluded. The aim is to combine the IPD from previously published studies to create a large international cohort which can be used to train a machine learning algorithm to predict aseptic loosening of the glenoid component after anatomic total shoulder arthroplasty. Based on previous studies, we estimate a glenoid revision rate of approximately 2%.[6,16] The minimum number of events per variable to achieve sufficient accuracy differs per model and is not clearly defined for each technique.[17,18] We aim to include at least 30 events per variable, resulting in a sample size of 7500 patients for a model with up to 5 predictive variables.

Data curation and missing data

Completeness across data sources will be assessed for each variable in the compiled multi-centre database and variables with sufficient completeness (>70% complete) will be selected as input for the machine learning algorithms. Variables with >30% missing data will be excluded. For the remaining variables, missing data will be completed by imputation using multivariate imputation by chained equations (MICE).[19] Uniformity in reporting will be assessed for each variable. If possible, variables will be adjusted or categorised to ensure uniform reporting. In case uniformity of the reported variable across data sources cannot be achieved without guaranteeing correctness, the variable will be excluded. Each data set will be split into training (80%) and test (20%) subsets, stratified by outcome. Fivefold cross-validation of the training set will be used to develop the ML models.[20] Data curation and imputation will be performed using R (R foundation for statistical computing, Vienna, Austria).

Variable Selection

The primary outcome is a revision of the glenoid component for aseptic glenoid loosening. The input variables for both methods are dependent on the uniformity and completeness of the gathered data but will include demographics (eg. age, sex and ethnicity), patient-specific factors (eg, preoperative Body Mass Index, comorbidity, smoking, dominance, previous surgery), disease-specific factors (eg, affected side, indication, Walch classification, fatty-infiltration of cuff muscles) and surgical characteristics (eg, corrective reaming, component design and type, component materials, cementing, and sizes). Before training the machine learning models, relevant variables will be selected using random forest algorithms with recursive selection.[21] At least 10 events for each predictor variable will be included in the model, adhering to the rule of thumb in predictive models of binary variables.[22]

Development of prediction models

Different ML models result in varying performance metrics based on the type of input data (continuous, categorical, dichotomous). Due to the variation in type of input variables in the dataset, several different ML techniques will be used and compared based on model performance. The following machine learning algorithms were chosen for modelling based on prior research [23–27]: Stochastic Gradient Boosting (SGM), Random Forest (RF), Support Vector Machine (SVM), Neural Network (NN) and Elastic-Net Penalized Logistic Regression (PLR). The algorithms will be trained on the training dataset with ten-fold cross-validation repeated 3 times. Cross-validation means dividing data into a selected number of groups, also called folds. First, the data will be divided into 10 equally sized folds. Then, the algorithms will be trained on 9 of the 10 folds (90% of the training data) and tested on the remaining fold (10% of the training data). Results will be averaged across all repetitions of this sequence. Machine learning algorithms will be developed using Python (The Python Software Foundation, Fredericksburg, United States of America). Hyper parameter tuning will be performed as recommended in the Python libraries. The statistician who performs the machine learning analysis will be blinded to the origin of the data, but the anonymised data source will be available to be included as a potential confounding factor.

2728 190 Model Performance

After training all models, the model performance will be analysed according to a proposed framework by Steyerberg et al. including discrimination with the c-statistic, positive predictive value (PPV), true positive rate (TPR), precision-recall curve, calibration slope and intercept and the overall performance with the Brier score.[28]

The c-statistic (area under the curve of a receiver operating characteristic curve) is a score ranging from 0.50 to 1.0 with 1.0 indicating the highest discrimination score and 0.50 indicating the lowest. The higher the discrimination score, the better the model's ability to distinguish patients with and without the outcome of interest. [20,23] The PPV is the proportion of true positive outcomes over the number of predicted positive outcomes. The TPR is the proportion of true positive outcomes over the number of observed positive outcomes. The precision recall curve is a plot of the PPV versus the TPR. A calibration plot plots the estimated versus the observed probabilities for the primary outcome. A perfect calibration plot has an intercept of 0 (<0 reflects overestimation and >0 reflects underestimation of the probability of the outcome) and a slope of 1 (model is performing similarly in training and test datasets).[20,23,28] The null-model Brier score, which equals the probability of glenoid revision in the dataset, will be used to benchmark the algorithm's Brier score. A Brier score lower than the null-model Brier score indicates superior performance of the prediction model to this null benchmark. Perfect prediction would have a Brier score of 0, whereas a Brier score of 1 would indicate the poorest possible prediction.[28]

Page 7 of 14

1		
2 3	209	In addition, the decision curve analysis will be performed and visualized to investigate the net benefit
4 5	205	(weighted average of true positives and false positives) of the conducted algorithms over the range of
6	211	risk thresholds for clinical decision-making.[23,28,29] The net benefit is a weighted average of true
7 8	212	positives and false positives, formula = sensitivity x prevalence – $(1-\text{specificity}) \times (1-\text{prevalence}) \times (1-prevalence$
9 10	213	(odds at the threshold probability). The decision curve of the model will be compared to decision
10 11 12	214	curves of treating everyone as being at risk and treating no one as being at risk.[23]
13	215	Due to the large heterogeneity of the compiled dataset from different international sources and the
14 15	216	internal validation of the prediction models, the generalisability of the model can be intrinsically
16 17	217	confirmed using the above-mentioned performance tests. Therefore, it is not strictly necessary to
17	218	externally validate the final algorithm. However, this study's primary aim is model development.
19 20	219	External validation in a specific setting is advised before applying the algorithm to clinical practice.
21 22 23	220	Open-access clinical prediction tool
24	221	The best performing prediction algorithm will be used to create an open-access clinical prediction
25 26	222	tool, in the form of a publicly available web application accessible on desktops, tablets, and
27 28	223	smartphones.
29 30	224	Patients and public involvement
31 32	225	Patients and the public were not involved in the making of this protocol.
33 34	226	Statistical analysis
35 36		
37	227	Categorical variables will be described as absolute numbers with frequencies, and continuous
38 39	228	variables as medians with interquartile ranges (IQR). The model performance metrics will be
40	229	calculated with 95% confidence interval (CI). Given the retrospective study design, post hoc power
41 42	230	analyses will be conducted to evaluate the sample size of the study with an alpha value of 0.05.
43 44	231	Guidelines
45 46	232	The study set-up will be performed following the Transparent Reporting of Multivariable Prediction
47	233	Models for Individual Prognosis or Diagnosis Guideline for Clustered data (TRIPOD-Cluster).[15]
48 49 50	234	ETHICS AND DISSEMINATION
51	235	For safe multicentre data exchange and analysis, our Machine Learning Consortium will adhere to the
52 53	236	World Health Organisation (WHO) regulation 'Policy on Use and Sharing of Data Collected by WHO
54 55	237	in Member States Outside the Context of Public Health Emergencies'.[30] The study results will be
56	238	disseminated through publication in a peer-reviewed journal. An Institutional Review Board (IRB)
57 58	239	approval has been obtained for each of the included studies and the provided data are anonymised and
59	240	de-identified, no additional prospective data is collected and contributing authors are not required to
60		

access any patient files, no IRB review is required for this study. Patient consent for publication is notapplicable to this study.

243 CURRENT STATUS

Data collection for this project is currently ongoing. The analysis will start in December 2023. Theexpected time of completion for the project is July of 2024.

13 246 DISCUSSION

For an informed decision when considering ATSA, it is important to be able to make an accurate prediction of arthroplasty failure. Previous studies have demonstrated several factors that affect complications and revision after ATSA, including male sex, comorbidities such as chronic kidney disease or coronary artery disease, percentage haematocrit, a higher critical shoulder angle, teaching hospital status, operative time, and the material and design of the prosthesis. [2,3,5–9,13,14] Psychological studies have shown that in human judgement only a limited amount of variables can be taken into account, and that prediction models are generally more accurate and less subject to bias.[31] Machine learning algorithms have been shown to be an effective method in developing patient-specific prediction tools, which may complement human judgement when counselling patients in clinic.[32] Creating an online tool for aseptic loosening of the glenoid component after ATSA can help guide surgeons in selecting patients who will most benefit from this treatment, and considering alternatives in cases of high risk estimates.

The strength of this project is the large amount of data that will be gathered from authors participating in the Machine Learning Consortium, aiming to include a minimum of 7500 patients in total. Using a large, heterogenous international database for development of the algorithm and prediction tool will result in high external validity and may improve applicability world-wide.[15] However, most ML techniques require a larger sample size to achieve an accurate prediction compared to traditional regression models. The minimum events per variable is not clearly defined and differs per technique. Furthermore, in gathering data retrospectively from various sources, the study is subject to variances in the included variables. Low completeness and large variability of reporting may introduce bias. However, only variables that are consistently reported in multiple data sources will be included in the final analysis, variables will be categorised to increase uniformity and missing data will be imputed where possible. The exclusion and categorisation of variables will have to be balanced with the amount of detail in the final analysis. Furthermore, the accuracy of data collection is dependent on third parties providing the data, the method of data collection cannot be verified for all sources. However, the data source will be considered as a confounder. Furthermore, the variety in data sources will increase the external applicability of the algorithm. Last, ML prediction models for a dichotomous outcome are limited to risk classification, the individual risk must be interpreted in the clinical context when used for medical decision making.

1			
2 3	276		
4 5		DEPENDINGER	
5 6 7	277	REFERENCES	
8	278	1 Sharareh B, Yao JJ, Matsen FA, <i>et al.</i> What is the Optimal Management of a Loose Glenoid	
9 10	279	Component after Anatomic Total Shoulder Arthroplasty: A Systematic Review. J shoulder E	Elb
11 12	280	Surg Published Online First: November 2022. doi:10.1016/J.JSE.2022.10.006	
13	281	2 Tabeayo E, Chan PH, Prentice HA, <i>et al.</i> The association between critical shoulder angle and	ł
14 15	282	revision following anatomic total shoulder arthroplasty: a matched case-control study. J	
16 17	283	shoulder Elb Surg 2022;31:1796-802. doi:10.1016/J.JSE.2021.08.003	
18 19	284	3 Aibinder W, Schoch B, Parsons M, et al. Risk factors for complications and revision surgery	,
20	285	after anatomic and reverse total shoulder arthroplasty. J Shoulder Elb Surg 2021;30:e689-70)1.
21 22	286	doi:10.1016/J.JSE.2021.04.029	
23 24	287	4 Dekker TJ, Grantham WJ, Lacheta L, <i>et al.</i> Glenoid retroversion does not impact clinical	
25 26	288	outcomes or implant survivorship after total shoulder arthroplasty with minimal, noncorrectiv	ve
27 28	289	reaming. JSES Int 2022;6:596-603. doi:10.1016/J.JSEINT.2022.02.011	
29 30	290	5 Page RS, Alder-Price AC, Rainbird S, <i>et al.</i> Reduced Revision Rates in Total Shoulder	
31	291	Arthroplasty With Crosslinked Polyethylene: Results From the Australian Orthopaedic	
32 33	292	Association National Joint Replacement Registry. Clin Orthop Relat Res 2022;480:1940-9.	
34 35	293	doi:10.1097/CORR.00000000002293	
36 37	294	6 Dillon MT, Chan PH, Prentice HA, <i>et al.</i> The association between glenoid component design	1
38	295	and revision risk in anatomic total shoulder arthroplasty. J shoulder Elb Surg 2020;29:2089-	-
39 40	296	96. doi:10.1016/J.JSE.2020.02.024	
41 42	297	7 Welsher A, Gohal C, Madden K, <i>et al.</i> A comparison of pegged vs. keeled glenoid component	nts
43 44	298	regarding functional and radiographic outcomes in anatomic total shoulder arthroplasty: a	
45	299	systematic review and meta-analysis. JSES open access 2019;3:136-144.e1.	
46 47	300	doi:10.1016/J.JSES.2019.04.002	
48 49	301	8 Page RS, Pai V, Eng K, et al. Cementless versus cemented glenoid components in	
50 51	302	conventional total shoulder joint arthroplasty: analysis from the Australian Orthopaedic	
52	303	Association National Joint Replacement Registry. J shoulder Elb Surg 2018;27:1859-65.	
53 54	304	doi:10.1016/J.JSE.2018.03.017	
55 56	305	9 Sharplin PK, Frampton CMA, Hirner M. Cemented vs. uncemented glenoid fixation in total	
57 58	306	shoulder arthroplasty for osteoarthritis: a New Zealand Joint Registry study. J shoulder Elb	
59 60	307	Surg 2020;29:2097–103. doi:10.1016/J.JSE.2020.03.008	

1 2			
3 4	308	10	Kumar V, Roche C, Overman S, et al. What Is the Accuracy of Three Different Machine
5	309		Learning Techniques to Predict Clinical Outcomes After Shoulder Arthroplasty? Clin Orthop
6 7	310		Relat Res 2020;478:2351-63. doi:10.1097/CORR.000000000001263
8 9	311	11	McLendon PB, Christmas KN, Simon P, et al. Machine Learning Can Predict Level of
10 11	312		Improvement in Shoulder Arthroplasty. JBJS Open Access 2021;6.
12 13	313		doi:10.2106/JBJS.OA.20.00128
14	314	12	Polce EM, Kunze KN, Fu MC, et al. Development of supervised machine learning algorithms
15 16	315		for prediction of satisfaction at 2 years following total shoulder arthroplasty. J Shoulder Elb
17 18	316		Surg 2021; 30 :e290–9. doi:10.1016/j.jse.2020.09.007
19 20	317	13	Devana SK, Shah AA, Lee C, et al. Development of a Machine Learning Algorithm for
21	318		Prediction of Complications and Unplanned Readmission Following Primary Anatomic Total
22 23	319		Shoulder Replacements. https://doi.org/101177/24715492221075444
24 25	320		2022; 6 :247154922210754. doi:10.1177/24715492221075444
26 27	321	14	Gowd AK, Agarwalla A, Amin NH, et al. Construct validation of machine learning in the
28	322		prediction of short-term postoperative complications following total shoulder arthroplasty. J
29 30	323		Shoulder Elb Surg 2019;28:e410–21. doi:10.1016/J.JSE.2019.05.017
31 32	324	15	Debray TPA, Collins GS, Riley RD, et al. Transparent reporting of multivariable prediction
33 34	325		models developed or validated using clustered data: TRIPOD-Cluster checklist. BMJ
35 36	326		2023; 380 :e071018. doi:10.1136/BMJ-2022-071018
37 38	327	16	Papadonikolakis A, Neradilek MB, Matsen FA. Failure of the glenoid component in anatomic
39	328		total shoulder arthroplasty : A systematic review of the english-language literature between
40 41	329		2006 and 2012. <i>J Bone Jt Surg</i> 2013; 95 :2205–12. doi:10.2106/JBJS.L.00552
42 43	330	17	Van Der Ploeg T, Austin PC, Steyerberg EW. Modern modelling techniques are data hungry:
44	331		A simulation study for predicting dichotomous endpoints. BMC Med Res Methodol 2014;14:1-
45 46	332		13. doi:10.1186/1471-2288-14-137/FIGURES/13
47 48	333	18	Steyerberg EW. Clinical Prediction Models; A Practical Approach to Development,
49 50	334		Validation, and Updating. Springer 2019
51 52	335	19	van Buuren S, Groothuis-Oudshoorn K. mice: Multivariate Imputation by Chained Equations
53 54	336		in R. J Stat Softw 2011;45:1-67. doi:10.18637/JSS.V045.I03
55 56	337	20	Oosterhoff JHF, Gravesteijn BY, Karhade A V., et al. Feasibility of Machine Learning and
57 58	338		Logistic Regression Algorithms to Predict Outcome in Orthopaedic Trauma Surgery. J Bone Jt
59 60	339		<i>Surg - Am Vol</i> 2022; 104 :544–51. doi:10.2106/JBJS.21.00341

1 2			
3	340	21	DeBaun MR, Chavez G, Fithian A, et al. Artificial Neural Networks Predict 30-Day Mortality
4 5	341		After Hip Fracture: Insights From Machine Learning. J Am Acad Orthop Surg 2021;29:977–
6 7	342		83. doi:10.5435/JAAOS-D-20-00429
8 9	343	22	Riley RD, Ensor J, Snell KIE, et al. Calculating the sample size required for developing a
10 11 12 13	344		clinical prediction model. BMJ 2020;368. doi:10.1136/BMJ.M441
12 13	345	23	Oosterhoff JHF, Savelberg ABMC, Karhade AV, et al. Development and internal validation of
14	346		a clinical prediction model using machine learning algorithms for 90 day and 2 year mortality
15 16	347		in femoral neck fracture patients aged 65 years or above. Eur J Trauma Emerg Surg
17 18	348		2022; 48 :4669-82. doi:10.1007/s00068-022-01981-4
19 20	349	24	Oosterhoff JHF, Karhade A V., Oberai T, et al. Prediction of Postoperative Delirium in
21	350		Geriatric Hip Fracture Patients: A Clinical Prediction Model Using Machine Learning
22 23	351		Algorithms. Geriatr Orthop Surg Rehabil 2021;12. doi:10.1177/21514593211062277
24 25	352	25	Bongers MER, Thio QCBS, Karhade A V., et al. Does the SORG Algorithm Predict 5-year
26 27	353		Survival in Patients with Chondrosarcoma? An External Validation. Clin Orthop Relat Res
27 28 29 30 31	354		2019; 477 :2296–303. doi:10.1097/CORR.0000000000000748
	355	26	Karhade A V., Ogink PT, Thio QCBS, et al. Development of machine learning algorithms for
32	356		prediction of prolonged opioid prescription after surgery for lumbar disc herniation. Spine J
33 34	357		2019; 19 :1764–71. doi:10.1016/J.SPINEE.2019.06.002
35 36	358	27	Karhade A V., Ogink PT, Thio QCBS, et al. Discharge Disposition After Anterior Cervical
37 38	359		Discectomy and Fusion. World Neurosurg 2019;132:e14–20.
39 40	360		doi:10.1016/J.WNEU.2019.09.026
41 42	361	28	Steyerberg EW, Vickers AJ, Cook NR, et al. Assessing the performance of prediction models:
42 43	362		A framework for traditional and novel measures. <i>Epidemiology</i> 2010; 21 :128–38.
44 45	363		doi:10.1097/EDE.0b013e3181c30fb2
46 47	364	29	Steyerberg EW, Vergouwe Y. Towards better clinical prediction models: seven steps for
48	365		development and an ABCD for validation. Eur Heart J 2014;35:1925-31.
49 50	366		doi:10.1093/EURHEARTJ/EHU207
51 52	367	30	World Health Organization. Who policy statement on Data Sharing [Internet]. Policy on use
53 54	368		and sharing of data collected in Member States by the World Health Organization (WHO)
55	369		outside the context of public health emergencies. WHO; [cited 2023Apr13]. Available from:
56 57	370		https://www.who.int/docs/default-source/publishing-policies/who-policy-statement-on-data-
58 59 60	371		sharing.pdf?sfvrsn=71a41493_0

2		
3 4	372	31 Daniel Kahneman, Olivier Sibony, Cass R. Sunstein. Noise: A Flaw in Human Judgment
5 6	373	Little, Brown Spark; Hachette Book Group, version 1, 2021
7	374	32 A Machine Learning Algorithm to Identify Patients with Tibial Shaft Fractures at Risk for
8 9	375	Infection After Operative Treatment. J Bone Joint Surg Am 2021;103:532-40.
10	376	doi:10.2106/JBJS.20.00903
11 12 13	377	
14 15 16	378	AUTHOR'S CONTRIBUTIONS
17	379	Authors AM, GB, and MP contributed to the conception, methods, planning, and writing and
18 19	380	reviewing of the protocol. LM and JO contributed to the statistical and machine learning methods of
20	381	the study. JO, PB, GA, JD, LL, and TL reviewed the draft of the protocol and provided supervision.
21 22 23	382	All authors revised the final version of the protocol and gave approval for publication.
23 24 25	383	ACKNOWLEDGEMENTS
26	384	The authors would like to thank Dr. Laurens Allaart and Dr. Sanne van Spanning for providing
27 28 29	385	examples and inspiration for this study based on their previous work.
30 31	386	FUNDING STATEMENT
32	387	This work was supported by Stichting Prof. Michaël-van Vloten fonds, VSBfonds grant number
33 34	388	VSB.22/00098, Prins Bernard Cultuurfonds grant number 40042437/NOD, and Stichting Erasmus
35 36	389	Trustfonds grant number 97030.2021.101.577/193/RB.
37 38 39	390	COMPETING INTERESTS STATEMENT
40	391	LL received consultancy fees from Depuy Stryker and royalties from Depuy-Synthes. TL received
41 42	392	consultancy fees from Depuy Mitek and Stryker. GB received consultancy fees from Depuy-Synthes
43 44	393	and Stryker. The remaining authors certify that he or she has received no funding or has commercial
45 46 47 48 49 50 51 52 53 54 55 56 57	394	associations that might pose a conflict of interest in connection with the submitted article.
58 59		

3 4	1
5 6	2
7	3
8 9	
10 11	4 5
12	6
13 14	7
15 16	8
17 18	9
19 20	40
21	10
22 23	
24	
25 26	
27	
28 29	
30	
31 32	
33	
34 35	
36	
37 38	
30 39	
40	
41 42	
43	
44 45	
46	
47	
48 49	
50	
51 52	
53	
54 55	
55 56	
57	
58 59	

60

1 **APPENDIX 1**

2 Search strategy:

3 ("Arthroplasty, Replacement, Shoulder" [Mesh] OR "Total shoulder arthroplasty" [tiab] OR "Anatomic

- shoulder arthroplasty"[tiab] OR "TSA"[tiab] OR "ATSA"[tiab] OR "Total shoulder prosthes*"[tiab] 4
- OR "Anatomic shoulder prosthes*"[tiab]) AND ("Reoperation"[Mesh] OR "reoperation"[tiab] OR 5
- "re-operation"[tiab] OR "revision"[tiab] OR "survival"[tiab] OR "implant-survival"[tiab] OR 6
- , ilu Jesh] O. I trial, Controlk 7 "Prosthesis Failure" [Mesh] OR "failure" [tiab] OR "loosening" [tiab] OR "aseptic" [tiab] OR
- "Postoperative Complications" [Mesh] OR "complication" [tiab]) 8

9 Filters: Clinical study, Clinical trial, Controlled clinical trial, Comparative study, Dataset

TRIPOD Checklist: Prediction Model Development and Validation

	Page	2 14 of	14
$\prec \Lambda$			

Section/Topic	Item		Checklist Item	Pag
Title	1	D;V	Identify the study as developing and/or validating a multivariable prediction model, the target population, and the outcome to be predicted.	x
Abstract	2	D;V	Provide a summary of objectives, study design, setting, participants, sample size,	x
ntroduction		,	predictors, outcome, statistical analysis, results, and conclusions.	
			Explain the medical context (including whether diagnostic or prognostic) and rationale	
Background and objectives	3а	D;V	for developing or validating the multivariable prediction model, including references to existing models.	X
	3b	D;V	Specify the objectives, including whether the study describes the development or validation of the model or both.	x
Methods				-
Source of data	4a	D;V	Describe the study design or source of data (e.g., randomized trial, cohort, or registry data), separately for the development and validation data sets, if applicable.	x
	4b	D;V	Specify the key study dates, including start of accrual; end of accrual; and, if applicable, end of follow-up.	X
Participants	5a	D;V	Specify key elements of the study setting (e.g., primary care, secondary care, general population) including number and location of centres.	X
i antopanto	5b	D;V	Describe eligibility criteria for participants.	X
	5c	D;V	Give details of treatments received, if relevant. Clearly define the outcome that is predicted by the prediction model, including how and	X
Outcome	6a 6b	D;V D;V	when assessed.	X
		,	Report any actions to blind assessment of the outcome to be predicted. Clearly define all predictors used in developing or validating the multivariable prediction	X
Predictors	7a	D;V	model, including how and when they were measured. Report any actions to blind assessment of predictors for the outcome and other	X
	7b	D;V	predictors.	X
Sample size	8	D;V	Explain how the study size was arrived at.	X
Missing data	9	D;V	Describe how missing data were handled (e.g., complete-case analysis, single imputation, multiple imputation) with details of any imputation method.	x
	10a	D	Describe how predictors were handled in the analyses.	x
	10b	D	Specify type of model, all model-building procedures (including any predictor selection),	x
Statistical			and method for internal validation.	
analysis methods	10c	V	For validation, describe how the predictions were calculated. Specify all measures used to assess model performance and, if relevant, to compare	X
methods	10d	D;V	multiple models.	X
	10e	V	Describe any model updating (e.g., recalibration) arising from the validation, if done.	X
Risk groups	11	D;V	Provide details on how risk groups were created, if done.	X
Development vs. validation	12	V	For validation, identify any differences from the development data in setting, eligibility criteria, outcome, and predictors.	X
Results				1
	13a	D;V	Describe the flow of participants through the study, including the number of participants with and without the outcome and, if applicable, a summary of the follow-up time. A diagram may be helpful.	N//
Participants	13b	D;V	Describe the characteristics of the participants (basic demographics, clinical features, available predictors), including the number of participants with missing data for predictors and outcome.	N//
	13c	V	For validation, show a comparison with the development data of the distribution of	N/
	14a	D	important variables (demographics, predictors and outcome). Specify the number of participants and outcome events in each analysis.	/ N/
Model development	14b	D	If done, report the unadjusted association between each candidate predictor and outcome.	N/
Model	15a	D	Present the full prediction model to allow predictions for individuals (i.e., all regression coefficients, and model intercept or baseline survival at a given time point).	N/
specification	15b	D	Explain how to the use the prediction model.	N/
Model performance	16	D;V	Report performance measures (with CIs) for the prediction model.	N//
Model-updating	17	V	If done, report the results from any model updating (i.e., model specification, model performance).	N/
Discussion				
Limitations	18	D;V	Discuss any limitations of the study (such as nonrepresentative sample, few events per predictor, missing data).	x
Interpretation	19a	V	For validation, discuss the results with reference to performance in the development data, and any other validation data.	x
Interpretation	19b	D;V	Give an overall interpretation of the results, considering objectives, limitations, results	N//
Implications	20	D;V	from similar studies, and other relevant evidence. Discuss the potential clinical use of the model and implications for future research.	X
Other information		_, v		
Supplementary information	21	D;V	Provide information about the availability of supplementary resources, such as study protocol, Web calculator, and data sets.	x

*Items relevant only to the development of a prediction model are denoted by D, items relating solely to a validation of a prediction model are denoted by V, and items relating to both are denoted D;V. We recommend using the TRIPOD Checklist in conjunction with the TRIPOD Explanation and Elaboration document.

BMJ Open

Developing a machine learning algorithm to predict the probability of aseptic loosening of the glenoid component after anatomic total shoulder arthroplasty: protocol for a retrospective, multicentre study

Journal:	BMJ Open
Manuscript ID	bmjopen-2023-074700.R2
Article Type:	Protocol
Date Submitted by the Author:	23-Sep-2023
Complete List of Authors:	Macken, Arno; Erasmus Medical Center, Department of Orthopaedics and Sports Medicine; Clinique Generale Annecy, Orthopaedic Surgery Macken, Loïc; Vrije Universiteit Amsterdam, Faculty of Science Oosterhoff, Jacobien; Delft University of Technology, Department of Engineering Systems and Services Boileau, Pascal; Centre Hospitalier Universitaire de Nice Athwal, George; Schulich School of Medicine and Dentistry Doornberg, Job; University Medical Centre Groningen, Orthopaedic Surgery Lafosse, Laurent; Clinique Générale Annecy, Orthopaedic Surgery van den Bekerom, Michel; Vrije Universiteit Amsterdam, Department of Human Movement Sciences; OLVG, Department of Orthopaedic Surgery Buijze, Geert Alexander; Clinique Générale Annecy, Orthopaedic Surgery; Hôpital Lapeyronie, Department of Orthopedic Surgery
Primary Subject Heading :	Surgery
Secondary Subject Heading:	Health informatics, Research methods
Keywords:	ORTHOPAEDIC & TRAUMA SURGERY, Shoulder < ORTHOPAEDIC & TRAUMA SURGERY, Health informatics < BIOTECHNOLOGY & BIOINFORMATICS, Clinical Decision-Making, Risk Factors

SCHOLARONE[™] Manuscripts

1		
2		
3 4	1	Developing a machine learning algorithm to predict the probability of aseptic loosening of the
5	2	glenoid component after anatomic total shoulder arthroplasty: protocol for a retrospective,
6 7	3	multicentre study
8 9	4	Arno A. Macken ^{1,2} , Loïc C. Macken ³ , Jacobien H.F. Oosterhoff ⁴ , Pascal Boileau ⁵ , George S. Athwal ⁶ ,
10 11	5	Job N. Doornberg ⁷ , Laurent Lafosse ¹ , Thibault Lafosse ¹ , Michel P.J. van den Bekerom ^{8,9} , Geert
12 13	6	Alexander Buijze ^{1,10,11} , on behalf the Machine Learning Consortium
13 14	7	1. Alps Surgery Institute, Clinique Générale d'Annecy, France
15	8	2. Department of Orthopaedic Surgery and Sports medicine, Erasmus Medical Centre,
16	9	Rotterdam, Netherlands
17	10	3. Faculty of Science, Vrije Universiteit Amsterdam, Netherlands
18	11	4. Department of Engineering Systems and Services, Faculty of Technology Policy and
19		
20	12	Management, Delft University of Technology, Netherlands
21	13	5. Institut de Chirurgie Réparatrice, Locomoteur & Sports, Centre Hospitalier Universitaire de
22	14	Nice, France
23	15	6. Roth McFarlane Hand and Upper Limb Center, Schulich School of Medicine and Dentistry,
24	16	London, Ontario, Canada
25	17	7. Departments of Orthopaedic and Trauma Surgery, University Medical Center Groningen,
	18	Netherlands
26	19	8. Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences,
27	20	Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, Netherlands
28	20	9. Shoulder and Elbow Unit, Joint Research, Department of Orthopaedic Surgery, OLVG,
29		
30	22	Amsterdam, Netherlands
31	23	10. Department of Orthopedic Surgery, Amsterdam Movement Sciences, Amsterdam UMC,
32	24	location AMC, University of Amsterdam, Amsterdam, Netherlands
33	25	11. Department of Orthopedic Surgery, Montpellier University Medical Center, Lapeyronie
34	26	Hospital, University of Montpellier, Montpellier, France
35	~ 7	
36	27	Correspondence to:
37	28	Arno A. Macken
38	29	4 Chem. de la Tour la Reine, 74000 Annecy, France
39	30	+33 4 50 33 04 69
40	31	arnomacken@gmail.com
41	32	
42		
43	33	KEYWORDS: "Arthroplasty, Replacement, Shoulder", "Shoulder Prosthesis", "Glenoid Cavity",
44	55	
45	34	"Prosthesis Failure", "Reoperation", "Artificial Intelligence", "Machine Learning"
46		
47	35	
48	55	
49	26	WORD COUNT 2020
50	36	WORD COUNT: 3028
51		
52	37	
53		
55 54	38	ABSTRACT
	50	
55 56		
56	39	Introduction
57		
58 50	40	Despite technological advancements in recent years, glenoid component loosening remains a common
59 60	41	
60	41	complication after anatomic total shoulder arthroplasty (ATSA) and is one of the main causes for

42 revision surgery. Increasing emphasis is placed on the prevention of glenoid component failure.

43 Previous studies have successfully predicted range of motion, patient-reported outcomes, and short-

44 term complications after ATSA using machine learning methods, but an accurate predictive model for

45 (glenoid component) revision is currently lacking. This study aims to use a large international

46 database to accurately predict aseptic loosening of the glenoid component after ATSA using machine

47 learning algorithms.

48 Methods and analysis

For this multi-centre retrospective study, individual patient data will be compiled from previously published studies reporting revision of ATSA. A systematic literature search will be performed in Medline (PubMed) identifying all studies reporting outcomes of ATSA. Authors will be contacted and invited to participate in the Machine Learning Consortium by sharing their anonymised databases. All databases reporting revisions after ATSA will be included and individual patients with a follow-up less than 2 years or a fracture as the indication for ATSA will be excluded. First, features (predictive variables) will be identified using a random forest feature selection. The resulting features from the compiled database will be used to train various machine learning algorithms (Stochastic Gradient Boosting, Random Forest, Support Vector Machine, Neural Network and Elastic-Net Penalized Logistic Regression). The developed and validated algorithms will be evaluated across discrimination (c-statistic), calibration, the Brier score, and the decision curve analysis. The best-performing algorithm will be used to create an open-access online prediction tool.

61 Ethics and dissemination

62 Data will be collected adhering to the World Health Organisation (WHO) regulation on data sharing.
63 An Institutional Review Board (IRB) review is not applicable. The study results will be published in a
64 peer-reviewed journal.

66 STRENGTHS AND LIMITATIONS OF THIS STUDY

- A large international database will be collected, which increases accuracy, validity, and
 external applicability.
 - A clinical prediction model using machine learning algorithms will be developed to estimate
 the probability of aseptic loosening of the glenoid after anatomic total shoulder arthroplasty.
 - An open-access prediction tool based on the best performing algorithm will be made available
 online that can guide medical professionals in personalised treatment decision-making.
- The study is dependent on data provided by third parties, which is a potential source of bias.
- ⁵⁸
 ⁵⁹
 ⁶⁰
 ⁷⁵
 ⁶⁰
 ⁷⁵
 ⁶⁰
 ⁷⁵
 ⁷¹
 ⁷²
 ⁷³
 ⁷⁴
 ⁷⁵
 ⁷⁵
 ⁷⁵
 ⁷⁵
 ⁷⁵
 ⁷⁵
 ⁷⁵
 ⁷⁶
 ⁷⁷
 ⁷⁶
 ⁷⁷
 ⁷⁷
 ⁷⁸
 ⁷⁸
 ⁷⁹
 ⁷⁹</l

2		
3 4	76	
5	77	INTRODUCTION
6 7		
8	78	Anatomic total shoulder arthroplasty (ATSA) is used for glenohumeral arthropathy causing pain
9 10	79	and/or a reduction in range of motion. Despite technological advancements in recent years, glenoid
11	80	component loosening remains a common complication after ATSA and is one of the main causes for
12 13	81	revision surgery. Glenoid loosening can be a trying complication to manage and the optimal course of
14 15	82	treatment remains unclear.[1]
16	83	Consequently, increasing emphasis is placed on the prevention of loosening. The predicted chance of
17 18	84	glenoid component failure plays an important role in clinical decision-making such as patient
19 20	85	selection for ATSA or which implants and techniques to use. Several previous studies assessing risk
21	86	factors of glenoid component loosening identified patient, treatment and prosthesis characteristics
22 23	87	related to glenoid component loosening. For example, male sex and a higher critical shoulder angle
24	88	have been associated with higher rates of loosening and revisions.[2,3] Glenoid retroversion did not
25 26	89	impact implant survivorship in one study of ATSA with minimal, noncorrective reaming.[4]
27	90	However, a larger degree of retroversion may have more impact. Several previous studies have also
28 29	91	identified aspects of the glenoid component design that correlated with the rate of loosening, such as
30 31	92	whether the poly-ethylene is cross-linked, whether the component is pegged or keeled, or the usage of
32	93	cement.[5–9] In spite of these studies identifying influential factors, accurate prediction of aseptic
33 34	94	loosening of the glenoid component remains a challenge with conventional methods.
35		
36 37	95 06	In recent years, machine learning or artificial intelligence has been used with increasing precision to
38 39	96	predict outcomes after ATSA. A previous study using machine learning was able to accurately predict
39 40	97	range of motion and patient-reported outcomes after ATSA. The most influential factors they reported
41 42	98	were follow-up time, pre-operative range of motion and patient-reported outcome measures (PROMs),
43	99	patients' sex, and surgery on the dominant upper limb.[10] Another study was able to accurately
44 45	100	predict the improvement in ASES scores after shoulder arthroplasty using machine learning.[11] The
46	101	most relevant predictive factors were pre-operative ASES scores, pre-operative pain scores, Walch
47 48	102	classification, fatty infiltration in the supra- and infraspinatus, and age. A previous study using
49	103	artificial intelligence to predict patient satisfaction two years after shoulder arthroplasty found
50 51	104	baseline Single Assessment Numeric Evaluation score, exercise and activity, workers' compensation
52	105	status, diagnosis, symptom duration prior to surgery, body mass index, age, smoking status, anatomic
53 54	106	versus reverse TSA, and diabetes to be predicting factors.[12] Two studies report predictive models
55 56	107	on short-term complications after ATSA. One study using machine learning to predict complications
57	108	and 30-day unplanned readmissions found that a history of implant complication, severe chronic
58 59	109	kidney disease, teaching hospital status, coronary artery disease and male sex were the most important
60	110	features.[13] The machine learning model found teaching hospital status and male sex as a markedly

more important predictor compared to a logistic regression analysis of the same data. Another study on short-term complications after total shoulder arthroplasty found percentage haematocrit, BMI, and operative time were of highest importance in outcome prediction.[14] These studies demonstrate that machine learning may provide accurate predictions for the outcomes after ATSA. Machine learning is most effective with large amounts of data and is very dependent on the amount of detail. Furthermore, the algorithm needs to be widely applicable; a varied and international database provides the highest external validity. To our knowledge, there are no studies predicting the long-term complications such as aseptic loosening of the glenoid component using advanced machine learning techniques. Furthermore, previous machine learning studies are limited in accuracy and validity due to the sample size and homogeneity. Therefore, this study aims to develop a clinical prediction model for aseptic loosening of the glenoid component using machine learning algorithms trained on a large international database using clustered data. The large combined dataset is less prone to overfitting, and allows direct validation of models across a range of populations and settings, thereby increasing generalisability.[15] The predictive algorithm will be made available for clinical use through a publicly available online prediction tool. C. **METHODS AND ANALYSIS Data collection** For this multi-centre retrospective study individual patient data (IPD) will be collected from previously published studies reporting failure and revision of ATSA. A systematic literature search will be performed in Medline (PubMed) identifying all studies that report a cohort of ATSA including revision as an outcome, published between January 2000 and June 2023. The limit was set at January 2000 to increase the likelihood of the dataset that was used for the study still being available. The minimum required data retention period varies between countries but is generally 20 years or less. The full search strategy is available in appendix 1. All original studies reporting revision or failure rates after primary ATSA will be included. Reviews and letters to the editor will be excluded, as well as studies published in languages other than English, Italian, Dutch, and French. Authors will be requested to share the anonymised databases used for the identified studies. Only de-identified databases used for previous studies are included, authors are not required to gather additional data or access patient files. After sharing their data, the authors will be included in in the Machine Learning Consortium. Inclusion criteria for individual patients within the provided databases are a minimum age of 18 years and a minimum follow-up of 2 years. Patients that underwent ATSA with a fracture as the indication or patients that underwent concomitant procedures such as a cuff repair, tendon transfer or bone graft will be excluded. The aim is to combine the IPD from previously published studies to

Page 5 of 14

BMJ Open

146 create a large international cohort which can be used to train a machine learning algorithm to predict

aseptic loosening of the glenoid component after anatomic total shoulder arthroplasty. Based on
previous studies, we estimate a glenoid revision rate of approximately 2%.[6,16] The minimum

149 number of events per variable to achieve sufficient accuracy differs per model and is not clearly

0 150 defined for each technique.[17,18] We aim to include at least 30 events per variable, resulting in a

1 151 sample size of 7500 patients for a model with up to 5 predictive variables.

³ 152 Data curation and missing data

Completeness across data sources will be assessed for each variable in the compiled multi-centre database and variables with sufficient completeness (>70% complete) will be selected as input for the machine learning algorithms. Variables with >30% missing data will be excluded. For the remaining variables, missing data will be completed by imputation using multivariate imputation by chained equations (MICE).[19] Uniformity in reporting will be assessed for each variable. If possible, variables will be adjusted or categorised to ensure uniform reporting. In case uniformity of the reported variable across data sources cannot be achieved without guaranteeing correctness, the variable will be excluded. Each data set will be split into training (80%) and test (20%) subsets, stratified by outcome. Fivefold cross-validation of the training set will be used to develop the ML models.[20] Data curation and imputation will be performed using R (R foundation for statistical computing, Vienna, Austria).

164 Variable selection

The primary outcome is a revision of the glenoid component for aseptic glenoid loosening. The input variables for both methods are dependent on the uniformity and completeness of the gathered data but will include demographics (eg. age, sex and ethnicity), patient-specific factors (eg, preoperative Body Mass Index, comorbidity, smoking, dominance, previous surgery), disease-specific factors (eg, affected side, indication, Walch classification, fatty-infiltration of cuff muscles) and surgical characteristics (eg. corrective reaming, component design and type, component materials, cementing, and sizes). Before training the machine learning models, relevant variables will be selected using random forest algorithms with recursive selection.[21] At least 10 events for each predictor variable will be included in the model, adhering to the rule of thumb in predictive models of binary variables.[22]

² 175 **Development of prediction models**

176 Different ML models result in varying performance metrics based on the type of input data

(continuous, categorical, dichotomous). Due to the variation in type of input variables in the dataset,

- 58 178 several different ML techniques will be used and compared based on model performance. The
- $\frac{59}{60}$ 179 following machine learning algorithms were chosen for modelling based on prior research [23–27]:

Stochastic Gradient Boosting (SGM), Random Forest (RF), Support Vector Machine (SVM), Neural Network (NN) and Elastic-Net Penalized Logistic Regression (PLR). The algorithms will be trained on the training dataset with ten-fold cross-validation repeated 3 times. Cross-validation means dividing data into a selected number of groups, also called folds. First, the data will be divided into 10 equally sized folds. Then, the algorithms will be trained on 9 of the 10 folds (90% of the training data) and tested on the remaining fold (10% of the training data). Results will be averaged across all repetitions of this sequence. Machine learning algorithms will be developed using Python (The Python Software Foundation, Fredericksburg, United States of America). Hyper parameter tuning will be performed as recommended in the Python libraries. The statistician who performs the machine learning analysis will be blinded to the origin of the data, but the anonymised data source will be available to be included as a potential confounding factor.

Model performance

After training all models, the model performance will be analysed according to a proposed framework by Steverberg et al. including discrimination with the c-statistic, positive predictive value (PPV), true positive rate (TPR), precision-recall curve, calibration slope and intercept and the overall performance with the Brier score.[28]

The c-statistic (area under the curve of a receiver operating characteristic curve) is a score ranging from 0.50 to 1.0 with 1.0 indicating the highest discrimination score and 0.50 indicating the lowest. The higher the discrimination score, the better the model's ability to distinguish patients with and without the outcome of interest. [20,23] The PPV is the proportion of true positive outcomes over the number of predicted positive outcomes. The TPR is the proportion of true positive outcomes over the number of observed positive outcomes. The precision recall curve is a plot of the PPV versus the TPR. A calibration plot plots the estimated versus the observed probabilities for the primary outcome. A perfect calibration plot has an intercept of 0 (<0 reflects overestimation and >0 reflects underestimation of the probability of the outcome) and a slope of 1 (model is performing similarly in training and test datasets).[20,23,28] The null-model Brier score, which equals the probability of glenoid revision in the dataset, will be used to benchmark the algorithm's Brier score. A Brier score lower than the null-model Brier score indicates superior performance of the prediction model to this null benchmark. Perfect prediction would have a Brier score of 0, whereas a Brier score of 1 would indicate the poorest possible prediction.[28]

In addition, the decision curve analysis will be performed and visualized to investigate the net benefit (weighted average of true positives and false positives) of the conducted algorithms over the range of risk thresholds for clinical decision-making. [23,28,29] The net benefit is a weighted average of true positives and false positives, formula = sensitivity x prevalence - (1-specificity) x (1 - prevalence) x

3 4 5 6 7	214	(odds at the threshold probability). The decision curve of the model will be compared to decision
	215	curves of treating everyone as being at risk and treating no one as being at risk.[23]
	216	Due to the large heterogeneity of the compiled dataset from different international sources and the
8 9	217	internal validation of the prediction models, the generalisability of the model can be intrinsically
10 11	218	confirmed using the above-mentioned performance tests. Therefore, it is not strictly necessary to
12	219	externally validate the final algorithm. However, this study's primary aim is model development.
13 14	220	External validation in a specific setting is advised before applying the algorithm to clinical practice.
15 16 17 18	221	Open-access clinical prediction tool
	222	The best performing prediction algorithm will be used to create an open-access clinical prediction
19 20	223	tool, in the form of a publicly available web application accessible on desktops, tablets, and
21	224	smartphones.
22 23 24 25 26	225	Statistical analysis
	226	Categorical variables will be described as absolute numbers with frequencies, and continuous
27	227	variables as medians with interquartile ranges (IQR). The model performance metrics will be
28 29 30 31 32 33 34 35	228	calculated with 95% confidence interval (CI). Given the retrospective study design, post hoc power
	229	analyses will be conducted to evaluate the sample size of the study with an alpha value of 0.05.
	230	Guidelines
	231	The study set-up will be performed following the Transparent Reporting of Multivariable Prediction
36 37	232	Models for Individual Prognosis or Diagnosis Guideline for Clustered data (TRIPOD-Cluster).[15]
38 39	233	Patient and public involvement
40 41 42	234	None.
43 44	235	ETHICS AND DISSEMINATION
45 46	236	For safe multicentre data exchange and analysis, our Machine Learning Consortium will adhere to the
47	237	World Health Organisation (WHO) regulation 'Policy on Use and Sharing of Data Collected by WHO
48 49	238	in Member States Outside the Context of Public Health Emergencies'.[30] An Institutional Review
50 51 52 53 54 55 56	239	Board (IRB) approval has been obtained for each of the included studies and the provided data are
	240	anonymised and de-identified, no additional prospective data is collected and contributing authors are
	241	not required to access any patient files, no IRB review is required for this study. Patient consent for
	242	publication is not applicable to this study.
57	243	The study results will be disseminated through publication in a peer-reviewed journal. To facilitate
58 59 60	244	reproduction of the results and external validation of the algorithm, the (anonymous) code of the
	245	developed predictive algorithms will be made available upon request with the authors.

Data collection for this project is currently ongoing. The analysis will start in December 2023. Theexpected time of completion for the project is July 2024.

248 DISCUSSION

For an informed decision when considering ATSA, it is important to be able to make an accurate prediction of arthroplasty failure. Previous studies have demonstrated several factors that affect complications and revision after ATSA, including male sex, comorbidities such as chronic kidney disease or coronary artery disease, percentage haematocrit, a higher critical shoulder angle, teaching hospital status, operative time, and the material and design of the prosthesis. [2,3,5–9,13,14] Psychological studies have shown that in human judgement only a limited amount of variables can be taken into account, and that prediction models are generally more accurate and less subject to bias.[31] Machine learning algorithms have been shown to be an effective method in developing patient-specific prediction tools, which may complement human judgement when counselling patients in clinic.[32] Creating an online tool for aseptic loosening of the glenoid component after ATSA can help guide surgeons in selecting patients who will most benefit from this treatment, and considering alternatives in cases of high risk estimates.

The strength of this project is the large amount of data that will be gathered from authors participating in the Machine Learning Consortium, aiming to include a minimum of 7500 patients in total. Using a large, heterogenous international database for development of the algorithm and prediction tool will result in high external validity and may improve applicability world-wide.[15] However, most ML techniques require a larger sample size to achieve an accurate prediction compared to traditional regression models. The minimum events per variable is not clearly defined and differs per technique. Furthermore, in gathering data retrospectively from various sources, the study is subject to variances in the included variables. Low completeness and large variability of reporting may introduce bias. However, only variables that are consistently reported in multiple data sources will be included in the final analysis, variables will be categorised to increase uniformity and missing data will be imputed where possible. The exclusion and categorisation of variables will have to be balanced with the amount of detail in the final analysis. Furthermore, the accuracy of data collection is dependent on third parties providing the data, the method of data collection cannot be verified for all sources. However, the data source will be considered as a confounder. Furthermore, the variety in data sources will increase the external applicability of the algorithm. Last, ML prediction models for a dichotomous outcome are limited to risk classification, the individual risk must be interpreted in the clinical context when used for medical decision making.

1 2						
3 4	280	CONTRIBUTORS				
5 6	281	Authors AM, GB, and MP contributed to the conception, methods, planning, and writing and				
7	282	reviewing of the protocol. LM and JO contributed to the statistical and machine learning methods of				
8 9	283	the study. JO, PB, GA, JD, LL, and TL reviewed the draft of the protocol and provided supervision.				
10	284	All authors revised the final version of the protocol and gave approval for publication.				
11 12 13	285	ACKNOWLEDGEMENTS				
14 15	286	The authors would like to thank Dr. Laurens Allaart and Dr. Sanne van Spanning for providing				
16 17	287	examples and inspiration for this study based on their previous work.				
18 19	288	FUNDING				
20 21	289	This work was supported by Stichting Prof. Michaël-van Vloten fonds, VSB fonds grant number				
22 23	290	VSB.22/00098, Prins Bernard Cultuurfonds grant number 40042437/NOD, and Stichting Erasmus				
24	291	Trustfonds grant number 97030.2021.101.577/193/RB.				
25 26 27	292	COMPETING INTERESTS				
28 29	293	LL received consultancy fees from Depuy Stryker and royalties from Depuy-Synthes. TL received				
30	294	consultancy fees from Depuy Mitek and Stryker. GB received consultancy fees from Depuy-Synthes				
31 32	295	and Stryker. The remaining authors certify that they have received no funding and have no				
33 34	296	commercial associations that might pose a conflict of interest in connection with the submitted article.				
35	297					
36 37		4				
38 39	298	REFERENCES				
40	299	1 Sharareh B, Yao JJ, Matsen FA, <i>et al</i> . What is the Optimal Management of a Loose Glenoid				
41 42	300	Component after Anatomic Total Shoulder Arthroplasty: A Systematic Review. J shoulder Elb				
43 44	301	Surg Published Online First: November 2022. doi:10.1016/J.JSE.2022.10.006				
45	302	2 Tabeayo E, Chan PH, Prentice HA, <i>et al.</i> The association between critical shoulder angle and				
46 47	303	revision following anatomic total shoulder arthroplasty: a matched case-control study. J				
48 49	304	shoulder Elb Surg 2022; 31 :1796–802. doi:10.1016/J.JSE.2021.08.003				
50	305	3 Aibinder W, Schoch B, Parsons M, <i>et al.</i> Risk factors for complications and revision surgery				
51 52	305	after anatomic and reverse total shoulder arthroplasty. <i>J Shoulder Elb Surg</i> 2021; 30 :e689–701.				
53 54 55	307	doi:10.1016/J.JSE.2021.04.029				
	507	uoi.10.1010/3.35L.2021.04.02)				
56 57	308	4 Dekker TJ, Grantham WJ, Lacheta L, <i>et al.</i> Glenoid retroversion does not impact clinical				
58	309	outcomes or implant survivorship after total shoulder arthroplasty with minimal, noncorrective				
59 60	310	reaming. JSES Int 2022;6:596–603. doi:10.1016/J.JSEINT.2022.02.011				

1 2			
3	311	5	Page RS, Alder-Price AC, Rainbird S, et al. Reduced Revision Rates in Total Shoulder
4 5	312		Arthroplasty With Crosslinked Polyethylene: Results From the Australian Orthopaedic
6 7	313		Association National Joint Replacement Registry. Clin Orthop Relat Res 2022;480:1940-9.
8	314		doi:10.1097/CORR.00000000002293
9 10	315	6	Dillon MT, Chan PH, Prentice HA, et al. The association between glenoid component design
11 12	316	-	and revision risk in anatomic total shoulder arthroplasty. <i>J shoulder Elb Surg</i> 2020; 29 :2089–
13	317		96. doi:10.1016/J.JSE.2020.02.024
14 15		-	
16 17	318	7	Welsher A, Gohal C, Madden K, et al. A comparison of pegged vs. keeled glenoid components
18	319		regarding functional and radiographic outcomes in anatomic total shoulder arthroplasty: a
19 20	320		systematic review and meta-analysis. <i>JSES open access</i> 2019; 3 :136-144.e1.
21	321		doi:10.1016/J.JSES.2019.04.002
22 23	322	8	Page RS, Pai V, Eng K, et al. Cementless versus cemented glenoid components in
24 25	323		conventional total shoulder joint arthroplasty: analysis from the Australian Orthopaedic
26	324		Association National Joint Replacement Registry. J shoulder Elb Surg 2018;27:1859-65.
27 28	325		doi:10.1016/J.JSE.2018.03.017
29 30	326	9	Sharplin PK, Frampton CMA, Hirner M. Cemented vs. uncemented glenoid fixation in total
31	327		shoulder arthroplasty for osteoarthritis: a New Zealand Joint Registry study. J shoulder Elb
32 33	328		Surg 2020;29:2097–103. doi:10.1016/J.JSE.2020.03.008
34 35	329	10	Kumar V, Roche C, Overman S, et al. What Is the Accuracy of Three Different Machine
36 37	330	-	Learning Techniques to Predict Clinical Outcomes After Shoulder Arthroplasty? Clin Orthop
38	331		<i>Relat Res</i> 2020; 478 :2351–63. doi:10.1097/CORR.00000000001263
39 40		11	
41	332	11	McLendon PB, Christmas KN, Simon P, <i>et al.</i> Machine Learning Can Predict Level of
42 43	333		Improvement in Shoulder Arthroplasty. <i>JBJS Open Access</i> 2021; 6 .
44 45	334		doi:10.2106/JBJS.OA.20.00128
46	335	12	Polce EM, Kunze KN, Fu MC, et al. Development of supervised machine learning algorithms
47 48	336		for prediction of satisfaction at 2 years following total shoulder arthroplasty. J Shoulder Elb
49 50	337		Surg 2021; 30 :e290–9. doi:10.1016/j.jse.2020.09.007
51	338	13	Devana SK, Shah AA, Lee C, et al. Development of a Machine Learning Algorithm for
52 53	339		Prediction of Complications and Unplanned Readmission Following Primary Anatomic Total
54 55	340		Shoulder Replacements. https://doi.org/101177/24715492221075444
56	341		2022;6:247154922210754. doi:10.1177/24715492221075444
57 58	342	14	Gowd AK, Agarwalla A, Amin NH, et al. Construct validation of machine learning in the
59 60	343		prediction of short-term postoperative complications following total shoulder arthroplasty. J
	-		

2			
3 4	344		Shoulder Elb Surg 2019;28:e410–21. doi:10.1016/J.JSE.2019.05.017
5 6	345	15	Debray TPA, Collins GS, Riley RD, et al. Transparent reporting of multivariable prediction
7	346		models developed or validated using clustered data: TRIPOD-Cluster checklist. BMJ
8 9	347		2023; 380 :e071018. doi:10.1136/BMJ-2022-071018
10 11	348	16	Papadonikolakis A, Neradilek MB, Matsen FA. Failure of the glenoid component in anatomic
12 13	349		total shoulder arthroplasty : A systematic review of the english-language literature between
14	350		2006 and 2012. J Bone Jt Surg 2013;95:2205–12. doi:10.2106/JBJS.L.00552
15 16	351	17	Van Der Ploeg T, Austin PC, Steyerberg EW. Modern modelling techniques are data hungry:
17 18	352	17	A simulation study for predicting dichotomous endpoints. <i>BMC Med Res Methodol</i> 2014;14:1–
19	353		13. doi:10.1186/1471-2288-14-137/FIGURES/13
20 21	222		13. doi:10.1180/14/1-2288-14-13//1100/RES/15
22	354	18	Steyerberg EW. Clinical Prediction Models; A Practical Approach to Development,
23 24	355		Validation, and Updating. Springer 2019
25 26	356	19	van Buuren S, Groothuis-Oudshoorn K. mice: Multivariate Imputation by Chained Equations
26 27	357		in R. J Stat Softw 2011; 45 :1–67. doi:10.18637/JSS.V045.I03
28 29			
30	358	20	Oosterhoff JHF, Gravesteijn BY, Karhade A V., et al. Feasibility of Machine Learning and
31 32	359		Logistic Regression Algorithms to Predict Outcome in Orthopaedic Trauma Surgery. J Bone Jt
33	360		<i>Surg - Am Vol</i> 2022; 104 :544–51. doi:10.2106/JBJS.21.00341
34 35	361	21	DeBaun MR, Chavez G, Fithian A, et al. Artificial Neural Networks Predict 30-Day Mortality
36 37	362		After Hip Fracture: Insights From Machine Learning. J Am Acad Orthop Surg 2021;29:977-
38	363		83. doi:10.5435/JAAOS-D-20-00429
39 40	364	22	Riley RD, Ensor J, Snell KIE, et al. Calculating the sample size required for developing a
41	365	22	clinical prediction model. <i>BMJ</i> 2020; 368 . doi:10.1136/BMJ.M441
42 43	303		ennical prediction model. <i>BW3</i> 2020, 506 . doi:10.1150/BWJ.W441
44 45	366	23	Oosterhoff JHF, Savelberg ABMC, Karhade AV, et al. Development and internal validation of
45 46	367		a clinical prediction model using machine learning algorithms for 90 day and 2 year mortality
47 48	368		in femoral neck fracture patients aged 65 years or above. Eur J Trauma Emerg Surg
49	369		2022; 48 :4669–82. doi:10.1007/s00068-022-01981-4
50 51	370	24	Oosterhoff JHF, Karhade A V., Oberai T, et al. Prediction of Postoperative Delirium in
52 53	371		Geriatric Hip Fracture Patients: A Clinical Prediction Model Using Machine Learning
54	372		Algorithms. Geriatr Orthop Surg Rehabil 2021;12. doi:10.1177/21514593211062277
55 56	373	25	Bongers MER, Thio QCBS, Karhade A V., <i>et al.</i> Does the SORG Algorithm Predict 5-year
57 58		23	
59	374 275		Survival in Patients with Chondrosarcoma? An External Validation. <i>Clin Orthop Relat Res</i>
60	375		2019; 477 :2296–303. doi:10.1097/CORR.000000000000748

1			
2 3 4 5	376 377	26	Karhade A V., Ogink PT, Thio QCBS, <i>et al.</i> Development of machine learning algorithms for prediction of prolonged opioid prescription after surgery for lumbar disc herniation. <i>Spine J</i>
6	378		2019; 19 :1764–71. doi:10.1016/J.SPINEE.2019.06.002
7 8 9	379	27	Karhade A V., Ogink PT, Thio QCBS, <i>et al.</i> Discharge Disposition After Anterior Cervical
9 10	380		Discectomy and Fusion. <i>World Neurosurg</i> 2019; 132 :e14–20.
11 12	381		doi:10.1016/J.WNEU.2019.09.026
13 14	382	28	Steyerberg EW, Vickers AJ, Cook NR, et al. Assessing the performance of prediction models:
15 16	383	-	A framework for traditional and novel measures. <i>Epidemiology</i> 2010; 21 :128–38.
16 17 18	384		doi:10.1097/EDE.0b013e3181c30fb2
19 20	385	29	Steyerberg EW, Vergouwe Y. Towards better clinical prediction models: seven steps for
21	386		development and an ABCD for validation. Eur Heart J 2014;35:1925–31.
22 23	387		doi:10.1093/EURHEARTJ/EHU207
24 25	388	30	World Health Organization. Who policy statement on Data Sharing [Internet]. Policy on use
26	389	50	and sharing of data collected in Member States by the World Health Organization (WHO)
27 28	390		outside the context of public health emergencies. WHO; [cited 2023Apr13]. Available from:
29	391		https://www.who.int/docs/default-source/publishing-policies/who-policy-statement-on-data-
30 31	392		sharing.pdf?sfvrsn=71a41493_0
32 33			
34	393	31	Daniel Kahneman, Olivier Sibony, Cass R. Sunstein. Noise: A Flaw in Human Judgment
35 36	394		Little, Brown Spark; Hachette Book Group, version 1, 2021
37	395	32	A Machine Learning Algorithm to Identify Patients with Tibial Shaft Fractures at Risk for
38 39	396		Infection After Operative Treatment. J Bone Joint Surg Am 2021;103:532–40.
40 41	397		doi:10.2106/JBJS.20.00903
42	398		
43 44	550		
45 46	399		
47			
48 49			
50			
51 52			
53 54			
55			
56 57			
58 59			
59 60			

3 4	1
5 6	2
7	2
8 9	3 4
10 11	4 5
12	6
13 14	7
15 16	8
17 18	9
19 20	40
21	10
22 23	
24	
25 26	
27	
28 29	
30	
31 32	
33	
34 35	
36	
37 38	
30 39	
40	
41 42	
43	
44 45	
46	
47	
48 49	
50	
51 52	
53	
54 55	
55 56	
57	
58 59	

60

1 **APPENDIX 1**

2 Search strategy:

3 ("Arthroplasty, Replacement, Shoulder" [Mesh] OR "Total shoulder arthroplasty" [tiab] OR "Anatomic

- shoulder arthroplasty"[tiab] OR "TSA"[tiab] OR "ATSA"[tiab] OR "Total shoulder prosthes*"[tiab] 4
- OR "Anatomic shoulder prosthes*"[tiab]) AND ("Reoperation"[Mesh] OR "reoperation"[tiab] OR 5
- "re-operation"[tiab] OR "revision"[tiab] OR "survival"[tiab] OR "implant-survival"[tiab] OR 6
- , ilu Jesh] O. I trial, Controlk 7 "Prosthesis Failure" [Mesh] OR "failure" [tiab] OR "loosening" [tiab] OR "aseptic" [tiab] OR
- "Postoperative Complications" [Mesh] OR "complication" [tiab]) 8

9 Filters: Clinical study, Clinical trial, Controlled clinical trial, Comparative study, Dataset

TRIPOD Checklist: Prediction Model Development an

BMJ Open	Page 14-of 14
on Model Development and Validation	Γυμ
Checklist Item	Page
Identify the study as developing and/or validating a multivariable prediction model, the target population, and the outcome to be predicted.	x
Provide a summary of objectives, study design, setting, participants, sample size, predictors, outcome, statistical analysis, results, and conclusions.	x
Explain the medical context (including whether diagnostic or prognostic) and rationale for developing or validating the multivariable prediction model, including references to existing models.	x
Specify the objectives, including whether the study describes the development or validation of the model or both.	x

Introduction				
Background	3a	D;V	Explain the medical context (including whether diagnostic or prognostic) and rationale for developing or validating the multivariable prediction model, including references to existing models.	x
and objectives	3b	D;V	Specify the objectives, including whether the study describes the development or validation of the model or both.	х
Methods	1	1		
Source of data	4a	D;V	Describe the study design or source of data (e.g., randomized trial, cohort, or registry data), separately for the development and validation data sets, if applicable.	х
Source of data	4b	D;V	Specify the key study dates, including start of accrual; end of accrual; and, if applicable, end of follow-up.	Х
Participants	5a	D;V	Specify key elements of the study setting (e.g., primary care, secondary care, general population) including number and location of centres.	х
i anicipanto	5b	D;V	Describe eligibility criteria for participants.	Х
	5c	D;V	Give details of treatments received, if relevant.	Х
Outcome	6a	D;V	Clearly define the outcome that is predicted by the prediction model, including how and when assessed.	х
	6b	D;V	Report any actions to blind assessment of the outcome to be predicted.	X
Predictors	7a	D;V	Clearly define all predictors used in developing or validating the multivariable prediction model, including how and when they were measured.	Х
	7b	D;V	Report any actions to blind assessment of predictors for the outcome and other predictors.	X
Sample size	8	D;V	Explain how the study size was arrived at.	Х
Missing data	9	D;V	Describe how missing data were handled (e.g., complete-case analysis, single imputation, multiple imputation) with details of any imputation method.	X
	10a	D	Describe how predictors were handled in the analyses.	X
Statistical	10b	D	Specify type of model, all model-building procedures (including any predictor selection), and method for internal validation.	X
analysis	10c	V	For validation, describe how the predictions were calculated.	X
methods	10d	D;V	Specify all measures used to assess model performance and, if relevant, to compare multiple models.	X
Dist.	10e	V	Describe any model updating (e.g., recalibration) arising from the validation, if done.	X
Risk groups	11	D;V	Provide details on how risk groups were created, if done.	Х
Development vs. validation Results	12	V	For validation, identify any differences from the development data in setting, eligibility criteria, outcome, and predictors.	X
Results	13a	D;V	Describe the flow of participants through the study, including the number of participants with and without the outcome and, if applicable, a summary of the follow-up time. A diagram may be helpful.	N/A
Participants	13b	D;V	Describe the characteristics of the participants (basic demographics, clinical features, available predictors), including the number of participants with missing data for predictors and outcome.	N/A
	13c	V	For validation, show a comparison with the development data of the distribution of important variables (demographics, predictors and outcome).	N/A
Model	14a	D	Specify the number of participants and outcome events in each analysis.	N/A
development	14b	D	If done, report the unadjusted association between each candidate predictor and outcome.	N/A
Model specification	15a	D	Present the full prediction model to allow predictions for individuals (i.e., all regression coefficients, and model intercept or baseline survival at a given time point).	N/A
•	15b	D	Explain how to the use the prediction model.	N/A
Model performance	16	D;V	Report performance measures (with CIs) for the prediction model.	N/A
Model-updating	17	V	If done, report the results from any model updating (i.e., model specification, model performance).	N/A
Discussion	T	1		
Limitations	18	D;V	Discuss any limitations of the study (such as nonrepresentative sample, few events per predictor, missing data).	Х
Interpretation	19a	V	For validation, discuss the results with reference to performance in the development data, and any other validation data.	х
	19b	D;V	Give an overall interpretation of the results, considering objectives, limitations, results from similar studies, and other relevant evidence.	N/A
Implications	20	D;V	Discuss the potential clinical use of the model and implications for future research.	Х
Other information	1	1		
Supplementary information	21	D;V	Provide information about the availability of supplementary resources, such as study protocol, Web calculator, and data sets.	X
Funding	22	D;V	Give the source of funding and the role of the funders for the present study.	Х

Section/Topic

Title

Abstract

Title and abstract

Item

D;V

D:V

*Items relevant only to the development of a prediction model are denoted by D, items relating solely to a validation of a prediction model are denoted by V, and items relating to both are denoted D;V. We recommend using the TRIPOD Checklist in conjunction with the TRIPOD Explanation and Elaboration document.