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Background: Genotyping-by-Sequencing (GBS) provides affordable methods for
genotyping hundreds of individuals using millions of markers. However, this challenges
bioinformatic procedures that must overcome possible artifacts such as the bias
generated by PCR duplicates and sequencing errors. Genotyping errors lead to data
that deviate from what is expected from regular meiosis. This, in turn, leads to
difficulties in grouping and ordering markers resulting in inflated and incorrect linkage
maps. Therefore, genotyping errors can be easily detected by linkage map quality
evaluations.

Results: We developed and used the Reads2Map workflow to build linkage maps with
simulated and empirical GBS data of diploid outcrossing populations. The workflows
run GATK and freebayes for SNP calling and updog, polyRAD, and SuperMASSA for
genotype calling, and OneMap and GUSMap to build linkage maps. Using simulated
data, we observed which genotype call software fails in identifying common errors in
GBS sequencing data and proposed specific filters to better handle them. We tested
whether it is possible to overcome errors in a linkage map using genotype probabilities
from each software or global error rates to estimate genetic distances with an updated
version of OneMap. We also evaluated the impact of segregation distortion,
contaminant samples, and haplotype-based multiallelic markers in the final linkage
maps. The results showed a low impact of segregation distortion in the linkage map
quality, improvements in ordering markers with haplotype-based multiallelic markers,
and improved maps with expected size using reliable genotype probabilities or a global
error rate of 5%.

Conclusions: The pipelines results in each scenario changed according to the data set
used, indicating that optimal pipelines and parameters are dataset-dependent and
cannot be generalized to all GBS data sets. The Reads2Map workflow can reproduce
the analysis in other GBS empirical data sets where users can select the pipeline and
parameters adapted to their data context. The Reads2MapApp shiny app provides a
graphical representation of the results to facilitate their interpretation.
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Background Genotyping-by-Sequencing (GBS) provides affordable methods for genotyping hundreds of individuals using
millions of markers. However, this challenges bioinformatic procedures that must overcome possible artifacts such as the bias
generated by PCR duplicates and sequencing errors. Genotyping errors lead to data that deviate from what is expected from regular
meiosis. This, in turn, leads to difficulties in grouping and ordering markers resulting in inflated and incorrect linkage maps.
Therefore, genotyping errors can be easily detected by linkage map quality evaluations.

Results We developed and used the Reads2Map workflow to build linkage maps with simulated and empirical GBS data of diploid
outcrossing populations. The workflows run GATK and freebayes for SNP calling and updog, polyRAD, and SuperMASSA for genotype
calling, and oneMap and GUSMap to build linkage maps. Using simulated data, we observed which genotype call software fails in
identifying common errors in GBS sequencing data and proposed specific filters to better handle them. We tested whether it is
possible to overcome errors in a linkage map using genotype probabilities from each software or global error rates to estimate
genetic distances with an updated version of 0neMap. We also evaluated the impact of segregation distortion, contaminant samples,
and haplotype-based multiallelic markers in the final linkage maps. The results showed a low impact of segregation distortion in
the linkage map quality, improvements in ordering markers with haplotype-based multiallelic markers, and improved maps with
expected size using reliable genotype probabilities or a global error rate of 5%.

Conclusions The pipelines results in each scenario changed according to the data set used, indicating that optimal pipelines and
parameters are dataset-dependent and cannot be generalized to all GBS data sets. The Reads2Map workflow can reproduce the
analysis in other GBS empirical data sets where users can select the pipeline and parameters adapted to their data context. The
Reads2MapApp shiny app provides a graphical representation of the results to facilitate their interpretation.
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Advances in sequencing technologies and the development of dif-
ferent genome-reduced representation library protocols result in
millions of genetic markers from hundreds of samples in a single
sequencing run [1, 2, 3, 4]. Increasing the number of markers and
individuals genotyped can enhance the capacity of linkage maps
to locate recombination events that occur, resulting in higher map
resolution and better statistical power for the localization of QTL in
further analysis. This large amount of data and genotyping errors
common with genotyping-by-sequencing approaches [5] increases
the need for computational resources and multiple bioinformatic
tools.

Genotyping errors are frequent when high-throughput se-
quencing technology is applied to reduced representation libraries.
There are a variety of protocols to create these types of libraries
[4], called Restriction-site Associated DNA sequencing (RADseq)
or genotyping-by-sequencing (GBS) [6, 7]. Generally, one or more
restriction enzymes are used to digest the sample DNA. The result-
ing DNA fragments are filtered by size, connected to adaptors and
barcodes, amplified by PCR, and sequenced. Consequently, most
sequences obtained are PCR duplicates of the regions around the
enzyme cut site. By relying on duplicates to increase sequencing
depth, such methods introduce errors and a sequencing bias to-
wards one of the alleles due to variabilities in the PCR amplification.
These errors are hard to detect by bioinformatic tools [8, 9].

To overcome genotyping errors coming from GBS meth-
ods, genotype calling software model sequencing error, allelic
bias, overdispersion, outlying observations, and the population
Mendelian expected segregation [10]. Building a genetic map with
genotypes obtained using these methods can be a powerful tool to
validate their efficiency. Wrong decisions or inefficient methods
in all steps before linkage map building can be identified in the
resulting map as errors that dissociate the map properties from bio-
logical processes. For example, genotyping errors generate inflated
map sizes that show an excessive number of recombination break-
points during meiosis [11]. The first genetic map studies by Morgan
and Sturtevant [12] discovered that crossing-overs are unlikely to
happen too close to each other, a phenomenon named interference.
Later studies describing the meiotic molecular mechanisms con-
firmed the low expected number of recombination breaks in a single
event [13].

Recently developed approaches to build linkage maps (14, 15, 16]
were implemented in OneMap [17] 3.0 package. They use quantita-
tive genotype probability measurements rather than the traditional
qualitative genotypic information from SNP and genotype call-
ing methods to account for genotyping errors and provide higher-
quality genetic maps. These probabilities can be applied in different
ways: using the probability of each possible genotype (PL field in
VCF format); using an error probability associated with the called
genotype (GQ field in VCF format); or using a global error rate that
will be applied to all genotypes. Nevertheless, even using these ap-
proaches, building a linkage map will succeed only if the upstream
software can identify the errors and provide reliable genotypes or
their probabilities.

The biallelic codominant nature of SNPs is another characteristic
of high-throughput markers that can affect linkage map building
of outcrossing species. Although biallelic markers can distinguish
only two haplotypes, the mapping population of outcrossing diploid
species inherits two haplotypes with combinations of four different
parental haplotypes. With biallelic markers, the observed parental
genotypes are limited to types ab x ab, ab x aa, and aa x ab. When
one of the parents is homozygous (ab x aa and aa x ab), it is impos-
sible to observe the crossing-over change for this uninformative
parent. So this is taken as missing information (non-measurable
crossing-overs) for linkage map building if only two-point infor-
mation is considered. Therefore, building a linkage map with only
biallelic markers requires a multi-point approach that uses loci

information with both parents heterozygous (ab x ab) to estimate
the recombination of loci where one parent is homozygous, and the
recombination information is missing for closely linked loci. The
multi-point approach applies likelihood computations involving
several loci and has been successfully used since the seminal publi-
cation of Lander and Green [18]. The approach makes it possible
to identify the four different parental haplotypes by phasing the
biallelic information so that the SNPs can be used to identify all the
allelic diversity.

Other approaches to overcome the low informativeness of bial-
lelic markers involve combining adjacent biallelic markers in the
same disequilibrium block (high LD) into a single multiallelic hap-
lotype. These haplotype-based markers showed higher accuracy in
association analysis than individual biallelic SNPs [19, 20, 21, 22,
23, 24, 25]. N’Diaye et al. [21] and Jiang et al. [25] pointed out sev-
eral advantages of haplotype-based markers, including the higher
capacity to identify epistatic interactions, the presence of more
information to estimate identical-by-descent alleles and the reduc-
tion of the number of statistical tests to perform.

Despite many software available for estimating genotype prob-
abilities [26, 2, 27, 26, 28, 29, 10] and haplotype-based multiallelic
markers [26, 30], there are no recommendations yet about which
combination and choice of parameters are the best for building
linkage maps. Therefore, this work evaluates the consequences of
building maps by applying genotype probabilities and haplotype-
based markers from different software and parameters. To achieve
these, we implemented new features in OneMap [17], a widely-used
software for building maps, and developed the Reads2Map workflow.
We were able to make recommendations to users to obtain better
linkage maps in several situations, such as low and high-depth
sequencing, with and without segregation distortion, contaminant
samples, and multiallelic markers, and using different bioinfor-
matic software to perform the SNP and genotype calling.

We built two workflows using Workflow Description Language
(WDL) [31] to perform sequence alignment, SNP and genotype
calling, and linkage map building: EmpiricalReads2Map, for eval-
uating empirical (real) data sets; and SimulatedReads2Map, to
evaluate simulated data sets (figure 1). Both share the same
sub-workflows for most of the steps, allowing users to evalu-
ate software and parameters in an organized and efficient way.
WDL workflows can be executed using Cromwell Execution En-
gine [31], Docker [32], and Singularity [33] containers. We ran
the analysis testing workflows on two high-performance comput-
ers (Texas A&M University HPRC, University of Sdo Paulo Aguia
Cluster). The CPU and memory amount utilized by each work-
flow task in the Texas A&M HPRC is shown in Supplementary
figures 1-4. The workflows are available at https://github.com/
Cristianetaniguti/Reads2Map. For the linkage map building step,
we implemented updates in OneMap package version 3.0 (https:
//CRAN .R-project.org/package=onemap) and used this version in
the workflows. We also developed the Reads2MapApp shiny app
(https://github.com/Cristianetaniguti/Reads2MapApp). We used
it to upload the final workflow output and visualize summary statis-
ticsabout the resulting linkage maps, intermediary steps, and work-
flow performance.

With a combination of a hidden Markov model (HMM) and the
expectation-maximization algorithm (EM) [18], OneMap [17] can
perform multipoint estimation of map genetic distance for F2, back-
cross, RILs, and outcrossing populations. For the multipoint esti-
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Figure 1. A: Tasks of the two main Reads2Map workflows: EmpiricalReads2Map.wdl and SimulatedReads2Map.wdl. B: Tools to run the workflows on the Cloud (https:
//app.terra.bio/ platform) or in High-Performance Computing (HPC) environments. C: The Reads2Map shiny app has as input the outputs of the workflows. It builds
several descriptive graphics to evaluate the best upstream software combination for linkage map construction.
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mation, OneMap algorithms use code adapted from R/QTL package
[34]).

Inshort, thelatent variable G;, i = 1, ..., n, denotes the true under-
lying genotypes for the individual at a set of n ordered loci; O; is the
observed variable of the molecular phenotype (observed genotypes)
for the locus i. The HMM can be represented as [35]:

n-1 n
POIGi=g)=) ..) > ) 7ng)] [t(g9:.1)] [elg;0p)
j=1 j=1

91 gi—1gi*1  Gn
(1)

The initial probability 7t(g;) is the probability of having a given
genotype for the first locus (G ), and its value depends on the cross-
type. For example, for an outcrossing population, this value will be
0.25, assuming a uniform distribution of all four possible genotypes
(AA, BA, AB, and BB). The same reasoning applies to backcross data,
with probabilities of 0.5 since there are only two possible genotypes
(AA and AB).

The transition probability t]-(g]-, gjﬂ) is the probability of the
genotype in a locus (Gj:i +1) changing to the next locus genotype
(Gj+1). The initial value for this probability is based on the phase,
and recombination fraction estimated by a two-point approach
using maximum likelihood estimators [36], and is updated after
iterations of the EM algorithm. The emission probability e(gj, Oj) is
the probability of the observed variable given the genotype. This
probability is defined by an associated genotyping error (see Sup-
plementary file 1). The OneMap software previous to version 3.0
considered this error probability as a single value of 107> for every
genotype. In version 3.0, this value is kept as default to maintain
the code reproducibility. But it is noteworthy that this probability
can be unreliable in several situations when the genotypes are more
prone to errors, especially for new genotyping technology (e.g. GBS
data). OneMap 3.0 allow users to provide individual values of error
probabilities in the emission probability of the HMM for each geno-
type or marker, having a potential impact on the results. Using
the create_probs function, users can provide three types of values:
one global value, which was the previous default (global_error); an
error probability for each inferred genotype (genotypes_error); or
genotype probabilities for each possible genotype in individuals
(genotypes_probs). We tested the consequences of building maps
applying different genotype probabilities coming from five differ-
ent genotype caller software, a global error rate of 0.05, and the old
default value of 1075.

Here we used GATK [27], freebayes [26], polyRAD [28],
SuperMASSA [29] and updog [10] to estimate the genotypes and geno-
types probabilities. For GATK and freebayes caller, we used the Phred
score genotype error (GQ FORMAT value) converted to probabilities.
The software polyRAD, SuperMASSA and updog use the known popu-
lation’s structure (in our case F;) as a priori information to increase
the accuracy of the estimated genotypes.

OneMap uses the forward-backward algorithm [37] to compute
the HMM combined with the expectation-maximization algorithm
(EM). Since version 3.0, OneMap presents the possibility to parallelize
the HMM using the approach described in [38]. It parallelizes the
procedure into a maximum of four cores. We used this new OneMap
feature to estimate the genetic distances. We also implemented
new functions for linkage maps quality diagnostics such as interac-
tive plots for recombination fraction matrices, progeny haplotypes
representation, and counts of the recombination breakpoints in
progeny. We compared OneMap 3.0 capacity of estimating accurate
genetic distances with the GusMap package estimations since it also
uses an HMM to account for errors present in sequencing data.

We ran EmpiricalReads2Map Workflow using two empirical data sets
that already have linkage maps built. They are GBS data sets from a

bi-parental diploid F; full-sib mapping populations of aspen (Pop-
ulus tremula L.) [39] (BioProject PRJNA395596), and rose (Rosa
spp.) [40]. The aspen data set comes from an intraspecific cross of
two Populus tremula genotypes. The GBS libraries were built using
HindIll and Nall enzymes and sequenced as 150 base pair single-end
reads on an Illumina HiSeq2500. Eight library replicates were built
and sequenced for the parents and only one for each of the 116 F1
offspring. The data set includes six samples erroneously sequenced
as part of the progeny and later identified as contaminants. An
average read depth of approximately 6x for progeny and 58x for
parental samples were observed from the sequencing process. The
Populus trichocarpa genome version 3.0 [41] was used as a reference
for the sequence’s alignment.

The diploid roses data set comprises 138 individuals from the
cross between a Texas A&M breeding line J06-20-14-3 (J14-3) and
cultivar Papa Hemeray (PH). GBS libraries were built with NgoMIV
enzyme and sequenced as a 113 base pair single-end read on a
HiSeq2500. The parent J14-3 was repeated twice, and the PH sam-
ple three times. An average read depth of approximately 94x for
progeny and 528x for parental samples was observed from the se-
quencing process. The Rosa chinensis v1.0 genome assembly [42]
was used as a reference genome to align the sequences.

The sequencing reads of the two empirical data sets were filtered
using the Stacks plugin process_radtags [2] to filter sequences by
the presence of the restriction site and sequencing quality. The
reads were discarded if the average quality score of 50% of its length
was below the Phred score of 10 (or 90% probability of being correct).
The software cutadapt [43] was used to remove adapters and filter
by a minimum read length of 64 bp. The sequences were then
evaluated in our EmpiricalReads2Map workflow.

Each time the EmpiricalReads2Map workflow is executed, it
considers all the pipeline combinations generating 34 maps with
combinations of SNP caller (GATK and freebayes), genotype caller
(GATK/freebayes, polyRAD, updog, SuperMASSA), source of the reads
counts (VCF and BAM files), and map builder packages (OneMap and
GUsMap). The output provides maps built with genotype call soft-
ware genotype probabilities, with 5% and 0.001% of global error
rate in the HMM chain.

We executed the EmpiricalReads2Map workflows in the presence
and absence of haplotype-based multiallelic markers and applied
four different marker filtering methods. For the aspen data set,
we also executed the workflows for every scenario in the presence
of the contaminant samples. Therefore, the experiment has a to-
tal of 3 (data sets: rose, aspen and aspen with contaminants) x 2
(presence/absence of multiallelic markers) x 4 (filter methods -
see details below) x 34 = 816 maps built for the first 8.426 Mb of
chromosome 10 of Populus trichocarpa genome and the first 25 Mb
(37%) of chromosome 1 Rosa chinensis reference genome. Table
1 shows an overview of the notations used to refer to each evalu-
ated scenario. It is important to mention that this represents what
users will find in building maps for the whole genome; a sample
was required to reduce the computation burden.

The first step of the SimulatedReads2Map workflow is to perform
simulations of a mapping population, GBS libraries, and sequences.
The simulation is based on a given reference genome chromosome
sequence. If a reference linkage map and a VCF file are provided,
the workflow simulates the marker genetic distances and parental
genotype frequencies based on them. A cubic spline interpolation
with the Hyman method [44] is applied to simulate the centimorgan
position for each marker’s physical position based on this same
relation on the reference linkage map provided.

We based our simulation analysis on the first 37% of the chro-
mosome 10 sequence of Populus trichocarpa version 3.0, which com-
prehends a sequence with 8.426 Mb from a total chromosome size



Table 1. Notation used to refer to each evaluation scenario in empirical
and simulated data sets.

Step Notation Description
Reads depth 10 Me?ln read depth used
to simulate the data set
simulations depth 20
SNP freebayes . SOwaare useq to
identify the variants
calling GATK
BAM Source .ﬁles of al.lele
depth information
VCF
Genotype poLyRAD Software used to
perform the estimation of
. enotype for a given
calling SuperHASSA alfgele de“gzh infor%nation
updog
Software used to
freebayes/ genotype calling is the
GATK same that performed
the SNP calling
Maps built with
Map polyRAD genotypes probabilities
from polyRAD
Maps built with
building SuperMASSA genotypes probabilities
from SuperMASSA
Maps built with
updog genotypes probabilities
from updog
Maps built with
genotype probabilities
freebayes/ from freebayes if freebayes
GATK was used for SNP
calling or GATK if
GATK was.
Maps built with
polyRAD
(5%) genotypes from polyRAD
and global error of 0.05
Maps built with
SuperMASSA
(5%) genotypes from SuperMASSA
and global error of 0.05
Maps built with
updog
genotypes from updog and
(5%)
global error of 0.05
Maps built with
freebayes/ genotypes from
GATK (5%) freebayes Or GATK
and global error of 0.05
Maps built with
freebayes/ genotypes from freebayes
GATK (0.001%) or GATK and

global error of 0.00001

of about 23 Mb. This sequence comprises 38 cM (21%) of the linkage
group 10 reference linkage map built using the aspen empirical data
[39]. Due to the computational resources needed to build such a
high number of maps, we used only a subset of the data to finish
the analysis in a reasonable time. Chromosome 10 was randomly
chosen.

We simulated markers with different expected segregation pat-
terns according to parental genotypes in each locus. Table 2 shows
the notation for each possible marker type in an outcrossing diploid
population. The SimulatedReads2Map workflow simulates parental
haplotypes using the same proportion of marker types identified
in the empirical VCF file. This approach overcomes the missing
data present in the empirical data set. The final VCF file used as a
reference to the simulations contains 810 markers (126 B3.7, 263
D1.10, 278 D2.15, and 143 non-informative markers with both par-

ents homozygous), which results from the aspen empirical data
GATK SNP calling, filtered by a maximum of 25% of missing data
and MAF of 5%.

Table 2. Marker types according to parental genotype combinations
and progeny segregation. The letters “a”, “b”, “c” and “d” represent
different alleles and the letter “o0” represents null alleles. Adapted from
[45].

Parents Progeny
Marker type Cross Observed genotypes EXPeCt‘?d
segregation
A 1 abxcd ac,ad,bc,bd 1:1:1:1
2 abxac a,ac,ba,bc 1:1:1:1
3 abxco ac,a,bc,b 1:1:1:1
4 aox bo ab,a,b,0 1:1:1:1
B B 5 abxao ab,2a,b 1:2:1
B, 6 aoxab ab,2a,b 1:2:1
B; 7 abxab a,2ab,b 1:2:1
C 8 ao X ao 33,0 3:1
D D 9 abxcc ac,bc 1:1
10 abxaa a,ab 1:1
11 abxoo a,b 1:1
12 boxaa ab,a 1:1
13  aoxo00 a,0 11
D, 14 ccxab ac,bc 1:1
15 aaxab a,ab 11
16 ooxab a,b 1:1
17 aaxbo ab,a 11
18 00 X a0 a,0 1:1

PedigreeSim V2.1 software [46] is implemented in the work-
flow to simulate the meiosis events and generate an F; progeny
based on the provided genetic map and simulated parental hap-
lotypes. We did not consider the interference in meiotic events
(Haldane (47] mapping function). Pedigreesim output files were
converted to VCF files using Reads2MapTools (available at https://
github.com/Cristianetaniguti/Reads2MapTools) R package func-
tion pedsim2vct.

While converting the files, the pedsim2vct function can also
simulate segregation distortion by applying a selection strength.
For that, a high number of individuals in the progeny have to be
simulated with the Pedigreesim software and one or more loci to
be under a given selection intensity. In our study, we targeted a
final population size of 200 individuals. For that, we simulated 50
x 200 individuals and applied a selection intensity of 50% in the
30th marker, eliminating 50% of the genotypes containing one
of the alleles. Then, 200 individuals of the resulting population
are randomly selected to compose the mapping population. We
used this feature to compare software performance in segregation
distortion.

The VCF file output by pedsim2vcf is used as input in RADinitio
software together with the reference genome sequence. RADinitio
adds the VCF polymorphisms in the reference genome sequence
and simulates the GBS sequences. It uses the inherited efficiency
model [48] to simulate a PCR-amplified pool of molecules. The
model includes the heterogeneity of the PCR amplification and the
polymerase substitution errors. Next, RADinitio applies the user-
defined ratio between DNA original molecules to be sequenced and
PCR duplicates to create a distribution that will define the number of
times the pool of loci is sampled, the number of duplicate molecules
that are generated from a RAD locus template, and the distribu-
tion of PCR errors in the resulting reads. We defined the default
parameter with a proportion of 4:1. Besides the PCR errors inserted
during the pool sampling, the software also includes a commonly
observed error pattern, where the 3’ end of the read accumulates
more errors than the 5’ [49]. We tested different values of PCR cy-
cles (5, 9, and 14) and mean depth (5, 10, and 20) to simulate the
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FASTA files. We set the other simulation parameters to obtain 150
bases of read length, sequence size of 350, and restriction enzymes
HindIII and NalIIl. The mean read depth parameter for the parental
samples was eight times higher than the progeny. The combination
of RADinitio parameters that produced results closer to those ob-
served in empirical data was selected to perform simulations with
and without segregation distortion, five repetitions (five families),
and two average sequencing depths (10 and 20) and 5 PCR cycles.

RADinitio does not output the sequence quality scores, so we
converted the FASTA file format to FASTQ format, including a Phred
score of 40 for every base simulated using seqtk [50] software. Af-
ter obtaining the FASTQ files, the SimulatedReads2Map workflow
followed the same tasks as the EmpiricalReads2Map, with align-
ment, SNP and genotype calling, and linkage map build. The Simu-
latedReads2Map workflow makes comparisons between real and
estimated results within each step. The comparisons made during
the workflow can be visualized in the shiny app Reads2MapApp.

Similarly to the EmpiricalReads2Map, the SimulatedReads2Map
workflow generates maps for each combination of SNP and geno-
type call and linkage map building software. However, the total
number of maps generated is multiplied by two because the work-
flows build maps with and without loci that were wrongly identified
as polymorphic due to sequencing errors (false-positive markers).
We also execute the SimulatedReads2Map workflow in the presence
and absence of haplotype-based multiallelic markers, segregation
distortion, and four methods for marker filtering. Therefore, the
experiment has a total of 5 (repetitions) x 2 (average depths) x 2
(presence/absence of multiallelic markers) x 2 (with and without
segregation distortion) x 4 (filters method - see details below) x
68 = 10,880 maps built for the first 8.426 Mb of chromosome 10
of Populus trichocarpa genome. Table 1 shows an overview of the
notations used to refer to each evaluated scenario.

First, the FASTQ sequences are aligned with BwA-MEM [51] to their
respective reference genomes. The workflow uses samtools [52] to
merge the alignment of the same samples BAM files, keeping the li-
braries identification on the BAM header and filtering out reads with
MAPQ < 10. After the alignment, BAM files for each sample are used
as inputs for sub-workflows with GATK and freebayes approaches.
One of the sub-workflow reproduces GATK joint genotyping via
HaplotypeCaller, GenomicsDBImport, and GenotypeGVCFs tools and
applies the suggested hard-filtering procedures [8]. The other sub-
workflow runs freebayes parallelized by reference genome inter-
vals. After obtaining the VCF files, indels marker positions are left-
aligned and normalized with BCFtools, and multiallelic markers
are separated into a new VCF file.

GATK and freebayes may introduce bias towards the reference
allele when used to process low-coverage sequence data. GATK in-
serts the bias when reads are filtered in the local re-assembly step
to avoid sequencing errors [53]. To overcome the bias during the
genotype calling, the workflow applies two measures of allele depth,
one from VCF and the other from BAM files. BCFtools is used to find
the read depths information for each allele in BAM files and update
the allele depths information in the AD (allele depth) field of the
VCEF file. Therefore, each SNP calling method results in three VCFs:
i) biallelic markers with read counts outputted by the SNP callers,
ii) biallelic markers with counts from BAM files, iii) multiallelic
markers.

For the empirical data sets, the alignment and SNP calling steps
were performed with entire data sets, but for the next steps, we
selected just a subset of markers (the first 8.426 Mb or 37%) of
Populus trichocarpa chromosome 10 and the first 25 Mb ( 37%) of

Rosa chinensis chromosome 1 reference genomes. The markers were
filtered by minor allele frequency (MAF) of 5%, and maximum
missing data allowed of 25%. The VCF files with biallelic markers
from freebayes and GATK, and with read counts source from VCF and
BAM files were the input for the genotype caller software polyRAD,
SuperMASSA, and updog.

To use the polyRAD approach, the VCF files were imported using
VCF2RADdata without applying any filters or considering phase infor-
mation. The polyRAD model was run with PipelineMapping2Parents
default arguments which assume an F; bi-parental population.
The function Export_MAPpoly was used to export the genotype
probabilities. The vcfR package [54] and custom R (function
polyRAD_genotype_vcf in Reads2MapTools package) code were
used to store outputted genotypes and their probabilities in
a new VCF file. We also adapted SuperMASSA scripts to out-
put the genotype probabilities information. The modified ver-
sion is available in Reads2MapTools package. A wrapper func-
tion called supermassa_genotype, available in the package, can
run the model in parallel and export the results to a new
VCF file. The F; SuperMASSA model was run with parameter
naive_porterior_reporting_threshold set to zero to not filter any
genotype. The updog F; model was used in parallel using the
function multidog through the Reads2MapTools wrapper function
updog_genotype Which outputs the results in a new VCF file. In the
testing of scenarios in which we considered multiallelic markers,
the VCF containing them are merged into the VCF files from polyRAD,
SuperMASSA, and updog. The merged VCF is the input for linkage map
building in oneMap version 3.0.

The software GUsMap performs the genotype calling and link-
age map building with a single model. We used vCFtoRrA function
to convert the outputted VCF files from GATK and freebayes ap-
proaches into GusMap format. A pedigree of the population and
a list of filters (MAF = 0.05, MISS=0.25, BIN=0, DETPH=0 and
PVALUE=0.05) was provided to the readrA function. The function
makeFS was used to create the full-sib population information. Func-
tions infer_OPGP_FS and rf_est_FS were used to estimate the phase
and recombination fraction giving the genomic order of the mark-
ers. In some situations, function rf_est_FSs outputs infinite values
of the recombination fraction. In these situations, our pipeline re-
moves the respective marker and runs the function again. This
workaround code increased the time required to run GusMap.

Once imported to OneMap, markers were filtered again by maximum
missing data of 25%. Because the VCF files include unexpected
genotypes according to the loci segregation (e.g. in a cross “AA x
AB”, genotype “BB” cannot exist), OneMap makes these genotype
calls missing. We also filtered markers with segregation distortion
under a global significance level of 0.05 with Bonferroni correction
and removed redundant markers. Markers were ordered according
to the reference genome position. The genetic distances were esti-
mated by the parallelized HMM multipoint (17, 38] approach using
as emission probability a global error rate of 10~ (default in OneMap
version < 3.0, here referred to as “freebayes/GATK (0.001%)”), a
global error rate of 0.05, and the genotypes probabilities estimated
by each genotype caller.

In SimulatedReads2Map, the Haldane map function was used;
in EmpiricalReads2Map, we used Kosambi’s map function. To test
the influence of the presence of the multiallelic markers in the
ordering procedure, we used the built map for the chromosome
10 linkage group of aspen and ordered its markers using MDSMap
[55] (wrapper function implemented in OneMap 3.0) and order_seq
ordering algorithms with and without multiallelic markers.



We conducted performance comparisons for each combination of
SNP caller, genotype caller, and source of read counts, after which
they were filtered by sequencing quality, MAF, segregation dis-
tortion, redundancy, and missing data. Outlier markers breaking
the pattern of the recombination fraction matrix were removed
only for the ordering test with and without haplotype-based mul-
tiallelic markers in the empirical data set. We evaluated the es-
timated progeny genotype concordance by comparing the agree-
ment between real and estimated heterozygous, reference allele
homozygous (homozygous-ref), and alternative allele homozy-
gous (homozygous-alt) states. For that, we count the number of
genotypes estimated as one type given that the true type was an-
other, i.e., Est: homozygous | True: heterozygous. The methods
are the combination of each SNP caller, genotype caller, and read
count source. We expected that a good method would result in high
probabilities for the same estimated and real genotypes (i.e. Est:
homozygous | True: homozygous) and low probabilities when they
are different (i.e. Est: homozygous | True: heterozygous). These
were summarized using receiver operating characteristic (ROC)

curves by plotting the sensitivity (;— posgl.'fe f&ﬁﬁzerfega =) inthe

. . e alse positives
vertical axis versus 1 — specificity ( Talse pOJ; ; tiveél tTiie negatives ) on the

horizontal axis for all possible thresholds in a logistic regression
[56].

To test the capabilities of software correctly estimating the
parental genotypes, we used the same conditional frequency, but
instead of measuring the similarities between individuals’ geno-
types, we tested the combination of both parental genotypes. To
do that, we calculate the conditional frequency analysis between
the marker types (e.g. Est=B3.7 | True=B3.7). Based on Mollinari
etal. [57], we compared the centiMorgan distances of markers in
the maps estimated by each method and the real map using the
Euclidean distance (D):

D=[(m-1)"%d-d)yd-ad)?

where m is the number of markers evaluated, d is the vector of
estimated distances,d is the vector of real distances, and ’ indicates
vector transposition. A value of D = 1 means that the estimated
map differs by an average of 1 cM from the built map regarding all
genomic positions. We also evaluated the orders provided by the
different ordering algorithms by computing the absolute value of
Spearman’s rank correlation between orders.

The shiny app Reads2MapApp was built to display results from the
workflow analysis. It includes graphics and statistics about SNP
calling efficiency, the number of markers discarded by filtering
steps, marker types, computer resources and time spent by each
step of the workflow, allele depth by genotype, genotype probabil-
ities, ROC curves, map size, map phases, recombination fraction
matrix, progeny haplotypes, breakpoints count, and the correla-
tion between linkage map and reference genome markers positions.
Reads2MapApp is a modularized R package using the golem frame-
work [58] that can be rendered and displayed locally or on a server.
It can be installed from its GitHub repository and run with a single
command (run_app). Once uploaded the Reads2Map output file
in the upload section of the app, all graphics will be automatically
generated.

Allelic bias has been observed frequently in GBS data [10, 9]. The
primary source of bias in GBS data is related to the PCR amplification
step during library preparation [8, 9]. Duplicates can be generated
from the library preparation using the PCR or from erroneous detec-
tion of a single amplification cluster as if multiplied by the optical
sensor of the sequencing instrument [59]. For Whole Genome Se-
quence (WGS) and exome sequencing data, it is recommended that
duplicated sequences are filtered out because of their redundant
information and the bias that they can bring to the statistical anal-
ysis. In this context, we expect that most of the sequences have
partial overlap. Therefore, it is possible to identify the duplicates as
the ones that completely overlap with each other and have a lower
quality score of the sequence base. But, with GBS data, duplicated
sequences are expected to be common because all sequences have
the same starting point: the restriction enzyme cut site. Filtering
duplicates, in this case, would reduce the read depth per loci to
only one read per allele and increase the uncertainties of genotype
estimation in the presence of sequencing errors [60]. Duplicates in
GBS present advantages to sequencing depth. However, they also
bring more allelic bias and erroneous nucleotide substitutions from
PCR.

With the Reads2Map workflows, we simulated the read sequences
by testing several values of RADinitio parameters to try to be as
similar as possible to the empirical data and real scenarios. We
found that with low mean depths (5) and any of the number of PCR
cycles tested (5, 9, and 14), almost all markers identified by GATK are
filtered out in the segregation distortion test, and maps cannot be
built. Setting the mean depth to 10 and a high number of PCR cycles
(9 and 14) also kept a few markers in the GATK analysis. Therefore,
we performed all the simulated scenarios using 5 PCR cycles with
mean depths of 10 and 20.

The mean percentage of duplicated reads in the aspen empirical
data set was 76% (SE 0.55%), while in the simulated data set with
mean depths of 10 and 20 were, respectively, 88% (SE 0.00%) and
92% (SE 0.00%), according to the Picard MarkDuplicates tool [61]
results. It shows that RADinitio simulates more duplicates per cycle
than expected by the set proportion of 4:1 in the input parameters.
Even with a lower number of PCR cycles (5), the simulated data
presents more PCR duplicates than the empirical PCR performed
to generate the aspen data set, which had 14 cycles [39]. The ex-
cessive number of PCR duplicates in the simulations may be why
GATK identified a few false positives markers with a mean number
of 0.49 for depth 10 and 0.48 for depth 20 (Figure 2).

Another difference between the simulated and empirical data
set is the number of markers identified by freebayes and GATK. If
the only filters applied to the identified markers are maximum
missing data of 25% and MAF of 5%, freebayes identified 4.30x
and 5.45x more markers than GATK in the rose and aspen data sets,
respectively. This same proportion is not observed in the simulated
data sets, in which ¢ATk identifies a mean number of markers of
172.27 (SD 8.12) in depth 10 and 175.80 (SD 6.50) in depth 20, and
freebayes identify a mean number of 160.39 (SD 2.10) in depth 10
and 157.33 (SD 2.47) in depth 20 (Figure 2). This shows that the
simulations are biased towards GATK because its markers were used
as references for the simulations.

In the simulated data, markers were close to the restriction en-
zyme cut sites identified in P. tremula empirical data. However, the
simulations consider that the efficiency of the enzyme can vary
across libraries which may explain the high number of false nega-
tives (about 77% of the simulated data). Measuring the common
markers across the simulated families, we observed a higher over-
lap of marker positions when estimated by freebayes than GATK
(Figure 2).

Once the markers are identified, the genotypes can be estimated
according to the read count at each locus. Ideally, in a diploid indi-
vidual, the homozygous would receive the same allele from both
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Figure 2. Venn diagrams show the number of markers identified by freebayes, GATK,
and simulated (true). The intersection between the data sets represents markers
with the same position in the reference genome Populus trichocarpa version 3.0. The
Empirical data sets include markers spread across the entire reference genome. The
simulations only include markers in the first 8.426 Mb of chromosome 10 (2.1% of
the genome). The mean and standard deviation of number markers are shown for
the simulated data set once the simulation and SNP calling are repeated 60 times.
Markers were filtered by 25% maximum missing data and MAF 5% in empirical and
simulated data. * Number of markers common to all 60 repetitions.

parents. The heterozygous would have half of the reads containing
one allele and half a different one. However, we can observe the de-
viation of this ideal scenario in GBS empirical data (Supplementary
Figures 5-6).

The RADinitio simulation results in alleles read counts distri-
bution (Supplementary Figures 7-10) were similar to the observed
in the progeny of the empirical data in terms of dispersion and al-
lelic bias [9]. However, it could not simulate the low-depth counts
for parents nor the outlier allele depth presented in the empirical
data set. Thus, our simulations were not able to cover these two
characteristics that can be found in empirical data sets.

In general, the evaluations of RADinitio simulations profile
shows that we can expect fewer markers and genotyping errors
in the simulated compared to the empirical data. A smaller number
of markers should not reduce the built linkage map quality because
the analysis was made in F; populations, which have large disequi-
librium blocks. However, the smaller number of genotyping errors
overestimates the SNP and genotype calling software efficiency.
This overestimation is commonly observed in simulation results
once the data cannot capture all biases and errors in the empirical
data. If the software has low efficiency in simulated data, it will
probably underperform with empirical data. Thus, the simulations
can be used to understand specific software limitations but not
ultimately define the best performance [62].

With simulated data results, it is possible to identify the source
of the errors causing the low efficiency and elaborate methods to
overcome them because simulated data provide a clear comparison
between simulated (true) and estimated data. Therefore, the simu-
lations were useful to optimize filters applied to identified markers
and genotypes to obtain good quality linkage maps with simulated
maps and improved maps with empirical data. We also used the
simulations to measure the effects of segregation distortion in the
linkage maps and to validate all code developed for the analysis.

With the simulations, we could measure the number of wrongly
estimated genotypes and the reliability of genotype probability
provided by each software (Supplementary figure 7-12). We ob-
served three types of errors: when the genotype is estimated as

homozygous, but it is actually heterozygous (Est: homozygous |

True: heterozygous); when the estimated genotype is heterozygous
and the true genotype is homozygous (Est: heterozygous | True:
homozygous); when the estimated genotype is alternative homozy-
gous, and the true genotype is the reference or vice-versa (Est:
homozygous-alt/ref | True: homozygous-ref/alt). The latter is only
observed in genotypes estimated by po1yRAD, SuperMASSA, and updog
using GATK output VCF read counts (AD format) and had a maximum
frequency of 0.74% of the genotypes in SuperMASSA estimations in
simulations with mean depth 20. We observed that in these situa-
tions, the genotype is considered missing in the GATK output VCF
GT format field, but it always reports the total read depth in the
reference allele field of the AD format field (e.g. Estimated = GT:AD
.[.;22,0 | True = GT:AD 1/1;0,22). This same issue can also cause
errors of type Est: homozygous | True: heterozygous (Figure 3 and
progeny genotypes in Figure 4) in polyRAD, updog and SuperMASSA
genotypes generating an allele dropout scenario.
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Figure 3. Example of error (Est: homozygous | True: heterozygous and Est: het-
erozygous | True: homozygous) in parental genotypes leading to a wrong marker
type (Est: D1.10 | True: D2.15). Estimated reference (x-axis) and alternative (y-axis)
allele count. Graphics on the left have colors according to estimated genotypes,
and on the right to the true genotypes. A) show counts from GATK VCF file and B)
from BAM file. In the VCF file outputted by GATK the P1 genotype is missing (GT
.|.) because the reads did not pass the quality filters, but it reports the counts in
the reference AD field (149,0). The updog software use progeny segregation (1:1) to
estimate the parents, but it makes a mistake identifying which one is heterozygous.
Using counts from BAM file (B) fix this issue despite losing the GATK quality filters
that can be important in other situations.

Using the allele counts from the BAM alignment file, as
suggested by [53], removes these types of errors in polyRAD,
SuperMASSA, and updog genotype estimations with GATK markers.
In contrast, by using the BAM counts, we lose the advantage of the
robust filtering applied by GATK pipeline to maintain only the good
quality read counts in its VCF allele depth field. To keep the GATK
allele depth accurate but still overcome the common error observed
when the genotype is missing, we replaced the VCF allele count (AD
and DP fields) with zero when the genotype information is missing
before using it for polyRAD, SuperMASSA and updog genotyping. In
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Figure 4. Example of error (Est: homozygous | True: heterozygous) in progeny
genotypes leading to wrong marker types in A) Est: B3.7 | True: non-informative and
in B) Est: D1.10 | True: non-informative. Graphics on the left have colors according
to estimated genotypes, and on the right to the true genotypes.

empirical data, allele dropout can happen for other reasons, such
as polymorphisms in the cut site or non-amplification of one of the
alleles in the PCR step [9]. This requires another strategy to avoid
wrong estimations.

For genotypes called by polyRAD and updog, the error (Est: ho-
mozygous | True: heterozygous) is more frequent than the error
(Est: heterozygous | True: homozygous) in simulations with a
mean depth of 10. The opposite is observed in some scenarios
of the simulations with a mean depth of 20. This difference be-
tween simulations with mean depths 10 and 20 shows that updog
and polyRAD are more susceptible to wrongly estimating homozy-
gous genotypes in the presence of sequencing errors found more
frequently at higher depths. All incorrectly called genotypes pre-
sented high differences in allele counts (e.g., 1 alternative allele: 23
reference alleles).

The scenarios with a higher number of correct genotypes were
those called by freebayes and GATK, or by updog and polyRAD using
markers from freebayes SNP calling, counts from VCF, and simu-
lation mean of 20. The segregation distortion does not affect the
frequency of correct genotypes in most scenarios (Supplementary
figures 7-10), despite affecting the reliability of the genotype prob-
abilities provided by po1yRAD (Supplementary figures 11-12).

Combining information from both parental genotypes defines the
expected Mendelian segregation for each locus. The informative
combinations for outcrossing species with biallelic codominant
markers must have at least one heterozygous genotype in one of the
parents, including the marker types B3.7, D1.10, and D2.15 (Supple-
mentary figures 13-16). The haplotype-based multiallelic codomi-
nant markers can also present types A.1, A.2, D1.9, and D2.14. OneMap
3.0 does not consider the parental genotype probabilities in its HMM
multi-point approach. Thus, it is important to plan the sequencing
experiment with high-quality parental genotypes because, if there

are errors, they will not be corrected in downstream processing,
and it will cause distortions in the resulting distances and haplo-
types. To avoid map size inflation, erroneous parental genotypes
must be removed before the linkage map analysis.

Filtering the data set by segregation distortion is an efficient way
of removing markers with wrong parental genotypes. The software
updog, polyRAD, and SuperMASSA models consider the segregation
pattern of the population to infer the genotypes, and, in some cases,
they change the parental genotypes to fit in the observed popula-
tion segregation pattern. If the progeny genotypes have low quality,
it can lead to an erroneous estimation of the parental genotypes.
We observed some cases in which non-informative markers are
estimated as informative because of genotyping errors in progeny
genotypes (Figure 4). In other cases, when alleles dropout in the
heterozygous parent of a marker segregating 1:1, the models iden-
tify that one of the parents should be heterozygous, but the predic-
tive models make mistakes in identifying which of them should be
heterozygous (Figure 3).

We tested three other filters to overcome this in updog, polyRAD,
and superMAssA. One of them was filtering the genotypes by the
genotype probability. If the progeny genotype has a genotype prob-
ability lower than 0.8, the genotype is considered missing data.
The marker is discarded if the frequency of missing data across
all progeny is higher than 25%. The other filter tested was re-
moving non-informative markers from the VCF file coming from
GATK and freebayes before using it as input for updog, polyRAD and
SuperMASSA. We considered non-informative markers homozygous
in both parents or if at least one of the parental genotypes was miss-
ing. The third filter was to replace the allele depth (AD) field in
the VCF file format by missing data when the genotype is missing.
This avoids that updog, polyRAD, and SuperMASSA use the allele depth
when GATK filtered out the genotype due to bad quality.

Removing the non-informative markers before the genotype
calling by updog, polyRAD, and SuperMASsA reduced the number of
wrongly identified marker types by that software, mainly in the
simulated scenarios with a mean depth of 20 (Figure 5 and Supple-
mentary figure 17).

We expect all multiallelic markers identified by freebayes to
come from combinations of biallelic marker types (Figure 6 and
Supplementary figure 18). The simulations showed the amount of
B3.7, D1.10, D2.15, and non-informative markers converted to A.1,
A.2, D1.9, and D2.14 markers. The D1.9 and D2.14 were converted
from D1.10 and D2.15 SNP combinations, respectively. Also, the
haplotyping approach could combine a few non-informative into
A.1,D1.9, and D2.14 markers.

Before using the map size as a metric for map quality, we checked
if a map with the expected size always means good quality. A map
can have the expected size but poor quality if the number of over-
estimated and underestimated recombination breakpoints in the
progeny haplotypes is the same; in other words, if they cancel out.
To test if this happens in our simulated data set, we compared the
Euclidean relation of estimated and true genetic distances with
the total number of wrong (overestimated + underestimated) re-
combination breakpoints in the progeny haplotypes (Figure 7 and
Supplementary figures 19 and 20). For identifying a break as overes-
timated or underestimated, we do not consider the expected break
position but the total breaks expected for the evaluated haplotype.
For example, if one haplotype for a specific progeny was simulated
with one break and estimated with zero, then we count it as one
underestimated break.

The comparison shows that overestimated breakpoints are gen-
erally more frequent than underestimated ones. We observe that
when a map is inflated, it also has many wrong recombination
breakpoints. However, in some cases, the map has the expected
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Figure 5. Mean number of wrongly identified biallelic markers in the simulated
data set (y-axis) while applying filters by minimum genotypes probability of 0.8,
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map size, but a high number of wrong haplotypes due to both over-
estimated and underestimated breaks. A high number of underes-
timated breaks can be observed in situations where the Euclidean
distance is close to, or less than 1 (log;00) and the number of wrong
recombination events is between 10 and 100 (log,91—-10g102). These
situations are more frequent when a global error rate of 5% is used.

In the empirical data results, we observed maps with expected size
and excess recombination breakpoints in just a few individuals in
the progeny. This variation can be related to contaminant sam-
ples. The study of Zhigunov et al. [39] identified six contaminants
in the aspen data set. When we ran the workflows, including the
contaminant samples, the maps built with freebayes markers and
updog, SuperMASSA, and polyRAD were smaller in size than without
the contaminant. This would (wrongly) suggest better quality if
map size is the only metric used (Figure 8A and Supplementary
figure 21A). Nevertheless, the maps presented higher differences
in the number of recombination breakpoints among individuals
when using the genotype probabilities relative to each genotype
call software (Figure 8B and Supplementary figure 21B). Some con-
taminant samples presented more recombination events than the
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rest of the progeny. Using 5% of global error reduces this difference
and can mask the presence of contamination (Figures 9).

Another important characteristic to consider in a good-quality map
is the number of markers. The same data set will vary according to
the SNP and genotype call software and filters used. We filtered all
data sets by maximum missing data of 25%, segregation distortion,
and redundancy. We tested the effects of three extra filters based
on common errors observed in the simulated data set genotyping
evaluations (Figures 3 and 4): minimum genotype probability of
0.8; removal of non-informative markers; replacing AD and GQ with
missing data when GT is considered missing in the VCF file (Figure
10 and 11). These filters are applied before the segregation test filter,
which reduces the number of tests and increases the permissibility
of the threshold corrected by multiple tests (Bonferroni correction).
Thus, the built map can have more markers in some scenarios even
if more filters are applied.

Maps built with genotypes from GATK and a global error of 5%
were smaller when filtering by a minimum genotype probability of
0.8 in higher depths of empirical and simulated data (Supplemen-
tary figures 22 and 23). The most significant effect of the filters
can be observed in maps built with updog, SuperMASSA and polyRAD
genotypes and genotypes probability (Figures 11 and 10). In both
empirical and simulated data sets, higher-depth scenarios generate
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linkage maps with sizes closer to the expected after the extra filters
are applied.

The segregation distortion in the data does not affect the number
of wrong estimated genotypes by the genotype call software (Sup-
plementary figures 7-10), but it can affect the reliability of updog,
SuperMASSA, and polyRAD in outputting genotype probabilities in
some scenarios (Supplementary figure 11 and 12). Consequently,
the map size can be inflated using genotype probabilities from these
software (Figure 12 and Supplementary figure 24).

We compared all maps built with 0neMap combined with upstream
approaches with maps built with the GUSMap [14] software (Fig-
ures 13, 14 and Supplementary figures 25 and 26). We could not
apply the extra filters to GUSMap genotypes as they are estimated
internally in the software. In both simulated and empirical data,
the maps generated by GUSMap presented greater map sizes.

The differences between simulated and empirical data discussed
below also result in differences in the performances of software in
these two data set types (Figure 15 and Supplementary figures 27-
29). We focused on selecting the best pipelines only for the empirical
data. For those, we consider as promising approaches the ones that
resulted in linkage maps with a high number of markers, with no or
few outlier markers distorting the total map length (Figures 15 and

Supplementary figure 27), and with the number of recombination
breakpoints identified in each progeny individual closer to what is
expected for a 38 cM group according to meiotic properties (Figure
9 and Supplementary figure 30).

The rose data set presents higher sequencing depth; thus, the
quality of the genetic map is generally better than the aspen data
set. Using the filters by genotype probability and non-informative
markers, it was possible to remove the majority of the outliers from
the maps built and still keep a high number of markers by using
GATK markers, GATK and polyRAD genotypes, and a global error rate of
5%. Despite presenting a higher number of markers, the approach
using freebayes markers and genotypes with a global error rate of
5% resulted in a map with double the size (Figure 16). The number
of recombination breakpoints profiles in these three cases shows
that the individual 649-12 is a possible contaminant in this data set
(Supplementary figure 30). The contaminant samples tend to have
a higher number of breaks, as we saw in the comparison of aspen
with and without contaminant samples.

In the aspen data set, the best approach was to build the map
with GATK markers, GATK genotypes and a global error of 5%, or
with updog genotype probabilities (Figure 17). Similar maps were
also built using markers from freebayes, genotypes from polyRAD
and a global error rate of 5%. All the maps built for the aspen data
set still presented some outlier markers. Removing these outlier
markers requires careful evaluation of diagnostic graphics, such as
the heatmaps of the recombination fraction matrix (Supplemen-
tary Figures 31and 32), which is not possible with the workflow’s
straightforward approach. It makes Reads2Map workflows a tool for
selecting the SNP and genotyping calling and the genotype proba-
bility to build the map, but further revisions to remove the outliers
are required to obtain a good quality genetic map.

The previous evaluations show that multiallelic markers do not
present a unique effect on the genetic distances (Figures 19 and 18
and Supplementary figures 33 and 34). Depending on the data set
quality and combination of software used, it can decrease, increase,
or even not affect the linkage map quality under these criteria. We
target approaches that can reduce or not affect the genetic map size
because the advantage of using multiallelic markers is not in the
genetic map distance estimation but in the ordering step of the link-
age map building. Algorithms that use two-point recombination
fractions estimations to order only biallelic markers have difficulty
missing linkage information between markers D1 and D2 (homozy-
gous x heterozygous or vice-versa). These markers can only be
related to each other in the presence of more informative mark-
ers, such as B3.7 (heterozygous x heterozygous) or the multiallelic.
Yet, having few B7.3 markers compared to D1 and D2 can still be
an issue for linkage map building. This characteristic was why the
first methods for building genetic maps in this type of population
resulted in separate maps for each parent [63]. The non-integrated
genetic maps limit further QTL analysis of multiallelic traits [64].
The ordering step was not considered in the previous evalua-
tions once the workflows used genomic order to build the maps.
To test the effect of multiallelic markers in the ordering, we built
alinkage map for the entire chromosome 10 of the aspen data set
using markers called by freebayes, an error rate of 5%, and two
of the OneMap order_seq and MDS algorithms to order the markers.
The genetic distances were estimated by HMM multipoint approach.
Figure 20 B shows the impact of including the multiallelic markers
in the two-points-based MDS algorithm [55]. Multiallelic mark-
ers slightly increase the Pearson correlation and drastically reduce
the Euclidean distance between the estimated ordering and the
genomic order. The order_seq algorithm is a strategy developed
to apply HMM in the ordering procedure. First, it estimates the
order of the markers using a two-point approach (the default is
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Figure 16. The figure shows the linkage maps built for 37% of rose chromosome 1
(38 cM) with selected pipelines.

the RECORD [65] algorithm). Based on the two-point ordering,
a subset (default of five markers) of equally distributed markers
is selected and ordered by exhaustive search (compare function).
Next, the algorithm adds all the other markers sequentially, test-
ing each possible position using the HMM multi-point approach
in the already established sequence. The RECORD algorithm has
steps where markers are randomized, which makes the result non-
deterministic in the sense that each run can result in a (normally
slightly) different order. This strategy used to be very accurate
when dealing with a few informative markers (such as SSRs) but is
more prone to errors if only biallelic markers are available. Results
show that, with haplotype-based multiallelic markers, the strategy
returns a high-quality order, reproducing almost entirely the ge-
nomic order and the correct pattern of the recombination fraction
matrix (Figure 20 A).

The Reads2Map workflows have a robust structure to generate
production-level results with simple inputs and optimized usage
of computational resources. The structure allowed us to test the
quality of genetic maps built with the following scenarios: i) using
different SNP calling software (GATK and freebayes); ii) using dif-
ferent genotype calling software (GATK, freebayes, updog, polyRAD,
SuperMASSA); iii) using different linkage map building software
(OneMap 3.0 and GUSMap); iv) establishing different error probabil -
ities (relative to genotype call software, 5%, and 0.001% global
error); v) applying different marker filtering; vi) with or without
multiallelic markers; vi) in empirical and simulated data; vii) with
and without segregation distortion; viii) with and without contam-
inant samples; ix) with different library preparation; and x) with
different sequencing depths. These scenarios are commonly found
by researchers trying to produce high-quality linkage maps using
sequencing technologies. The Reads2Map and Reads2MapApp are the
first tools to guide best practices for building linkage maps with
sequencing data pointing software, parameters and marker filters
to be used in diverse scenarios.

We elaborated and limited the scenarios explored according to
our experiences as developers of OneMap. OneMap first version was re-
leased in 2007, and since then it has been used to build linkage maps
in a diversity of species. Its strategies and structure also served as a

base for more complex software such as MAPpoly [15] for building
linkage maps in polyploid species. With time, new methods for ge-
netic marker identification using sequencing data emerged, chang-
ing the context where 0neMap was used. We included updates in this
version 3.0 to resolve issues with inflated genetic maps and marker
ordering. Two major changes allow users to read and build genetic
maps with the genotype probabilities and haplotype-based mul-
tiallelic markers information from the input files (0neMap format
or VCF file). However, the success of genetic map building will be
proportional to the quality of the information provided by upstream
procedures such as library preparation, SNP and genotype calling,
genotype probabilities estimation, and the combination of SNPs
into haplotype-based markers. With Reads2Map and Reads2MapApp,
we provide users tools to select the best approaches before using
OneMap 3.0 to guarantee that it will result in the best quality genetic
map possible with the data available.

For the rose data, the best pipelines filtered the markers using
all extra filters (minimum 0.8 of genotype probability, removal of
non-informative markers, and replacing AD and GQ field by miss-
ing if GT is missing in VCF file), and used the combinations: GATK
as SNP and genotype calling with a global error of 5%; GATK as SNP
calling and polyRAD as genotype calling with a global error rate of
5%; freebayes as SNP and genotype calling with multiallelic mark-
ers and a global error rate of 5%. The aspen had a lower sequencing
depth. Thus, none of the methods could provide maps with the
expected size. Even using the selected methods, further marker
filtering was required to obtain a good-quality final map. For the
aspen data set, we obtained the best pipelines by also filtering the
markers with all extra filters and using the combinations: GATK as
SNP and genotype calling with a global error rate of 5%; GATK as
SNP calling and updog as genotype calling using updog genotype
probabilities or freebayes as SNP and polyRAD as genotype calling
using a global error rate of 5%.

Most of the selected pipelines for both empirical data sets used
a global error of 5% to estimate the genetic distances because they
gave map sizes closer to the expected. We also observed the same
results when applying a 5% error rate in the simulated data. With
those, we could relate the map size with the number of wrongly
estimated haplotypes. The evaluation showed that inflated maps
mostly reflect a high number of wrongly estimated haplotypes,
but there were some cases where the map was estimated with the
expected size but presented a high number of wrong haplotypes,
mostly when a 5% global error rate was applied. Using a 5% error
rate can also mask the presence of contaminant samples among the
progenies. For these reasons, we intend to update Reads2Map with
genotype calling software that adapt the genotype probabilities for
this specific usage and result in map sizes closer to the expected.

The diversity in the pipelines suggested for both empirical data
sets highlights that pipelines perform differently with data sets
with different properties. We can see this diversity in the effects ob-
served while testing filters, software, and conditions. This means
that the pipelines presented here as the best cannot be considered
the best for every data set. Thus, users should reproduce all tests
presented here using the Reads2Map workflows with their empirical
data set and select the best pipelines for their specific conditions.
The workflows were built using WDL and containers to ensure high
reproducibility. This guarantees that different results running dif-
ferent data sets is due to the data set’s properties and not to bioin-
formatic pipeline changes. Also, as the upstream procedures for
genotyping and identifying haplotype-based multiallelic markers
are improved, updates can be easily made in the workflows.

Every Reads2Map workflow run returns a large amount of infor-
mation. Every step of the workflow, from the reads’ alignment to
the completed linkage map, provides quality measurements for
users to evaluate each scenario. The Reads2MapApp shiny app re-
ceives all this information compressed in a single workflow out-
put file and converts it into comprehensive interactive graphics.
Through the app interface, users can evaluate the performance of
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Figure 17. The figure shows the linkage maps built for 37% of aspen chromosome 10 (38 cM) with (ct) and without the presence of 6 contaminant samples and selected
pipelines.
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gradient from hot colors in the diagonal (adjacent markers) to cold colors in the upper left and lower right corners. The figure also presents the Spearman rank correlation
(p) and the Euclidean distances (D) between the estimated map and the map built with markers ordered by the genomic positions. The represented result from order_seq
algorithm is only one of the possible results as the procedure is non-deterministic



each combination of software and parameters in each step. If re-
sults show issues in any of them, users can re-run the workflow
with adapted parameters or include new filters that make sense in
their context. Once established the upstream steps based on the
app graphics for the built linkage map subset, users can reproduce
it for the complete data set, inputting the VCF files from Reads2Map
into OneMap.

+ Project name: Reads2Map

. Project home page: https://github.com/Cristianetaniguti/
Reads2Map

+ Main workflows: EmpiricalReads2Map [66] and Simulate-
dReads2Map [67]

- Operating system(s): Platform independent

- Programming language: WDL and R

- Other requirements: docker or singularity

+ License: GNU GPL

Supplementary File 1. Emission function for outcrossing.

Supplementary Figure S1. The log;, of the CPU time (blue) and
the log;o of the amount of memory utilized (red) by each task of the
Reads2Map workflows when running the simulations with a mean
depth of 10. The CPU time is measured with the number of CPUs
used times the wall-clock time used.

Supplementary Figure S2. The log; of the CPU time (blue) and
the log;o of the amount of memory utilized (red) by each task of the
Reads2Map workflows when running the simulations with a mean
depth of 20. The CPU time is measured with the number of CPUs
used times the wall-clock time used.

Supplementary Figure S3. The log;, of the CPU time (blue) and
the log,o of the amount of memory utilized (red) by each task of
the Reads2Map workflows when running the aspen empirical data.
The CPU time is measured with the number of CPUs used times the
wall-clock time used. The filters and linkage map steps were made
just with a subset of the data (37% of chromosome 10).

Supplementary Figure S4. The log;o of the CPU time (blue) and
the log,o of the amount of memory utilized (red) by each task of
the Reads2Map workflows when running the rose empirical data.
The CPU time is measured with the number of CPUs used times the
wall-clock time used. The filters and linkage map steps were made
just with a subset of the data (37% of chromosome 1).

Supplementary Figure S5. Reference (x-axis) and alternative
(y-axis) allele depth distribution for all progeny individuals and
a subset of 5% of the markers in rose and aspen data considering
the read counts from VCF and from BAM files. Colors represent the
estimated genotype by the genotype calling methods. Percentages
of each genotype in the entire data set are shown for progeny and
parental genotypes in the top right of each graphic.

Supplementary Figure $6. Supplementary figure S5 continued.

Supplementary Figure S7. Reference (x-axis) and alternative
(y-axis) allele depth distribution for all progeny individuals and a
subset of 25% of the markers from a single simulated family data
without segregation distortion, with mean depth of 10 and 20 and
considering the read counts from VCF and from BAM files. Colors
blue and green show genotypes called correctly by the genotype
calling methods, and the colors yellow, orange, and red shows the
ones that were called incorrectly. Percentages of correctly and in-
correctly genotypes for the entire data set are shown for progeny
and also parental genotypes at the top of each graphic.

Supplementary Figure S8. Supplementary Figure S7 continued.

Supplementary Figure S9. Reference (x-axis) and alternative
(y-axis) allele depth distribution for all progeny individuals and a

subset of 25% of the markers from a single simulated family data
with segregation distortion, with mean depth of 10 and 20 and con-
sidering the read counts from VCF and from BAM files. Colors blue
and green show genotypes called correctly by the genotype calling
methods, and the colors yellow, orange, and red shows the ones
that were called incorrectly. Percentages of correctly and incorrectly
genotypes for the entire data set are shown for progeny and parental
genotypes at the top of each graphic.

Supplementary Figure S10. Supplementary Figure S9 contin-
ued.

Supplementary Figure S11. ROC curves with the true and esti-
mated genotypes from the five families simulated with mean depth
10 and 20 and the first 8.426 Mb of the chromosome 10 (37% or 38
cM). Here only biallelic markers are considered. The specificity and
sensitivity profiles consider different thresholds in the genotype
probabilities for each scenario. Higher is the area under the curve,
the higher is the genotypes probability reliability. Genotype proba-
bilities thresholds closer to the left superior corner have a higher
capacity to differentiate right and wrong genotypes.

Supplementary Figure S12. Supplementary Figure S11 contin-
ued.

Supplementary Figure S13. Mean number of corrected identi-
fied biallelic by marker types (y-axis) while applying filters by min-
imum genotypes probability of 0.8, by informativity and replacing
AD and GQ VCF field by missing data when GT is missing (x-axis).
The markers presented here were obtained using simulated data,
GATK as SNP and updog, polyRAD, and SuperMASSA genotype calling,
with mean depths 10 and 20, with segregation distortion, with allele
depth count from VCF. The notation of marker types follows table 2
notation.

Supplementary Figure S14. Supplementary Figure S13 contin-
ued. The same information is shown for freebayes and GATK as
genotype call software.

Supplementary Figure S15. The number of markers (y-axis)
identified in the first 37% of aspen chromosome 10 while applying
filters by minimum genotypes probability of 0.8, by informativity
and replacing AD and GQ VCF field by missing data when GT is
missing (y-axis). Colors distinguish the marker types according to
table 2.

Supplementary Figure S16. The number of markers (y-axis)
identified in the first 37% of rose chromosome 1 while applying
filters by minimum genotypes probability of 0.8, by informativity
and replacing AD and GQ VCF field by missing data when GT is
missing (y-axis). Colors distinguish the marker types according to
table 2.

Supplementary Figure S17. Mean number of wrongly identi-
fied biallelic markers (y-axis) while applying filters by minimum
genotypes probability of 0.8, by informativity and replacing AD and
GQ VCF field by missing data when GT is missing (x-axis). The
numbers on the top of each graphic show the mean total number of
correct and wrong markers across the five repetitions. The markers
presented here were obtained using simulated data, GATK as SNP
and genotype calling, with mean depths 10 and 20, segregation
distortion, and allele depth count from VCE. The notation of marker
types follows table 2 notation.

Supplementary Figure S$18. Mean number of multiallelic mark-
ers converted from biallelics (y-axis) and how many of them are
kept after applying filters by minimum genotypes probability of 0.8,
by informativity and replacing AD and GQ VCF field by missing data
when GT is missing (y-axis). The markers presented here were
obtained using simulated data, freebayes as SNP and genotype call-
ing, with mean depths 10 and 20, with and without segregation
distortion, with allele depth count from VCF. The notation of marker
types follows table 2 notation.

Supplementary Figure S19. The base 10 logarithm of the mean
of underestimated and overestimated recombination breakpoints
identified in the progeny simulated with a mean depth of 10 and
linkage maps built using genotypes and genotypes probabilities
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coming from different approaches and filters applied. Colors distin-
guish the simulations with and without segregation distortion and
multiallelic markers and the source of read counts by allele. The
blue horizontal line cuts infinite values generated by the logarith-
mic of zero when there are no wrong breakpoints. The closer the
triangles are to the blue line better the method could reproduce the
recombination breakpoints number.

Supplementary Figure $20. The base 10 logarithm of the mean
of underestimated and overestimated recombination breakpoints
identified in the progeny simulated with a mean depth of 20 and
linkage maps built using genotypes and genotypes probabilities
coming from different approaches and filters applied. Colors distin-
guish the simulations with and without segregation distortion and
multiallelic markers and the source of read counts by allele. The
blue horizontal line cuts infinite values generated by the logarith-
mic of zero when there are no wrong breakpoints. The closer the
triangles are to the blue line better the method could reproduce the
recombination breakpoints number.

Supplementary Figure S21. Effect of contaminant samples in
the map size and in the number of estimated recombination break-
points range among progeny individuals. The empirical aspen data
sets presented in this figure contain multiallelic markers, the allele
counts from the VCF file and was filtered by genotype probability
higher than 0.8 to keep only informative markers.

Supplementary Figure S22. The relation between filters applied
(x-axis) and the mean Euclidean genetic distances (A y-axis) and
the number of markers (B y-axis) of the built linkage maps. The
simulated data set shown here contains multiallelic markers and
segregation distortion.

Supplementary Figure S23. The relation between filters (x-
axis) applied and the map size (A y-axis) and the number of markers
(B y-axis) of the built linkage maps. The empirical data sets shown
here contain multiallelic markers and segregation distortion. The
horizontal red line indicates the expected map size (38 cM) for the
subset of the genomes used.

Supplementary Figure S24. The effect of the simulated segre-
gation distortion in the maps Euclidean distance. The x-axis shows
the Euclidean distance between estimated and simulated maps built
for the data sets with simulated segregation distortion. The y-axis
shows data sets simulated without the segregation distortion. The
lines crossing the symbols indicate the standard deviation across
the five repetitions. The data sets contain only biallelic markers and
allele depth count from the VCF file; the markers were filtered by
genotype probability higher than 0.8 and only informative markers.

Supplementary Figure $25. Comparison of Euclidean distance
(v-axis) and the number of markers in maps built with oneMap 3.0
and cusMap for the simulated data. The lines crossing the sym-
bols indicate the standard deviation across the five repetitions. The
maps built with oneMap are represented by the name of the genotype
call software that provided the genotypes and their probabilities
for oneMap multipoint approach of genetic distance estimation. The
markers inputted in OneMap included multiallelic markers, were
filtered by genotype probability higher than 0.8 to keep only infor-
mative markers, and the AD and GQ fields were replaced by missing
data when GT is missing.

Supplementary Figure S26. Comparison of map size (y-axis)
and the number of markers in maps built with OneMap 3.0 and GusMap
for the empirical data. The maps built with 0neMap are represented
by the name of the genotype call software that provided the geno-
types and their probabilities for oneMap multipoint approach of ge-
netic distance estimation. The data sets shown here contain only
biallelic. Markers inputted in 0neMap were filtered by genotype prob-
ability higher than 0.8 to keep only informative markers. The AD
and GQ fields were replaced by missing data when GT was missing.
The horizontal red line indicates the expected map size (38 cM) for
the subset of the genomes used.

Supplementary Figure S27. Comparison of map size (y-axis)
and the number of markers in maps built with OneMap 3.0 using em-

pirical data and different upstream software for estimating geno-
types and genotypes probabilities. Markers inputted in OneMap in-
cluded multiallelic markers, were filtered by genotype probability
higher than 0.8, kept only informative markers, and the AD and
GQ fields were replaced by missing data when GT was missing. The
horizontal red line indicates the expected map size (38 cM) for the
subset of the genomes used.

Supplementary Figure S28. Comparison of Euclidean distance
(y-axis) and the number of markers in maps built with oneMap 3.0
using simulated data and different upstream software for estimat-
ing genotypes and genotypes probabilities. Markers inputted in
OneMap included multiallelic markers and segregation distortion,
were filtered by genotype probability higher than 0.8, kept only
informative markers, and the AD and GQ fields were replaced by
missing data when GT is missing.

Supplementary Figure S29. Comparison of Euclidean distance
(y-axis) and the number of markers in maps built with oneMap 3.0
using simulated data and different upstream software for estimat-
ing genotypes and genotypes probabilities. Markers inputted in
OneMap included multiallelic markers and segregation distortion,
were filtered by genotype probability higher than 0.8, kept only
informative markers, and the AD and GQ fields were replaced by
missing data when GT is missing.

Supplementary Figure S30. The total number of recombination
breakpoints estimated for each progeny individual of the rose full-
sib population with selected pipelines.

Supplementary Figure S31. Recombination fraction matrix heat
map obtained for 37% of chromosome 10 of aspen data set by se-
lected pipelines. The heat maps represent the recombination frac-
tion matrix between markers positioned at both axes.

Supplementary Figure S32. Recombination fraction matrix heat
map obtained for 37% of chromosome 1 of rose data set by selected
pipelines. The heat maps represent the recombination fraction
matrix between markers positioned at both axes.

Supplementary Figure S33. A: relation of the Euclidean distance
between simulated data set with (x-axis) and without (y-axis) mul-
tiallelic markers. B: Number of multiallelic markers present in data
sets represented in the x-axis of graphic A. The lines crossing the
symbols indicate the standard deviation across the five repetitions.
The data sets shown in this figure have allele depth counts from
the VCF file, segregation distortion, were filtered by a minimum
genotype probability of 0.8, and only informative markers.

Supplementary Figure S34. A: relation of map size between
empirical data set with (x-axis) and without (y-axis) multiallelic
markers. B: Number of multiallelic markers present in data sets
represented in the x-axis of graphic A. The data sets shown in this
figure have allele depth counts from the VCF file, were filtered by a
minimum genotype probability of 0.8, and only informative mark-
ers and AD and GQ VCF fields were replaced by missing when GT is
missing.

GBS: Genotyping-by-Sequencing; PCR: polymerase chain reaction;
RADSeq: Restriction-site associated; DNA sequencing; VCF: variant
call format; GQ: genotyping quality; GT: genotype; GWAS: genome-
wide association; SNP: single nucleotide polymorphism; LD: link-
age disequilibrium; QTL: quantitative trait loci; WDL: workflow
description language; HPRC: high performance research comput-
ing; CPU: central processing unit; HMM: hidden Markov model;
EM: expectation-maximization; MAF: minor allele frequency; NGS:
Next Generation Sequencing.
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Advances in sequencing technologies and the development of dif-
ferent genome-reduced representation library protocols result in
millions of genetic markers from hundreds of samples in a single
sequencing run [1, 2, 3, 4]. Increasing the number of markers and
individuals genotyped can enhance the capacity of linkage maps
to locate recombination events that occur, resulting in higher map
resolution and better statistical power for the localization of QTL in
further analysis. This large amount of data and genotyping errors
common with genotyping-by-sequencing approaches [5] increases
the need for computational resources and multiple bioinformatic
tools.

Genotyping errors are frequent when high-throughput se-
quencing technology is applied to reduced representation libraries.
There are a variety of protocols to create these types of libraries
[4], called Restriction-site Associated DNA sequencing (RADseq)
or genotyping-by-sequencing (GBS) [6, 7]. Generally, one or more
restriction enzymes are used to digest the sample DNA. The result-
ing DNA fragments are filtered by size, connected to adaptors and
barcodes, amplified by PCR, and sequenced. Consequently, most
sequences obtained are PCR duplicates of the regions around the
enzyme cut site. By relying on duplicates to increase sequencing
depth, such methods introduce errors and a sequencing bias to-
wards one of the alleles due to variabilities in the PCR amplification.
These errors are hard to detect by bioinformatic tools [8, 9].

To overcome genotyping errors coming from GBS meth-
ods, genotype calling software model sequencing error, allelic
bias, overdispersion, outlying observations, and the population
Mendelian expected segregation [10]. Building a genetic map with
genotypes obtained using these methods can be a powerful tool to
validate their efficiency. Wrong decisions or inefficient methods
in all steps before linkage map building can be identified in the
resulting map as errors that dissociate the map properties from bio-
logical processes. For example, genotyping errors generate inflated
map sizes that show an excessive number of recombination break-
points during meiosis [11]. The first genetic map studies by Morgan
and Sturtevant [12] discovered that crossing-overs are unlikely to
happen too close to each other, a phenomenon named interference.
Later studies describing the meiotic molecular mechanisms con-
firmed the low expected number of recombination breaks in a single
event [13].

Recently developed approaches to build linkage maps (14, 15, 16]
were implemented in OneMap [17] 3.0 package. They use quantita-
tive genotype probability measurements rather than the traditional
qualitative genotypic information from SNP and genotype call-
ing methods to account for genotyping errors and provide higher-
quality genetic maps. These probabilities can be applied in different
ways: using the probability of each possible genotype (PL field in
VCF format); using an error probability associated with the called
genotype (GQ field in VCF format); or using a global error rate that
will be applied to all genotypes. Nevertheless, even using these ap-
proaches, building a linkage map will succeed only if the upstream
software can identify the errors and provide reliable genotypes or
their probabilities.

The biallelic codominant nature of SNPs is another characteristic
of high-throughput markers that can affect linkage map building
of outcrossing species. Although biallelic markers can distinguish
only two haplotypes, the mapping population of outcrossing diploid
species inherits two haplotypes with combinations of four different
parental haplotypes. With biallelic markers, the observed parental
genotypes are limited to types ab x ab, ab x aa, and aa x ab. When
one of the parents is homozygous (ab x aa and aa x ab), it is impos-
sible to observe the crossing-over change for this uninformative
parent. So this is taken as missing information (non-measurable
crossing-overs) for linkage map building if only two-point infor-
mation is considered. Therefore, building a linkage map with only
biallelic markers requires a multi-point approach that uses loci

information with both parents heterozygous (ab x ab) to estimate
the recombination of loci where one parent is homozygous, and the
recombination information is missing for closely linked loci. The
multi-point approach applies likelihood computations involving
several loci and has been successfully used since the seminal publi-
cation of Lander and Green [18]. The approach makes it possible
to identify the four different parental haplotypes by phasing the
biallelic information so that the SNPs can be used to identify all the
allelic diversity.

Other approaches to overcome the low informativeness of bial-
lelic markers involve combining adjacent biallelic markers in the
same disequilibrium block (high LD) into a single multiallelic hap-
lotype. These haplotype-based markers showed higher accuracy in
association analysis than individual biallelic SNPs [19, 20, 21, 22,
23, 24, 25]. N’Diaye et al. [21] and Jiang et al. [25] pointed out sev-
eral advantages of haplotype-based markers, including the higher
capacity to identify epistatic interactions, the presence of more
information to estimate identical-by-descent alleles and the reduc-
tion of the number of statistical tests to perform.

Despite many software available for estimating genotype prob-
abilities [26, 2, 27, 26, 28, 29, 10] and haplotype-based multiallelic
markers [26, 30], there are no recommendations yet about which
combination and choice of parameters are the best for building
linkage maps. Therefore, this work evaluates the consequences of
building maps by applying genotype probabilities and haplotype-
based markers from different software and parameters. To achieve
these, we implemented new features in OneMap [17], a widely-used
software for building maps, and developed the Reads2Map workflow.
We were able to make recommendations to users to obtain better
linkage maps in several situations, such as low and high-depth
sequencing, with and without segregation distortion, contaminant
samples, and multiallelic markers, and using different bioinfor-
matic software to perform the SNP and genotype calling.

We built two workflows using Workflow Description Language
(WDL) [31] to perform sequence alignment, SNP and genotype
calling, and linkage map building: EmpiricalReads2Map, for eval-
uating empirical (real) data sets; and SimulatedReads2Map, to
evaluate simulated data sets (figure 1). Both share the same
sub-workflows for most of the steps, allowing users to evalu-
ate software and parameters in an organized and efficient way.
WDL workflows can be executed using Cromwell Execution En-
gine [31], Docker [32], and Singularity [33] containers. We ran
the analysis testing workflows on two high-performance comput-
ers (Texas A&M University HPRC, University of Sdo Paulo Aguia
Cluster). The CPU and memory amount utilized by each work-
flow task in the Texas A&M HPRC is shown in Supplementary
figures 1-4. The workflows are available at https://github.com/
Cristianetaniguti/Reads2Map. For the linkage map building step,
we implemented updates in OneMap package version 3.0 (https:
//CRAN .R-project.org/package=onemap) and used this version in
the workflows. We also developed the Reads2MapApp shiny app
(https://github.com/Cristianetaniguti/Reads2MapApp). We used
it to upload the final workflow output and visualize summary statis-
ticsabout the resulting linkage maps, intermediary steps, and work-
flow performance.

With a combination of a hidden Markov model (HMM) and the
expectation-maximization algorithm (EM) [18], OneMap [17] can
perform multipoint estimation of map genetic distance for F2, back-
cross, RILs, and outcrossing populations. For the multipoint esti-
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Figure 1. A: Tasks of the two main Reads2Map workflows: EmpiricalReads2Map.wdl and SimulatedReads2Map.wdl. B: Tools to run the workflows on the Cloud (https:
//app.terra.bio/ platform) or in High-Performance Computing (HPC) environments. C: The Reads2Map shiny app has as input the outputs of the workflows. It builds
several descriptive graphics to evaluate the best upstream software combination for linkage map construction.
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mation, OneMap algorithms use code adapted from R/QTL package
[34]).

Inshort, thelatent variable G;, i = 1, ..., n, denotes the true under-
lying genotypes for the individual at a set of n ordered loci; O; is the
observed variable of the molecular phenotype (observed genotypes)
for the locus i. The HMM can be represented as [35]:

n-1 n
POIGi=g)=) ..) > ) 7ng)] [t(g9:.1)] [elg;0p)
j=1 j=1

91 gi—1gi*1  Gn
(1)

The initial probability 7t(g;) is the probability of having a given
genotype for the first locus (G ), and its value depends on the cross-
type. For example, for an outcrossing population, this value will be
0.25, assuming a uniform distribution of all four possible genotypes
(AA, BA, AB, and BB). The same reasoning applies to backcross data,
with probabilities of 0.5 since there are only two possible genotypes
(AA and AB).

The transition probability t]-(g]-, gjﬂ) is the probability of the
genotype in a locus (Gj:i +1) changing to the next locus genotype
(Gj+1). The initial value for this probability is based on the phase,
and recombination fraction estimated by a two-point approach
using maximum likelihood estimators [36], and is updated after
iterations of the EM algorithm. The emission probability e(gj, Oj) is
the probability of the observed variable given the genotype. This
probability is defined by an associated genotyping error (see Sup-
plementary file 1). The OneMap software previous to version 3.0
considered this error probability as a single value of 107> for every
genotype. In version 3.0, this value is kept as default to maintain
the code reproducibility. But it is noteworthy that this probability
can be unreliable in several situations when the genotypes are more
prone to errors, especially for new genotyping technology (e.g. GBS
data). OneMap 3.0 allow users to provide individual values of error
probabilities in the emission probability of the HMM for each geno-
type or marker, having a potential impact on the results. Using
the create_probs function, users can provide three types of values:
one global value, which was the previous default (global_error); an
error probability for each inferred genotype (genotypes_error); or
genotype probabilities for each possible genotype in individuals
(genotypes_probs). We tested the consequences of building maps
applying different genotype probabilities coming from five differ-
ent genotype caller software, a global error rate of 0.05, and the old
default value of 1075.

Here we used GATK [27], freebayes [26], polyRAD [28],
SuperMASSA [29] and updog [10] to estimate the genotypes and geno-
types probabilities. For GATK and freebayes caller, we used the Phred
score genotype error (GQ FORMAT value) converted to probabilities.
The software polyRAD, SuperMASSA and updog use the known popu-
lation’s structure (in our case F;) as a priori information to increase
the accuracy of the estimated genotypes.

OneMap uses the forward-backward algorithm [37] to compute
the HMM combined with the expectation-maximization algorithm
(EM). Since version 3.0, OneMap presents the possibility to parallelize
the HMM using the approach described in [38]. It parallelizes the
procedure into a maximum of four cores. We used this new OneMap
feature to estimate the genetic distances. We also implemented
new functions for linkage maps quality diagnostics such as interac-
tive plots for recombination fraction matrices, progeny haplotypes
representation, and counts of the recombination breakpoints in
progeny. We compared OneMap 3.0 capacity of estimating accurate
genetic distances with the GusMap package estimations since it also
uses an HMM to account for errors present in sequencing data.

We ran EmpiricalReads2Map Workflow using two empirical data sets
that already have linkage maps built. They are GBS data sets from a

bi-parental diploid F; full-sib mapping populations of aspen (Pop-
ulus tremula L.) [39] (BioProject PRJNA395596), and rose (Rosa
spp.) [40]. The aspen data set comes from an intraspecific cross of
two Populus tremula genotypes. The GBS libraries were built using
HindIll and Nall enzymes and sequenced as 150 base pair single-end
reads on an Illumina HiSeq2500. Eight library replicates were built
and sequenced for the parents and only one for each of the 116 F1
offspring. The data set includes six samples erroneously sequenced
as part of the progeny and later identified as contaminants. An
average read depth of approximately 6x for progeny and 58x for
parental samples were observed from the sequencing process. The
Populus trichocarpa genome version 3.0 [41] was used as a reference
for the sequence’s alignment.

The diploid roses data set comprises 138 individuals from the
cross between a Texas A&M breeding line J06-20-14-3 (J14-3) and
cultivar Papa Hemeray (PH). GBS libraries were built with NgoMIV
enzyme and sequenced as a 113 base pair single-end read on a
HiSeq2500. The parent J14-3 was repeated twice, and the PH sam-
ple three times. An average read depth of approximately 94x for
progeny and 528x for parental samples was observed from the se-
quencing process. The Rosa chinensis v1.0 genome assembly [42]
was used as a reference genome to align the sequences.

The sequencing reads of the two empirical data sets were filtered
using the Stacks plugin process_radtags [2] to filter sequences by
the presence of the restriction site and sequencing quality. The
reads were discarded if the average quality score of 50% of its length
was below the Phred score of 10 (or 90% probability of being correct).
The software cutadapt [43] was used to remove adapters and filter
by a minimum read length of 64 bp. The sequences were then
evaluated in our EmpiricalReads2Map workflow.

Each time the EmpiricalReads2Map workflow is executed, it
considers all the pipeline combinations generating 34 maps with
combinations of SNP caller (GATK and freebayes), genotype caller
(GATK/freebayes, polyRAD, updog, SuperMASSA), source of the reads
counts (VCF and BAM files), and map builder packages (OneMap and
GUsMap). The output provides maps built with genotype call soft-
ware genotype probabilities, with 5% and 0.001% of global error
rate in the HMM chain.

We executed the EmpiricalReads2Map workflows in the presence
and absence of haplotype-based multiallelic markers and applied
four different marker filtering methods. For the aspen data set,
we also executed the workflows for every scenario in the presence
of the contaminant samples. Therefore, the experiment has a to-
tal of 3 (data sets: rose, aspen and aspen with contaminants) x 2
(presence/absence of multiallelic markers) x 4 (filter methods -
see details below) x 34 = 816 maps built for the first 8.426 Mb of
chromosome 10 of Populus trichocarpa genome and the first 25 Mb
(37%) of chromosome 1 Rosa chinensis reference genome. Table
1 shows an overview of the notations used to refer to each evalu-
ated scenario. It is important to mention that this represents what
users will find in building maps for the whole genome; a sample
was required to reduce the computation burden.

The first step of the SimulatedReads2Map workflow is to perform
simulations of a mapping population, GBS libraries, and sequences.
The simulation is based on a given reference genome chromosome
sequence. If a reference linkage map and a VCF file are provided,
the workflow simulates the marker genetic distances and parental
genotype frequencies based on them. A cubic spline interpolation
with the Hyman method [44] is applied to simulate the centimorgan
position for each marker’s physical position based on this same
relation on the reference linkage map provided.

We based our simulation analysis on the first 37% of the chro-
mosome 10 sequence of Populus trichocarpa version 3.0, which com-
prehends a sequence with 8.426 Mb from a total chromosome size



Table 1. Notation used to refer to each evaluation scenario in empirical
and simulated data sets.

Step Notation Description
Reads depth 10 Me?ln read depth used
to simulate the data set
simulations depth 20
SNP freebayes . SOwaare useq to
identify the variants
calling GATK
BAM Source .ﬁles of al.lele
depth information
VCF
Genotype poLyRAD Software used to
perform the estimation of
. enotype for a given
calling SuperHASSA alfgele de“gzh infor%nation
updog
Software used to
freebayes/ genotype calling is the
GATK same that performed
the SNP calling
Maps built with
Map polyRAD genotypes probabilities
from polyRAD
Maps built with
building SuperMASSA genotypes probabilities
from SuperMASSA
Maps built with
updog genotypes probabilities
from updog
Maps built with
genotype probabilities
freebayes/ from freebayes if freebayes
GATK was used for SNP
calling or GATK if
GATK was.
Maps built with
polyRAD
(5%) genotypes from polyRAD
and global error of 0.05
Maps built with
SuperMASSA
(5%) genotypes from SuperMASSA
and global error of 0.05
Maps built with
updog
genotypes from updog and
(5%)
global error of 0.05
Maps built with
freebayes/ genotypes from
GATK (5%) freebayes Or GATK
and global error of 0.05
Maps built with
freebayes/ genotypes from freebayes
GATK (0.001%) or GATK and

global error of 0.00001

of about 23 Mb. This sequence comprises 38 cM (21%) of the linkage
group 10 reference linkage map built using the aspen empirical data
[39]. Due to the computational resources needed to build such a
high number of maps, we used only a subset of the data to finish
the analysis in a reasonable time. Chromosome 10 was randomly
chosen.

We simulated markers with different expected segregation pat-
terns according to parental genotypes in each locus. Table 2 shows
the notation for each possible marker type in an outcrossing diploid
population. The SimulatedReads2Map workflow simulates parental
haplotypes using the same proportion of marker types identified
in the empirical VCF file. This approach overcomes the missing
data present in the empirical data set. The final VCF file used as a
reference to the simulations contains 810 markers (126 B3.7, 263
D1.10, 278 D2.15, and 143 non-informative markers with both par-

ents homozygous), which results from the aspen empirical data
GATK SNP calling, filtered by a maximum of 25% of missing data
and MAF of 5%.

Table 2. Marker types according to parental genotype combinations
and progeny segregation. The letters “a”, “b”, “c” and “d” represent
different alleles and the letter “o0” represents null alleles. Adapted from
[45].

Parents Progeny
Marker type Cross Observed genotypes EXPeCt‘?d
segregation
A 1 abxcd ac,ad,bc,bd 1:1:1:1
2 abxac a,ac,ba,bc 1:1:1:1
3 abxco ac,a,bc,b 1:1:1:1
4 aox bo ab,a,b,0 1:1:1:1
B B 5 abxao ab,2a,b 1:2:1
B, 6 aoxab ab,2a,b 1:2:1
B; 7 abxab a,2ab,b 1:2:1
C 8 ao X ao 33,0 3:1
D D 9 abxcc ac,bc 1:1
10 abxaa a,ab 1:1
11 abxoo a,b 1:1
12 boxaa ab,a 1:1
13  aoxo00 a,0 11
D, 14 ccxab ac,bc 1:1
15 aaxab a,ab 11
16 ooxab a,b 1:1
17 aaxbo ab,a 11
18 00 X a0 a,0 1:1

PedigreeSim V2.1 software [46] is implemented in the work-
flow to simulate the meiosis events and generate an F; progeny
based on the provided genetic map and simulated parental hap-
lotypes. We did not consider the interference in meiotic events
(Haldane (47] mapping function). Pedigreesim output files were
converted to VCF files using Reads2MapTools (available at https://
github.com/Cristianetaniguti/Reads2MapTools) R package func-
tion pedsim2vct.

While converting the files, the pedsim2vct function can also
simulate segregation distortion by applying a selection strength.
For that, a high number of individuals in the progeny have to be
simulated with the Pedigreesim software and one or more loci to
be under a given selection intensity. In our study, we targeted a
final population size of 200 individuals. For that, we simulated 50
x 200 individuals and applied a selection intensity of 50% in the
30th marker, eliminating 50% of the genotypes containing one
of the alleles. Then, 200 individuals of the resulting population
are randomly selected to compose the mapping population. We
used this feature to compare software performance in segregation
distortion.

The VCF file output by pedsim2vcf is used as input in RADinitio
software together with the reference genome sequence. RADinitio
adds the VCF polymorphisms in the reference genome sequence
and simulates the GBS sequences. It uses the inherited efficiency
model [48] to simulate a PCR-amplified pool of molecules. The
model includes the heterogeneity of the PCR amplification and the
polymerase substitution errors. Next, RADinitio applies the user-
defined ratio between DNA original molecules to be sequenced and
PCR duplicates to create a distribution that will define the number of
times the pool of loci is sampled, the number of duplicate molecules
that are generated from a RAD locus template, and the distribu-
tion of PCR errors in the resulting reads. We defined the default
parameter with a proportion of 4:1. Besides the PCR errors inserted
during the pool sampling, the software also includes a commonly
observed error pattern, where the 3’ end of the read accumulates
more errors than the 5’ [49]. We tested different values of PCR cy-
cles (5, 9, and 14) and mean depth (5, 10, and 20) to simulate the
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FASTA files. We set the other simulation parameters to obtain 150
bases of read length, sequence size of 350, and restriction enzymes
HindIII and NalIIl. The mean read depth parameter for the parental
samples was eight times higher than the progeny. The combination
of RADinitio parameters that produced results closer to those ob-
served in empirical data was selected to perform simulations with
and without segregation distortion, five repetitions (five families),
and two average sequencing depths (10 and 20) and 5 PCR cycles.

RADinitio does not output the sequence quality scores, so we
converted the FASTA file format to FASTQ format, including a Phred
score of 40 for every base simulated using seqtk [50] software. Af-
ter obtaining the FASTQ files, the SimulatedReads2Map workflow
followed the same tasks as the EmpiricalReads2Map, with align-
ment, SNP and genotype calling, and linkage map build. The Simu-
latedReads2Map workflow makes comparisons between real and
estimated results within each step. The comparisons made during
the workflow can be visualized in the shiny app Reads2MapApp.

Similarly to the EmpiricalReads2Map, the SimulatedReads2Map
workflow generates maps for each combination of SNP and geno-
type call and linkage map building software. However, the total
number of maps generated is multiplied by two because the work-
flows build maps with and without loci that were wrongly identified
as polymorphic due to sequencing errors (false-positive markers).
We also execute the SimulatedReads2Map workflow in the presence
and absence of haplotype-based multiallelic markers, segregation
distortion, and four methods for marker filtering. Therefore, the
experiment has a total of 5 (repetitions) x 2 (average depths) x 2
(presence/absence of multiallelic markers) x 2 (with and without
segregation distortion) x 4 (filters method - see details below) x
68 = 10,880 maps built for the first 8.426 Mb of chromosome 10
of Populus trichocarpa genome. Table 1 shows an overview of the
notations used to refer to each evaluated scenario.

First, the FASTQ sequences are aligned with BwA-MEM [51] to their
respective reference genomes. The workflow uses samtools [52] to
merge the alignment of the same samples BAM files, keeping the li-
braries identification on the BAM header and filtering out reads with
MAPQ < 10. After the alignment, BAM files for each sample are used
as inputs for sub-workflows with GATK and freebayes approaches.
One of the sub-workflow reproduces GATK joint genotyping via
HaplotypeCaller, GenomicsDBImport, and GenotypeGVCFs tools and
applies the suggested hard-filtering procedures [8]. The other sub-
workflow runs freebayes parallelized by reference genome inter-
vals. After obtaining the VCF files, indels marker positions are left-
aligned and normalized with BCFtools, and multiallelic markers
are separated into a new VCF file.

GATK and freebayes may introduce bias towards the reference
allele when used to process low-coverage sequence data. GATK in-
serts the bias when reads are filtered in the local re-assembly step
to avoid sequencing errors [53]. To overcome the bias during the
genotype calling, the workflow applies two measures of allele depth,
one from VCF and the other from BAM files. BCFtools is used to find
the read depths information for each allele in BAM files and update
the allele depths information in the AD (allele depth) field of the
VCEF file. Therefore, each SNP calling method results in three VCFs:
i) biallelic markers with read counts outputted by the SNP callers,
ii) biallelic markers with counts from BAM files, iii) multiallelic
markers.

For the empirical data sets, the alignment and SNP calling steps
were performed with entire data sets, but for the next steps, we
selected just a subset of markers (the first 8.426 Mb or 37%) of
Populus trichocarpa chromosome 10 and the first 25 Mb ( 37%) of

Rosa chinensis chromosome 1 reference genomes. The markers were
filtered by minor allele frequency (MAF) of 5%, and maximum
missing data allowed of 25%. The VCF files with biallelic markers
from freebayes and GATK, and with read counts source from VCF and
BAM files were the input for the genotype caller software polyRAD,
SuperMASSA, and updog.

To use the polyRAD approach, the VCF files were imported using
VCF2RADdata without applying any filters or considering phase infor-
mation. The polyRAD model was run with PipelineMapping2Parents
default arguments which assume an F; bi-parental population.
The function Export_MAPpoly was used to export the genotype
probabilities. The vcfR package [54] and custom R (function
polyRAD_genotype_vcf in Reads2MapTools package) code were
used to store outputted genotypes and their probabilities in
a new VCF file. We also adapted SuperMASSA scripts to out-
put the genotype probabilities information. The modified ver-
sion is available in Reads2MapTools package. A wrapper func-
tion called supermassa_genotype, available in the package, can
run the model in parallel and export the results to a new
VCF file. The F; SuperMASSA model was run with parameter
naive_porterior_reporting_threshold set to zero to not filter any
genotype. The updog F; model was used in parallel using the
function multidog through the Reads2MapTools wrapper function
updog_genotype Which outputs the results in a new VCF file. In the
testing of scenarios in which we considered multiallelic markers,
the VCF containing them are merged into the VCF files from polyRAD,
SuperMASSA, and updog. The merged VCF is the input for linkage map
building in oneMap version 3.0.

The software GUsMap performs the genotype calling and link-
age map building with a single model. We used vCFtoRrA function
to convert the outputted VCF files from GATK and freebayes ap-
proaches into GusMap format. A pedigree of the population and
a list of filters (MAF = 0.05, MISS=0.25, BIN=0, DETPH=0 and
PVALUE=0.05) was provided to the readrA function. The function
makeFS was used to create the full-sib population information. Func-
tions infer_OPGP_FS and rf_est_FS were used to estimate the phase
and recombination fraction giving the genomic order of the mark-
ers. In some situations, function rf_est_FSs outputs infinite values
of the recombination fraction. In these situations, our pipeline re-
moves the respective marker and runs the function again. This
workaround code increased the time required to run GusMap.

Once imported to OneMap, markers were filtered again by maximum
missing data of 25%. Because the VCF files include unexpected
genotypes according to the loci segregation (e.g. in a cross “AA x
AB”, genotype “BB” cannot exist), OneMap makes these genotype
calls missing. We also filtered markers with segregation distortion
under a global significance level of 0.05 with Bonferroni correction
and removed redundant markers. Markers were ordered according
to the reference genome position. The genetic distances were esti-
mated by the parallelized HMM multipoint (17, 38] approach using
as emission probability a global error rate of 10~ (default in OneMap
version < 3.0, here referred to as “freebayes/GATK (0.001%)”), a
global error rate of 0.05, and the genotypes probabilities estimated
by each genotype caller.

In SimulatedReads2Map, the Haldane map function was used;
in EmpiricalReads2Map, we used Kosambi’s map function. To test
the influence of the presence of the multiallelic markers in the
ordering procedure, we used the built map for the chromosome
10 linkage group of aspen and ordered its markers using MDSMap
[55] (wrapper function implemented in OneMap 3.0) and order_seq
ordering algorithms with and without multiallelic markers.



We conducted performance comparisons for each combination of
SNP caller, genotype caller, and source of read counts, after which
they were filtered by sequencing quality, MAF, segregation dis-
tortion, redundancy, and missing data. Outlier markers breaking
the pattern of the recombination fraction matrix were removed
only for the ordering test with and without haplotype-based mul-
tiallelic markers in the empirical data set. We evaluated the es-
timated progeny genotype concordance by comparing the agree-
ment between real and estimated heterozygous, reference allele
homozygous (homozygous-ref), and alternative allele homozy-
gous (homozygous-alt) states. For that, we count the number of
genotypes estimated as one type given that the true type was an-
other, i.e., Est: homozygous | True: heterozygous. The methods
are the combination of each SNP caller, genotype caller, and read
count source. We expected that a good method would result in high
probabilities for the same estimated and real genotypes (i.e. Est:
homozygous | True: homozygous) and low probabilities when they
are different (i.e. Est: homozygous | True: heterozygous). These
were summarized using receiver operating characteristic (ROC)

curves by plotting the sensitivity (;— posgl.'fe f&ﬁﬁzerfega =) inthe

. . e alse positives
vertical axis versus 1 — specificity ( Talse pOJ; ; tiveél tTiie negatives ) on the

horizontal axis for all possible thresholds in a logistic regression
[56].

To test the capabilities of software correctly estimating the
parental genotypes, we used the same conditional frequency, but
instead of measuring the similarities between individuals’ geno-
types, we tested the combination of both parental genotypes. To
do that, we calculate the conditional frequency analysis between
the marker types (e.g. Est=B3.7 | True=B3.7). Based on Mollinari
etal. [57], we compared the centiMorgan distances of markers in
the maps estimated by each method and the real map using the
Euclidean distance (D):

D=[(m-1)"%d-d)yd-ad)?

where m is the number of markers evaluated, d is the vector of
estimated distances,d is the vector of real distances, and ’ indicates
vector transposition. A value of D = 1 means that the estimated
map differs by an average of 1 cM from the built map regarding all
genomic positions. We also evaluated the orders provided by the
different ordering algorithms by computing the absolute value of
Spearman’s rank correlation between orders.

The shiny app Reads2MapApp was built to display results from the
workflow analysis. It includes graphics and statistics about SNP
calling efficiency, the number of markers discarded by filtering
steps, marker types, computer resources and time spent by each
step of the workflow, allele depth by genotype, genotype probabil-
ities, ROC curves, map size, map phases, recombination fraction
matrix, progeny haplotypes, breakpoints count, and the correla-
tion between linkage map and reference genome markers positions.
Reads2MapApp is a modularized R package using the golem frame-
work [58] that can be rendered and displayed locally or on a server.
It can be installed from its GitHub repository and run with a single
command (run_app). Once uploaded the Reads2Map output file
in the upload section of the app, all graphics will be automatically
generated.

Allelic bias has been observed frequently in GBS data [10, 9]. The
primary source of bias in GBS data is related to the PCR amplification
step during library preparation [8, 9]. Duplicates can be generated
from the library preparation using the PCR or from erroneous detec-
tion of a single amplification cluster as if multiplied by the optical
sensor of the sequencing instrument [59]. For Whole Genome Se-
quence (WGS) and exome sequencing data, it is recommended that
duplicated sequences are filtered out because of their redundant
information and the bias that they can bring to the statistical anal-
ysis. In this context, we expect that most of the sequences have
partial overlap. Therefore, it is possible to identify the duplicates as
the ones that completely overlap with each other and have a lower
quality score of the sequence base. But, with GBS data, duplicated
sequences are expected to be common because all sequences have
the same starting point: the restriction enzyme cut site. Filtering
duplicates, in this case, would reduce the read depth per loci to
only one read per allele and increase the uncertainties of genotype
estimation in the presence of sequencing errors [60]. Duplicates in
GBS present advantages to sequencing depth. However, they also
bring more allelic bias and erroneous nucleotide substitutions from
PCR.

With the Reads2Map workflows, we simulated the read sequences
by testing several values of RADinitio parameters to try to be as
similar as possible to the empirical data and real scenarios. We
found that with low mean depths (5) and any of the number of PCR
cycles tested (5, 9, and 14), almost all markers identified by GATK are
filtered out in the segregation distortion test, and maps cannot be
built. Setting the mean depth to 10 and a high number of PCR cycles
(9 and 14) also kept a few markers in the GATK analysis. Therefore,
we performed all the simulated scenarios using 5 PCR cycles with
mean depths of 10 and 20.

The mean percentage of duplicated reads in the aspen empirical
data set was 76% (SE 0.55%), while in the simulated data set with
mean depths of 10 and 20 were, respectively, 88% (SE 0.00%) and
92% (SE 0.00%), according to the Picard MarkDuplicates tool [61]
results. It shows that RADinitio simulates more duplicates per cycle
than expected by the set proportion of 4:1 in the input parameters.
Even with a lower number of PCR cycles (5), the simulated data
presents more PCR duplicates than the empirical PCR performed
to generate the aspen data set, which had 14 cycles [39]. The ex-
cessive number of PCR duplicates in the simulations may be why
GATK identified a few false positives markers with a mean number
of 0.49 for depth 10 and 0.48 for depth 20 (Figure 2).

Another difference between the simulated and empirical data
set is the number of markers identified by freebayes and GATK. If
the only filters applied to the identified markers are maximum
missing data of 25% and MAF of 5%, freebayes identified 4.30x
and 5.45x more markers than GATK in the rose and aspen data sets,
respectively. This same proportion is not observed in the simulated
data sets, in which ¢ATk identifies a mean number of markers of
172.27 (SD 8.12) in depth 10 and 175.80 (SD 6.50) in depth 20, and
freebayes identify a mean number of 160.39 (SD 2.10) in depth 10
and 157.33 (SD 2.47) in depth 20 (Figure 2). This shows that the
simulations are biased towards GATK because its markers were used
as references for the simulations.

In the simulated data, markers were close to the restriction en-
zyme cut sites identified in P. tremula empirical data. However, the
simulations consider that the efficiency of the enzyme can vary
across libraries which may explain the high number of false nega-
tives (about 77% of the simulated data). Measuring the common
markers across the simulated families, we observed a higher over-
lap of marker positions when estimated by freebayes than GATK
(Figure 2).

Once the markers are identified, the genotypes can be estimated
according to the read count at each locus. Ideally, in a diploid indi-
vidual, the homozygous would receive the same allele from both
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Figure 2. Venn diagrams show the number of markers identified by freebayes, GATK,
and simulated (true). The intersection between the data sets represents markers
with the same position in the reference genome Populus trichocarpa version 3.0. The
Empirical data sets include markers spread across the entire reference genome. The
simulations only include markers in the first 8.426 Mb of chromosome 10 (2.1% of
the genome). The mean and standard deviation of number markers are shown for
the simulated data set once the simulation and SNP calling are repeated 60 times.
Markers were filtered by 25% maximum missing data and MAF 5% in empirical and
simulated data. * Number of markers common to all 60 repetitions.

parents. The heterozygous would have half of the reads containing
one allele and half a different one. However, we can observe the de-
viation of this ideal scenario in GBS empirical data (Supplementary
Figures 5-6).

The RADinitio simulation results in alleles read counts distri-
bution (Supplementary Figures 7-10) were similar to the observed
in the progeny of the empirical data in terms of dispersion and al-
lelic bias [9]. However, it could not simulate the low-depth counts
for parents nor the outlier allele depth presented in the empirical
data set. Thus, our simulations were not able to cover these two
characteristics that can be found in empirical data sets.

In general, the evaluations of RADinitio simulations profile
shows that we can expect fewer markers and genotyping errors
in the simulated compared to the empirical data. A smaller number
of markers should not reduce the built linkage map quality because
the analysis was made in F; populations, which have large disequi-
librium blocks. However, the smaller number of genotyping errors
overestimates the SNP and genotype calling software efficiency.
This overestimation is commonly observed in simulation results
once the data cannot capture all biases and errors in the empirical
data. If the software has low efficiency in simulated data, it will
probably underperform with empirical data. Thus, the simulations
can be used to understand specific software limitations but not
ultimately define the best performance [62].

With simulated data results, it is possible to identify the source
of the errors causing the low efficiency and elaborate methods to
overcome them because simulated data provide a clear comparison
between simulated (true) and estimated data. Therefore, the simu-
lations were useful to optimize filters applied to identified markers
and genotypes to obtain good quality linkage maps with simulated
maps and improved maps with empirical data. We also used the
simulations to measure the effects of segregation distortion in the
linkage maps and to validate all code developed for the analysis.

With the simulations, we could measure the number of wrongly
estimated genotypes and the reliability of genotype probability
provided by each software (Supplementary figure 7-12). We ob-
served three types of errors: when the genotype is estimated as

homozygous, but it is actually heterozygous (Est: homozygous |

True: heterozygous); when the estimated genotype is heterozygous
and the true genotype is homozygous (Est: heterozygous | True:
homozygous); when the estimated genotype is alternative homozy-
gous, and the true genotype is the reference or vice-versa (Est:
homozygous-alt/ref | True: homozygous-ref/alt). The latter is only
observed in genotypes estimated by po1yRAD, SuperMASSA, and updog
using GATK output VCF read counts (AD format) and had a maximum
frequency of 0.74% of the genotypes in SuperMASSA estimations in
simulations with mean depth 20. We observed that in these situa-
tions, the genotype is considered missing in the GATK output VCF
GT format field, but it always reports the total read depth in the
reference allele field of the AD format field (e.g. Estimated = GT:AD
.[.;22,0 | True = GT:AD 1/1;0,22). This same issue can also cause
errors of type Est: homozygous | True: heterozygous (Figure 3 and
progeny genotypes in Figure 4) in polyRAD, updog and SuperMASSA
genotypes generating an allele dropout scenario.
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Figure 3. Example of error (Est: homozygous | True: heterozygous and Est: het-
erozygous | True: homozygous) in parental genotypes leading to a wrong marker
type (Est: D1.10 | True: D2.15). Estimated reference (x-axis) and alternative (y-axis)
allele count. Graphics on the left have colors according to estimated genotypes,
and on the right to the true genotypes. A) show counts from GATK VCF file and B)
from BAM file. In the VCF file outputted by GATK the P1 genotype is missing (GT
.|.) because the reads did not pass the quality filters, but it reports the counts in
the reference AD field (149,0). The updog software use progeny segregation (1:1) to
estimate the parents, but it makes a mistake identifying which one is heterozygous.
Using counts from BAM file (B) fix this issue despite losing the GATK quality filters
that can be important in other situations.

Using the allele counts from the BAM alignment file, as
suggested by [53], removes these types of errors in polyRAD,
SuperMASSA, and updog genotype estimations with GATK markers.
In contrast, by using the BAM counts, we lose the advantage of the
robust filtering applied by GATK pipeline to maintain only the good
quality read counts in its VCF allele depth field. To keep the GATK
allele depth accurate but still overcome the common error observed
when the genotype is missing, we replaced the VCF allele count (AD
and DP fields) with zero when the genotype information is missing
before using it for polyRAD, SuperMASSA and updog genotyping. In
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Figure 4. Example of error (Est: homozygous | True: heterozygous) in progeny
genotypes leading to wrong marker types in A) Est: B3.7 | True: non-informative and
in B) Est: D1.10 | True: non-informative. Graphics on the left have colors according
to estimated genotypes, and on the right to the true genotypes.

empirical data, allele dropout can happen for other reasons, such
as polymorphisms in the cut site or non-amplification of one of the
alleles in the PCR step [9]. This requires another strategy to avoid
wrong estimations.

For genotypes called by polyRAD and updog, the error (Est: ho-
mozygous | True: heterozygous) is more frequent than the error
(Est: heterozygous | True: homozygous) in simulations with a
mean depth of 10. The opposite is observed in some scenarios
of the simulations with a mean depth of 20. This difference be-
tween simulations with mean depths 10 and 20 shows that updog
and polyRAD are more susceptible to wrongly estimating homozy-
gous genotypes in the presence of sequencing errors found more
frequently at higher depths. All incorrectly called genotypes pre-
sented high differences in allele counts (e.g., 1 alternative allele: 23
reference alleles).

The scenarios with a higher number of correct genotypes were
those called by freebayes and GATK, or by updog and polyRAD using
markers from freebayes SNP calling, counts from VCF, and simu-
lation mean of 20. The segregation distortion does not affect the
frequency of correct genotypes in most scenarios (Supplementary
figures 7-10), despite affecting the reliability of the genotype prob-
abilities provided by po1yRAD (Supplementary figures 11-12).

Combining information from both parental genotypes defines the
expected Mendelian segregation for each locus. The informative
combinations for outcrossing species with biallelic codominant
markers must have at least one heterozygous genotype in one of the
parents, including the marker types B3.7, D1.10, and D2.15 (Supple-
mentary figures 13-16). The haplotype-based multiallelic codomi-
nant markers can also present types A.1, A.2, D1.9, and D2.14. OneMap
3.0 does not consider the parental genotype probabilities in its HMM
multi-point approach. Thus, it is important to plan the sequencing
experiment with high-quality parental genotypes because, if there

are errors, they will not be corrected in downstream processing,
and it will cause distortions in the resulting distances and haplo-
types. To avoid map size inflation, erroneous parental genotypes
must be removed before the linkage map analysis.

Filtering the data set by segregation distortion is an efficient way
of removing markers with wrong parental genotypes. The software
updog, polyRAD, and SuperMASSA models consider the segregation
pattern of the population to infer the genotypes, and, in some cases,
they change the parental genotypes to fit in the observed popula-
tion segregation pattern. If the progeny genotypes have low quality,
it can lead to an erroneous estimation of the parental genotypes.
We observed some cases in which non-informative markers are
estimated as informative because of genotyping errors in progeny
genotypes (Figure 4). In other cases, when alleles dropout in the
heterozygous parent of a marker segregating 1:1, the models iden-
tify that one of the parents should be heterozygous, but the predic-
tive models make mistakes in identifying which of them should be
heterozygous (Figure 3).

We tested three other filters to overcome this in updog, polyRAD,
and superMAssA. One of them was filtering the genotypes by the
genotype probability. If the progeny genotype has a genotype prob-
ability lower than 0.8, the genotype is considered missing data.
The marker is discarded if the frequency of missing data across
all progeny is higher than 25%. The other filter tested was re-
moving non-informative markers from the VCF file coming from
GATK and freebayes before using it as input for updog, polyRAD and
SuperMASSA. We considered non-informative markers homozygous
in both parents or if at least one of the parental genotypes was miss-
ing. The third filter was to replace the allele depth (AD) field in
the VCF file format by missing data when the genotype is missing.
This avoids that updog, polyRAD, and SuperMASSA use the allele depth
when GATK filtered out the genotype due to bad quality.

Removing the non-informative markers before the genotype
calling by updog, polyRAD, and SuperMASsA reduced the number of
wrongly identified marker types by that software, mainly in the
simulated scenarios with a mean depth of 20 (Figure 5 and Supple-
mentary figure 17).

We expect all multiallelic markers identified by freebayes to
come from combinations of biallelic marker types (Figure 6 and
Supplementary figure 18). The simulations showed the amount of
B3.7, D1.10, D2.15, and non-informative markers converted to A.1,
A.2, D1.9, and D2.14 markers. The D1.9 and D2.14 were converted
from D1.10 and D2.15 SNP combinations, respectively. Also, the
haplotyping approach could combine a few non-informative into
A.1,D1.9, and D2.14 markers.

Before using the map size as a metric for map quality, we checked
if a map with the expected size always means good quality. A map
can have the expected size but poor quality if the number of over-
estimated and underestimated recombination breakpoints in the
progeny haplotypes is the same; in other words, if they cancel out.
To test if this happens in our simulated data set, we compared the
Euclidean relation of estimated and true genetic distances with
the total number of wrong (overestimated + underestimated) re-
combination breakpoints in the progeny haplotypes (Figure 7 and
Supplementary figures 19 and 20). For identifying a break as overes-
timated or underestimated, we do not consider the expected break
position but the total breaks expected for the evaluated haplotype.
For example, if one haplotype for a specific progeny was simulated
with one break and estimated with zero, then we count it as one
underestimated break.

The comparison shows that overestimated breakpoints are gen-
erally more frequent than underestimated ones. We observe that
when a map is inflated, it also has many wrong recombination
breakpoints. However, in some cases, the map has the expected
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Figure 5. Mean number of wrongly identified biallelic markers in the simulated
data set (y-axis) while applying filters by minimum genotypes probability of 0.8,
by informativity and replacing AD and GQ VCF field by missing data when GT is
missing (x-axis). The numbers on the top of each graphic show the mean total
number of correct and wrong markers across the five repetitions. The markers
presented here were obtained with GATK as SNP and updog, polyRAD, and SuperMASSA
genotype calling, with mean depths 10 and 20, with segregation distortion, with
allele depth count from VCE. The notation of marker types follows table 2 notation.

map size, but a high number of wrong haplotypes due to both over-
estimated and underestimated breaks. A high number of underes-
timated breaks can be observed in situations where the Euclidean
distance is close to, or less than 1 (log;00) and the number of wrong
recombination events is between 10 and 100 (log,91—-10g102). These
situations are more frequent when a global error rate of 5% is used.

In the empirical data results, we observed maps with expected size
and excess recombination breakpoints in just a few individuals in
the progeny. This variation can be related to contaminant sam-
ples. The study of Zhigunov et al. [39] identified six contaminants
in the aspen data set. When we ran the workflows, including the
contaminant samples, the maps built with freebayes markers and
updog, SuperMASSA, and polyRAD were smaller in size than without
the contaminant. This would (wrongly) suggest better quality if
map size is the only metric used (Figure 8A and Supplementary
figure 21A). Nevertheless, the maps presented higher differences
in the number of recombination breakpoints among individuals
when using the genotype probabilities relative to each genotype
call software (Figure 8B and Supplementary figure 21B). Some con-
taminant samples presented more recombination events than the
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rest of the progeny. Using 5% of global error reduces this difference
and can mask the presence of contamination (Figures 9).

Another important characteristic to consider in a good-quality map
is the number of markers. The same data set will vary according to
the SNP and genotype call software and filters used. We filtered all
data sets by maximum missing data of 25%, segregation distortion,
and redundancy. We tested the effects of three extra filters based
on common errors observed in the simulated data set genotyping
evaluations (Figures 3 and 4): minimum genotype probability of
0.8; removal of non-informative markers; replacing AD and GQ with
missing data when GT is considered missing in the VCF file (Figure
10 and 11). These filters are applied before the segregation test filter,
which reduces the number of tests and increases the permissibility
of the threshold corrected by multiple tests (Bonferroni correction).
Thus, the built map can have more markers in some scenarios even
if more filters are applied.

Maps built with genotypes from GATK and a global error of 5%
were smaller when filtering by a minimum genotype probability of
0.8 in higher depths of empirical and simulated data (Supplemen-
tary figures 22 and 23). The most significant effect of the filters
can be observed in maps built with updog, SuperMASSA and polyRAD
genotypes and genotypes probability (Figures 11 and 10). In both
empirical and simulated data sets, higher-depth scenarios generate
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Figure 9. The total number of recombination breakpoints (x-axis) estimated for
each progeny individual (y-axis) of the aspen full-sib population with and without
contaminant samples (cont) with selected pipelines. The red ellipses indicate the
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linkage maps with sizes closer to the expected after the extra filters
are applied.

The segregation distortion in the data does not affect the number
of wrong estimated genotypes by the genotype call software (Sup-
plementary figures 7-10), but it can affect the reliability of updog,
SuperMASSA, and polyRAD in outputting genotype probabilities in
some scenarios (Supplementary figure 11 and 12). Consequently,
the map size can be inflated using genotype probabilities from these
software (Figure 12 and Supplementary figure 24).

We compared all maps built with 0neMap combined with upstream
approaches with maps built with the GUSMap [14] software (Fig-
ures 13, 14 and Supplementary figures 25 and 26). We could not
apply the extra filters to GUSMap genotypes as they are estimated
internally in the software. In both simulated and empirical data,
the maps generated by GUSMap presented greater map sizes.

The differences between simulated and empirical data discussed
below also result in differences in the performances of software in
these two data set types (Figure 15 and Supplementary figures 27-
29). We focused on selecting the best pipelines only for the empirical
data. For those, we consider as promising approaches the ones that
resulted in linkage maps with a high number of markers, with no or
few outlier markers distorting the total map length (Figures 15 and

Supplementary figure 27), and with the number of recombination
breakpoints identified in each progeny individual closer to what is
expected for a 38 cM group according to meiotic properties (Figure
9 and Supplementary figure 30).

The rose data set presents higher sequencing depth; thus, the
quality of the genetic map is generally better than the aspen data
set. Using the filters by genotype probability and non-informative
markers, it was possible to remove the majority of the outliers from
the maps built and still keep a high number of markers by using
GATK markers, GATK and polyRAD genotypes, and a global error rate of
5%. Despite presenting a higher number of markers, the approach
using freebayes markers and genotypes with a global error rate of
5% resulted in a map with double the size (Figure 16). The number
of recombination breakpoints profiles in these three cases shows
that the individual 649-12 is a possible contaminant in this data set
(Supplementary figure 30). The contaminant samples tend to have
a higher number of breaks, as we saw in the comparison of aspen
with and without contaminant samples.

In the aspen data set, the best approach was to build the map
with GATK markers, GATK genotypes and a global error of 5%, or
with updog genotype probabilities (Figure 17). Similar maps were
also built using markers from freebayes, genotypes from polyRAD
and a global error rate of 5%. All the maps built for the aspen data
set still presented some outlier markers. Removing these outlier
markers requires careful evaluation of diagnostic graphics, such as
the heatmaps of the recombination fraction matrix (Supplemen-
tary Figures 31and 32), which is not possible with the workflow’s
straightforward approach. It makes Reads2Map workflows a tool for
selecting the SNP and genotyping calling and the genotype proba-
bility to build the map, but further revisions to remove the outliers
are required to obtain a good quality genetic map.

The previous evaluations show that multiallelic markers do not
present a unique effect on the genetic distances (Figures 19 and 18
and Supplementary figures 33 and 34). Depending on the data set
quality and combination of software used, it can decrease, increase,
or even not affect the linkage map quality under these criteria. We
target approaches that can reduce or not affect the genetic map size
because the advantage of using multiallelic markers is not in the
genetic map distance estimation but in the ordering step of the link-
age map building. Algorithms that use two-point recombination
fractions estimations to order only biallelic markers have difficulty
missing linkage information between markers D1 and D2 (homozy-
gous x heterozygous or vice-versa). These markers can only be
related to each other in the presence of more informative mark-
ers, such as B3.7 (heterozygous x heterozygous) or the multiallelic.
Yet, having few B7.3 markers compared to D1 and D2 can still be
an issue for linkage map building. This characteristic was why the
first methods for building genetic maps in this type of population
resulted in separate maps for each parent [63]. The non-integrated
genetic maps limit further QTL analysis of multiallelic traits [64].
The ordering step was not considered in the previous evalua-
tions once the workflows used genomic order to build the maps.
To test the effect of multiallelic markers in the ordering, we built
alinkage map for the entire chromosome 10 of the aspen data set
using markers called by freebayes, an error rate of 5%, and two
of the OneMap order_seq and MDS algorithms to order the markers.
The genetic distances were estimated by HMM multipoint approach.
Figure 20 B shows the impact of including the multiallelic markers
in the two-points-based MDS algorithm [55]. Multiallelic mark-
ers slightly increase the Pearson correlation and drastically reduce
the Euclidean distance between the estimated ordering and the
genomic order. The order_seq algorithm is a strategy developed
to apply HMM in the ordering procedure. First, it estimates the
order of the markers using a two-point approach (the default is
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Figure 16. The figure shows the linkage maps built for 37% of rose chromosome 1
(38 cM) with selected pipelines.

the RECORD [65] algorithm). Based on the two-point ordering,
a subset (default of five markers) of equally distributed markers
is selected and ordered by exhaustive search (compare function).
Next, the algorithm adds all the other markers sequentially, test-
ing each possible position using the HMM multi-point approach
in the already established sequence. The RECORD algorithm has
steps where markers are randomized, which makes the result non-
deterministic in the sense that each run can result in a (normally
slightly) different order. This strategy used to be very accurate
when dealing with a few informative markers (such as SSRs) but is
more prone to errors if only biallelic markers are available. Results
show that, with haplotype-based multiallelic markers, the strategy
returns a high-quality order, reproducing almost entirely the ge-
nomic order and the correct pattern of the recombination fraction
matrix (Figure 20 A).

The Reads2Map workflows have a robust structure to generate
production-level results with simple inputs and optimized usage
of computational resources. The structure allowed us to test the
quality of genetic maps built with the following scenarios: i) using
different SNP calling software (GATK and freebayes); ii) using dif-
ferent genotype calling software (GATK, freebayes, updog, polyRAD,
SuperMASSA); iii) using different linkage map building software
(OneMap 3.0 and GUSMap); iv) establishing different error probabil -
ities (relative to genotype call software, 5%, and 0.001% global
error); v) applying different marker filtering; vi) with or without
multiallelic markers; vi) in empirical and simulated data; vii) with
and without segregation distortion; viii) with and without contam-
inant samples; ix) with different library preparation; and x) with
different sequencing depths. These scenarios are commonly found
by researchers trying to produce high-quality linkage maps using
sequencing technologies. The Reads2Map and Reads2MapApp are the
first tools to guide best practices for building linkage maps with
sequencing data pointing software, parameters and marker filters
to be used in diverse scenarios.

We elaborated and limited the scenarios explored according to
our experiences as developers of OneMap. OneMap first version was re-
leased in 2007, and since then it has been used to build linkage maps
in a diversity of species. Its strategies and structure also served as a

base for more complex software such as MAPpoly [15] for building
linkage maps in polyploid species. With time, new methods for ge-
netic marker identification using sequencing data emerged, chang-
ing the context where 0neMap was used. We included updates in this
version 3.0 to resolve issues with inflated genetic maps and marker
ordering. Two major changes allow users to read and build genetic
maps with the genotype probabilities and haplotype-based mul-
tiallelic markers information from the input files (0neMap format
or VCF file). However, the success of genetic map building will be
proportional to the quality of the information provided by upstream
procedures such as library preparation, SNP and genotype calling,
genotype probabilities estimation, and the combination of SNPs
into haplotype-based markers. With Reads2Map and Reads2MapApp,
we provide users tools to select the best approaches before using
OneMap 3.0 to guarantee that it will result in the best quality genetic
map possible with the data available.

For the rose data, the best pipelines filtered the markers using
all extra filters (minimum 0.8 of genotype probability, removal of
non-informative markers, and replacing AD and GQ field by miss-
ing if GT is missing in VCF file), and used the combinations: GATK
as SNP and genotype calling with a global error of 5%; GATK as SNP
calling and polyRAD as genotype calling with a global error rate of
5%; freebayes as SNP and genotype calling with multiallelic mark-
ers and a global error rate of 5%. The aspen had a lower sequencing
depth. Thus, none of the methods could provide maps with the
expected size. Even using the selected methods, further marker
filtering was required to obtain a good-quality final map. For the
aspen data set, we obtained the best pipelines by also filtering the
markers with all extra filters and using the combinations: GATK as
SNP and genotype calling with a global error rate of 5%; GATK as
SNP calling and updog as genotype calling using updog genotype
probabilities or freebayes as SNP and polyRAD as genotype calling
using a global error rate of 5%.

Most of the selected pipelines for both empirical data sets used
a global error of 5% to estimate the genetic distances because they
gave map sizes closer to the expected. We also observed the same
results when applying a 5% error rate in the simulated data. With
those, we could relate the map size with the number of wrongly
estimated haplotypes. The evaluation showed that inflated maps
mostly reflect a high number of wrongly estimated haplotypes,
but there were some cases where the map was estimated with the
expected size but presented a high number of wrong haplotypes,
mostly when a 5% global error rate was applied. Using a 5% error
rate can also mask the presence of contaminant samples among the
progenies. For these reasons, we intend to update Reads2Map with
genotype calling software that adapt the genotype probabilities for
this specific usage and result in map sizes closer to the expected.

The diversity in the pipelines suggested for both empirical data
sets highlights that pipelines perform differently with data sets
with different properties. We can see this diversity in the effects ob-
served while testing filters, software, and conditions. This means
that the pipelines presented here as the best cannot be considered
the best for every data set. Thus, users should reproduce all tests
presented here using the Reads2Map workflows with their empirical
data set and select the best pipelines for their specific conditions.
The workflows were built using WDL and containers to ensure high
reproducibility. This guarantees that different results running dif-
ferent data sets is due to the data set’s properties and not to bioin-
formatic pipeline changes. Also, as the upstream procedures for
genotyping and identifying haplotype-based multiallelic markers
are improved, updates can be easily made in the workflows.

Every Reads2Map workflow run returns a large amount of infor-
mation. Every step of the workflow, from the reads’ alignment to
the completed linkage map, provides quality measurements for
users to evaluate each scenario. The Reads2MapApp shiny app re-
ceives all this information compressed in a single workflow out-
put file and converts it into comprehensive interactive graphics.
Through the app interface, users can evaluate the performance of
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Figure 17. The figure shows the linkage maps built for 37% of aspen chromosome 10 (38 cM) with (ct) and without the presence of 6 contaminant samples and selected
pipelines.
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each combination of software and parameters in each step. If re-
sults show issues in any of them, users can re-run the workflow
with adapted parameters or include new filters that make sense in
their context. Once established the upstream steps based on the
app graphics for the built linkage map subset, users can reproduce
it for the complete data set, inputting the VCF files from Reads2Map
into OneMap.

+ Project name: Reads2Map

. Project home page: https://github.com/Cristianetaniguti/
Reads2Map

+ Main workflows: EmpiricalReads2Map [66] and Simulate-
dReads2Map [67]

- Operating system(s): Platform independent

- Programming language: WDL and R

- Other requirements: docker or singularity

+ License: GNU GPL

Supplementary File 1. Emission function for outcrossing.

Supplementary Figure S1. The log;, of the CPU time (blue) and
the log;o of the amount of memory utilized (red) by each task of the
Reads2Map workflows when running the simulations with a mean
depth of 10. The CPU time is measured with the number of CPUs
used times the wall-clock time used.

Supplementary Figure S2. The log; of the CPU time (blue) and
the log;o of the amount of memory utilized (red) by each task of the
Reads2Map workflows when running the simulations with a mean
depth of 20. The CPU time is measured with the number of CPUs
used times the wall-clock time used.

Supplementary Figure S3. The log;, of the CPU time (blue) and
the log,o of the amount of memory utilized (red) by each task of
the Reads2Map workflows when running the aspen empirical data.
The CPU time is measured with the number of CPUs used times the
wall-clock time used. The filters and linkage map steps were made
just with a subset of the data (37% of chromosome 10).

Supplementary Figure S4. The log;o of the CPU time (blue) and
the log,o of the amount of memory utilized (red) by each task of
the Reads2Map workflows when running the rose empirical data.
The CPU time is measured with the number of CPUs used times the
wall-clock time used. The filters and linkage map steps were made
just with a subset of the data (37% of chromosome 1).

Supplementary Figure S5. Reference (x-axis) and alternative
(y-axis) allele depth distribution for all progeny individuals and
a subset of 5% of the markers in rose and aspen data considering
the read counts from VCF and from BAM files. Colors represent the
estimated genotype by the genotype calling methods. Percentages
of each genotype in the entire data set are shown for progeny and
parental genotypes in the top right of each graphic.

Supplementary Figure $6. Supplementary figure S5 continued.

Supplementary Figure S7. Reference (x-axis) and alternative
(y-axis) allele depth distribution for all progeny individuals and a
subset of 25% of the markers from a single simulated family data
without segregation distortion, with mean depth of 10 and 20 and
considering the read counts from VCF and from BAM files. Colors
blue and green show genotypes called correctly by the genotype
calling methods, and the colors yellow, orange, and red shows the
ones that were called incorrectly. Percentages of correctly and in-
correctly genotypes for the entire data set are shown for progeny
and also parental genotypes at the top of each graphic.

Supplementary Figure S8. Supplementary Figure S7 continued.

Supplementary Figure S9. Reference (x-axis) and alternative
(y-axis) allele depth distribution for all progeny individuals and a

subset of 25% of the markers from a single simulated family data
with segregation distortion, with mean depth of 10 and 20 and con-
sidering the read counts from VCF and from BAM files. Colors blue
and green show genotypes called correctly by the genotype calling
methods, and the colors yellow, orange, and red shows the ones
that were called incorrectly. Percentages of correctly and incorrectly
genotypes for the entire data set are shown for progeny and parental
genotypes at the top of each graphic.

Supplementary Figure S10. Supplementary Figure S9 contin-
ued.

Supplementary Figure S11. ROC curves with the true and esti-
mated genotypes from the five families simulated with mean depth
10 and 20 and the first 8.426 Mb of the chromosome 10 (37% or 38
cM). Here only biallelic markers are considered. The specificity and
sensitivity profiles consider different thresholds in the genotype
probabilities for each scenario. Higher is the area under the curve,
the higher is the genotypes probability reliability. Genotype proba-
bilities thresholds closer to the left superior corner have a higher
capacity to differentiate right and wrong genotypes.

Supplementary Figure S12. Supplementary Figure S11 contin-
ued.

Supplementary Figure S13. Mean number of corrected identi-
fied biallelic by marker types (y-axis) while applying filters by min-
imum genotypes probability of 0.8, by informativity and replacing
AD and GQ VCF field by missing data when GT is missing (x-axis).
The markers presented here were obtained using simulated data,
GATK as SNP and updog, polyRAD, and SuperMASSA genotype calling,
with mean depths 10 and 20, with segregation distortion, with allele
depth count from VCF. The notation of marker types follows table 2
notation.

Supplementary Figure S14. Supplementary Figure S13 contin-
ued. The same information is shown for freebayes and GATK as
genotype call software.

Supplementary Figure S15. The number of markers (y-axis)
identified in the first 37% of aspen chromosome 10 while applying
filters by minimum genotypes probability of 0.8, by informativity
and replacing AD and GQ VCF field by missing data when GT is
missing (y-axis). Colors distinguish the marker types according to
table 2.

Supplementary Figure S16. The number of markers (y-axis)
identified in the first 37% of rose chromosome 1 while applying
filters by minimum genotypes probability of 0.8, by informativity
and replacing AD and GQ VCF field by missing data when GT is
missing (y-axis). Colors distinguish the marker types according to
table 2.

Supplementary Figure S17. Mean number of wrongly identi-
fied biallelic markers (y-axis) while applying filters by minimum
genotypes probability of 0.8, by informativity and replacing AD and
GQ VCF field by missing data when GT is missing (x-axis). The
numbers on the top of each graphic show the mean total number of
correct and wrong markers across the five repetitions. The markers
presented here were obtained using simulated data, GATK as SNP
and genotype calling, with mean depths 10 and 20, segregation
distortion, and allele depth count from VCE. The notation of marker
types follows table 2 notation.

Supplementary Figure S$18. Mean number of multiallelic mark-
ers converted from biallelics (y-axis) and how many of them are
kept after applying filters by minimum genotypes probability of 0.8,
by informativity and replacing AD and GQ VCF field by missing data
when GT is missing (y-axis). The markers presented here were
obtained using simulated data, freebayes as SNP and genotype call-
ing, with mean depths 10 and 20, with and without segregation
distortion, with allele depth count from VCF. The notation of marker
types follows table 2 notation.

Supplementary Figure S19. The base 10 logarithm of the mean
of underestimated and overestimated recombination breakpoints
identified in the progeny simulated with a mean depth of 10 and
linkage maps built using genotypes and genotypes probabilities
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coming from different approaches and filters applied. Colors distin-
guish the simulations with and without segregation distortion and
multiallelic markers and the source of read counts by allele. The
blue horizontal line cuts infinite values generated by the logarith-
mic of zero when there are no wrong breakpoints. The closer the
triangles are to the blue line better the method could reproduce the
recombination breakpoints number.

Supplementary Figure $20. The base 10 logarithm of the mean
of underestimated and overestimated recombination breakpoints
identified in the progeny simulated with a mean depth of 20 and
linkage maps built using genotypes and genotypes probabilities
coming from different approaches and filters applied. Colors distin-
guish the simulations with and without segregation distortion and
multiallelic markers and the source of read counts by allele. The
blue horizontal line cuts infinite values generated by the logarith-
mic of zero when there are no wrong breakpoints. The closer the
triangles are to the blue line better the method could reproduce the
recombination breakpoints number.

Supplementary Figure S21. Effect of contaminant samples in
the map size and in the number of estimated recombination break-
points range among progeny individuals. The empirical aspen data
sets presented in this figure contain multiallelic markers, the allele
counts from the VCF file and was filtered by genotype probability
higher than 0.8 to keep only informative markers.

Supplementary Figure S22. The relation between filters applied
(x-axis) and the mean Euclidean genetic distances (A y-axis) and
the number of markers (B y-axis) of the built linkage maps. The
simulated data set shown here contains multiallelic markers and
segregation distortion.

Supplementary Figure S23. The relation between filters (x-
axis) applied and the map size (A y-axis) and the number of markers
(B y-axis) of the built linkage maps. The empirical data sets shown
here contain multiallelic markers and segregation distortion. The
horizontal red line indicates the expected map size (38 cM) for the
subset of the genomes used.

Supplementary Figure S24. The effect of the simulated segre-
gation distortion in the maps Euclidean distance. The x-axis shows
the Euclidean distance between estimated and simulated maps built
for the data sets with simulated segregation distortion. The y-axis
shows data sets simulated without the segregation distortion. The
lines crossing the symbols indicate the standard deviation across
the five repetitions. The data sets contain only biallelic markers and
allele depth count from the VCF file; the markers were filtered by
genotype probability higher than 0.8 and only informative markers.

Supplementary Figure $25. Comparison of Euclidean distance
(v-axis) and the number of markers in maps built with oneMap 3.0
and cusMap for the simulated data. The lines crossing the sym-
bols indicate the standard deviation across the five repetitions. The
maps built with oneMap are represented by the name of the genotype
call software that provided the genotypes and their probabilities
for oneMap multipoint approach of genetic distance estimation. The
markers inputted in OneMap included multiallelic markers, were
filtered by genotype probability higher than 0.8 to keep only infor-
mative markers, and the AD and GQ fields were replaced by missing
data when GT is missing.

Supplementary Figure S26. Comparison of map size (y-axis)
and the number of markers in maps built with OneMap 3.0 and GusMap
for the empirical data. The maps built with 0neMap are represented
by the name of the genotype call software that provided the geno-
types and their probabilities for oneMap multipoint approach of ge-
netic distance estimation. The data sets shown here contain only
biallelic. Markers inputted in 0neMap were filtered by genotype prob-
ability higher than 0.8 to keep only informative markers. The AD
and GQ fields were replaced by missing data when GT was missing.
The horizontal red line indicates the expected map size (38 cM) for
the subset of the genomes used.

Supplementary Figure S27. Comparison of map size (y-axis)
and the number of markers in maps built with OneMap 3.0 using em-

pirical data and different upstream software for estimating geno-
types and genotypes probabilities. Markers inputted in OneMap in-
cluded multiallelic markers, were filtered by genotype probability
higher than 0.8, kept only informative markers, and the AD and
GQ fields were replaced by missing data when GT was missing. The
horizontal red line indicates the expected map size (38 cM) for the
subset of the genomes used.

Supplementary Figure S28. Comparison of Euclidean distance
(y-axis) and the number of markers in maps built with oneMap 3.0
using simulated data and different upstream software for estimat-
ing genotypes and genotypes probabilities. Markers inputted in
OneMap included multiallelic markers and segregation distortion,
were filtered by genotype probability higher than 0.8, kept only
informative markers, and the AD and GQ fields were replaced by
missing data when GT is missing.

Supplementary Figure S29. Comparison of Euclidean distance
(y-axis) and the number of markers in maps built with oneMap 3.0
using simulated data and different upstream software for estimat-
ing genotypes and genotypes probabilities. Markers inputted in
OneMap included multiallelic markers and segregation distortion,
were filtered by genotype probability higher than 0.8, kept only
informative markers, and the AD and GQ fields were replaced by
missing data when GT is missing.

Supplementary Figure S30. The total number of recombination
breakpoints estimated for each progeny individual of the rose full-
sib population with selected pipelines.

Supplementary Figure S31. Recombination fraction matrix heat
map obtained for 37% of chromosome 10 of aspen data set by se-
lected pipelines. The heat maps represent the recombination frac-
tion matrix between markers positioned at both axes.

Supplementary Figure S32. Recombination fraction matrix heat
map obtained for 37% of chromosome 1 of rose data set by selected
pipelines. The heat maps represent the recombination fraction
matrix between markers positioned at both axes.

Supplementary Figure S33. A: relation of the Euclidean distance
between simulated data set with (x-axis) and without (y-axis) mul-
tiallelic markers. B: Number of multiallelic markers present in data
sets represented in the x-axis of graphic A. The lines crossing the
symbols indicate the standard deviation across the five repetitions.
The data sets shown in this figure have allele depth counts from
the VCF file, segregation distortion, were filtered by a minimum
genotype probability of 0.8, and only informative markers.

Supplementary Figure S34. A: relation of map size between
empirical data set with (x-axis) and without (y-axis) multiallelic
markers. B: Number of multiallelic markers present in data sets
represented in the x-axis of graphic A. The data sets shown in this
figure have allele depth counts from the VCF file, were filtered by a
minimum genotype probability of 0.8, and only informative mark-
ers and AD and GQ VCF fields were replaced by missing when GT is
missing.

GBS: Genotyping-by-Sequencing; PCR: polymerase chain reaction;
RADSeq: Restriction-site associated; DNA sequencing; VCF: variant
call format; GQ: genotyping quality; GT: genotype; GWAS: genome-
wide association; SNP: single nucleotide polymorphism; LD: link-
age disequilibrium; QTL: quantitative trait loci; WDL: workflow
description language; HPRC: high performance research comput-
ing; CPU: central processing unit; HMM: hidden Markov model;
EM: expectation-maximization; MAF: minor allele frequency; NGS:
Next Generation Sequencing.
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