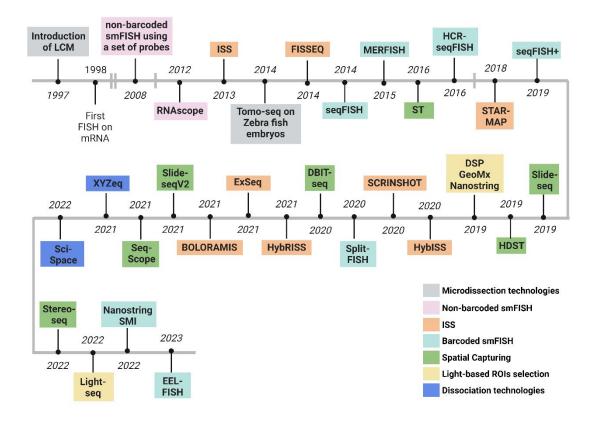
Supporting Information

Spatial Transcriptomics:

Emerging Technologies in Tissue Gene Expression Profiling


Agustín Robles-Remacho*1,2,3, Rosario M. Sánchez-Martín*1,2,3, Juan José Díaz-Mochón*1,2,3

¹GENYO. Centre for Genomics and Oncological Research: Pfizer / University of Granada / Andalusian Regional Government. PTS Granada. Avenida de la Ilustracion, 114. 18016 Granada, Spain.

²Department of Medicinal and Organic Chemistry, School of Pharmacy, University of Granada, Campus Cartuja s/n, 18071 Granada, Spain.

³Biosanitary Research Institute of Granada (ibs.GRANADA), University Hospital of Granada/University of Granada, Avenida del Conocimiento, s/n, 18016 Granada, Spain.

*Corresponding authors: Agustín Robles-Remacho (agustin.robles@genyo.es), Rosario M. Sanchez-Martin (rosario.sanchez@genyo.es) and Juan José Díaz-Mochón (juanjose.diaz@genyo.es)

Figure S1. Spatial Transcriptomics Timeline. Scheme of Spatial Transcriptomics technologies classified by types and the date they were first published.

Method	Efficiency	Number of gene transcripts	Size resolution	Barcoding Strategy (in situ)	Type of Tissue	Commercialized	Advantages	Limitations				
ISS-Based methods												
ISS	5-30 %	222	Single-cell	SBL	Fresh Frozen	Yes, as Xenium	-Robust detection -High SBR	-Image crowding -Moderate multiplexing capacity				
HybISS	Similar to ISS	120	Single-cell	SBH	Fresh Frozen	No	-Enhanced SBR compared to ISS	-Lower number of transcript gene demonstrated than ISS				
HybRISS	Increased 5-fold compared to ISS	50	Single-cell	SBH	Fresh Frozen	No	-Enhanced efficiency -Possibility to study more targets than mRNA species	-Lower number of transcript gene demonstrated than ISS				
SCRINSHOT	Improved efficiency compared to ISS	29	Single-cell	SBL	Fresh Frozen	No	-Enhanced efficiency -Possibility to study more targets than mRNA species	-Lower number of transcript gene demonstrated than ISS				
FISSEQ	(<0,0001%)	Transcriptome wide	Single-cell	SBL	Fresh Frozen	No	-Possibility to conduct <i>de novo</i> analyses	-Remarkable low efficiency				
ExSeq	60 %	297	Single-cell	SBL/NGS	Fresh Frozen	No	-Enhanced efficiency than FISSEQ -Possibility for <i>Ex Situ</i> Analyses	-Increased imaging time				
BOLORAMIS	10 % - 35 %	96	Single-cell	SBL	Fresh Frozen	No	-Possibility to study more targets than mRNA species	-Lower number of transcript gene demonstrated than ISS				
STAR-MAP	Similar to scRNA-seq	~1000-2700	Single-cell	SEDAL	Fresh Frozen	No	-Possibility to study 3D sections (150 µm thick)	-3D sections limited to 28 genes				
				smFISH-I	Based methods							
MERFISH	80-95 %	~10,000	Single-cell	N-binary word code decodification	Fresh Frozen FFPE	Yes, as MER-Scope	-High multiplexity capacity -High efficiency -Include Error Correction Scheme	-Low SBR -High number of probes				
HCR-seqFISH	~80 %	249	Single-cell	Color-codes associated to mRNA species	Fresh Frozen	No	-High efficiency -Include Error Correction Scheme	-Low SBR -Need for specialized equipment -Moderate multiplexing capacity				
SeqFISH+	49 %	~10,000	Single-cell	Color-codes associated to mRNA species	Fresh Frozen	No	-High multiplexity capacity -High efficiency -Include Error Correction Scheme	-High number of probes -Need for specialized equipment -Methodology difficult to handle				
Split-FISH	71 %	317	Single-cell	N-binary word code decodification	Fresh Frozen	No	-Enhanced SBR ratios -Include Error Correction Scheme	-Moderate multiplexing capacity				
SMI-Nanostring	NA	980	Single-cell	N-binary word code decodification	Fresh Frozen and FFPE	Yes	-Automated system -Possibility to protein co-detection -Include Error Correction Scheme	-Moderate multiplexing capacity				
EEL-FISH	~13 %	~2000	Single-cell	N-binary word code decodification	Fresh Frozen	No	-High SBR ratios -Reduced optical crowding	-Lower efficiency compared to other smFISH methods				

 Table S1. Comparison of ISS and smFISH-based technologies.

Method	Efficiency	Number of mRNA species	-Spot size -Spot-to-spot distance	Covered area	Barcoding Strategy (ex situ)	Type of Tissue	Commer cialized	Advantages	Limitations		
Microdissection Technologies											
LCM	NA	Transcriptome wide	Single-cell resolution	NA	NGS	Fresh Frozen and FFPE	Yes	-Easy implementation (Microdissection microscope) -Available for FFPE	-Limited number of single cells analyzed per tissue		
Tomo-seq	NA	Transcriptome wide	Up to 8 µm	NA	NGS	Fresh Frozen	No	-Easy implementation (Sections from a biological system)	-Resolution limited to the area sectioned (lack single-cell resolution)		
Spatial Capturing Technologies											
ST/Visium	~30.000 UMIs per 100 μm ² area	Transcriptome wide	-100 μm / 55 μm -200 μm / 100 μm	42.25 mm ²	NGS	Fresh Frozen and FFPE	Yes	-Most available commercial option -Available for FFPE	-Lack single-cell resolution		
Slide-seqV2	~550 UMIs per 10 µm ² area	Transcriptome wide	-10 μm -10 μm	7 mm ²	NGS	Fresh Frozen	No	-High spot size resolution	-Analyses require grouping areas		
HDST	$\sim 10 \text{ UMIs}$ per 2 μ m ² area	Transcriptome wide	-2 μm -2 μm	13.68 mm ²	NGS	Fresh Frozen	No	-High spot size resolution	-Low efficiency -Analyses require grouping areas		
DBIT-Seq	~5000 UMIs per 10 µm ² area	Transcriptome wide	-10 μm or 50 μm -10 μm or 50 μm	1 mm ² or 25 mm ²	NGS	Fresh Frozen and FFPE	No	-Adapted as a microfluidic system	-Uncovered spaces between squares -Analyses require grouping areas		
Seq-Scope	5-25 UMIs per HDMI cluster ~1000 UMIs per 10 μm ² area	Transcriptome wide	-Submicrometric HDMI cluster -600 nm	0. 2 mm ²	NGS	Fresh Frozen	No	-High spot size resolution -Submicrometric HDMI clusters	-Reduced capturing area -Analyses require grouping areas		
Stereo-seq	62 UMIs per DNB cluster (2 μm ² area) ~1000 UMIs per 10 μm ² area	Transcriptome wide	-220 nm -600 nm	$\begin{array}{c} 50-200\\ mm^2 \end{array}$	NGS	Fresh Frozen	No	-High spot size resolution -Submicrometric DNB clusters -High capture area (up to 200 mm ²)	-Analyses require grouping areas		
Pixel-seq	~1000 UMIs per 10 µm ² area	Transcriptome wide	~1 μm -Continuous spot- to-spot distance	5-15 mm ² areas	NGS	Fresh Frozen	No	-High spot size resolution -Developed to be scalable	-Analyses require grouping areas		
				Light-base	ed ROI selectio	n technologies					
GeoMx DSP-Nanostring	~1000 gene transcripts in 400 μm diameter ROIs	Transcriptome wide	ROIs from 10-600 µm	NA	NGS or nCounter	Fresh Frozen and FFPE	Yes	-Easy implementation (Automated system) -Available for FFPE -Possibility for protein codetection	-For whole tissue transcriptomics analyses, laborious manual selection of a limited number of ROIs		
Light-seq	~1,000–10,000 UMIs per 10 µm ² area	Transcriptome wide	Minimum ROI: 2 µm	NA	NGS	Fresh Frozen	No	-ROIs resolution up to 2 μm -Option for sample reutilization	-For whole tissue transcriptomics analyses, laborious manual selection of a limited number of ROIs		
Spatial Cell/Nuclei Dissociation Technologies											
XYZeq	~1000 UMIs per 500 µm diameter wells	Transcriptome wide	-500 μm wells -500 μm distance	NA	NGS	Fresh Frozen	No	Cells dissociated as barcoded spots	Limited resolution to areas of 500 µm		
Sci-space	~2000 UMIs estimated per cell	Transcriptome wide	-73.2 μm -222 μm	NA	NGS	Fresh Frozen	No	Nuclei dissociated as barcoded spots	Limited to nuclear transcriptomics analyses		

Table S2. Comparison of microdissection, spatial capture, light-based ROIs selection, and dissociation-based technologies.