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Abstract: Background: Genotyping-by-Sequencing (GBS) provides affordable methods for
genotyping hundreds of individuals using millions of markers. However, this challenges
bioinformatic procedures that must overcome possible artifacts such as the bias
generated by PCR duplicates and sequencing errors. Genotyping errors lead to data
that deviate from what is expected from regular meiosis. This, in turn, leads to
difficulties in grouping and ordering markers resulting in inflated and incorrect linkage
maps. Therefore, genotyping errors can be easily detected by linkage map quality
evaluations.

Results: We developed and used the Reads2Map workflow to build linkage maps with
simulated and empirical GBS data of diploid outcrossing populations. The workflows
run GATK, Stacks, TASSEL, and Freebayes for SNP calling and updog, polyRAD, and
SuperMASSA for genotype calling, and OneMap and GUSMap to build linkage maps.
Using simulated data, we observed which genotype call software fails in identifying
common errors in GBS sequencing data and proposed specific filters to better handle
them. We tested whether it is possible to overcome errors in a linkage map using
genotype probabilities from each software or global error rates to estimate genetic
distances with an updated version of OneMap. We also evaluated the impact of
segregation distortion, contaminant samples, and haplotype-based multiallelic markers
in the final linkage maps. Through our evaluations, we observed that some of the
approaches produce different results depending on the dataset (dataset-dependent)
and others produce consistent advantageous results among them (dataset-
independent).

Conclusions: We set as default in the Reads2Map workflows the approaches that
showed to be dataset-independent for GBS datasets according to our results. This
reduces the number required of tests to identify optimal pipelines and parameters for
other empirical datasets. Using Reads2Map, users can select the pipeline and
parameters that best fit their data context. The Reads2MapApp shiny app provides a
graphical representation of the results to facilitate their interpretation.
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Reviewer #1: | read with interest the manuscript on Reads2Map, a really impressive
amount of work went into this and | congratulate the authors on it. However, it is
precisely this almost excessive amount of results that for me was the major drawback
with this paper. | got lost in all the detail, and therefore | have suggested a Major
Revision to reflect that | think the paper could be somehow made more stream lined
with a clearer central message and fewer figures in the text. Line numbers would have
been helpful, | have tried to give the best indication of page number and position, but in
future @GigaScience please stick to line numbers for reviewers, it's a pain in the neck
without them. Overall | think this is an excellent manuscript of general interest to
anyone working in genomics, and definitely worthy of publication.

Answer: Thanks for your review. | addressed the detailed comment below. To facilitate
this next review, | included a version of the manuscript with line numbers.

General comment: if a user would like to use GBS data for other population types than
those amenable for linkage mapping (e.g. GWAS or genomic prediction, so a diversity
panel or a breeding panel), how could your tool be useful for them?

Answer: The first steps of the workflow that include the alignment with BWA and SNP
calling with GATK and freebayes (now also with TASSEL and STACKS options) can be
applied to any population type. Because the workflows are partitioned into sub-
workflows and tasks, these steps can be run independently of the dosage calling and
linkage map building which require mapping populations. We separated the
EmpiricalReads2Map into EmpiricalSNPCalling and EmpiricalMaps to emphasize this
difference. We also added a short explanation in the manuscript (lines 478-493).

Answer: Another way of applying the tool for non-mapping populations is if the GBS
library is producing and sequencing mapping populations and non-mapping
populations in the same experiment. In this situation, the results obtained for the
mapping populations using Reads2Map can be extrapolated to the other populations
without mapping structure.

Other general comment: the manuscript is long with an exhaustive amount of figures
and supplementary materials. Does it really need to be this detailed? It appears like the
authors lost the run of themselves a little bit and tried to cram everything in, and in
doing so risk losing the point of the endeavour. What is the central message of this
manuscript? Regarding the figures, the reader cannot refer to the figures easily as they
are now mainly contained on another page. Do you really need Figures 16-18 for
example? Figures 13 and 14 could be combined perhaps? | am sure that at most 10
figures and maybe even less are needed in the main text, otherwise figures will always
be on different pages and hence lose their impact in the text call-out.

Answer: We reduced the text and figures.
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Abstract and page 4: "global error rate of 0.05" - How do you motivate the use of a
global error rate of 5%? Surely this is dataset-dependent?

Answer: We conduct new tests with different values and added figure number 5 to
guide users on how to select a proper value. During this review, we talked to updog
developer (David Gerard), who gave us the idea of combining the global error with the
software genotype probability. We did that using 1-(1-genotype error probability)x(1-
global error), which proved to be a good option too.

Page 4 - how can a user estimate an error per marker per individual? The description
of the create_probs function suggests there is an automatic methodology to do this, but
| don't see it described. You could perhaps refer to Zheng et al's software polyOrigin,
which actually locally optimises the error prior per datapoint. Maybe something for the
discussion.

Answer: The error probabilities used are not estimated by OneMap but by the
upstream genotype calling software (VCF PL value of HaplotypeCaller, Freebayes,
TASSEL, STACKs and genotype probabilities of updog, polyRAD, and SuperMASSA).
The idea of doing that is to take into account issues that were found by the upstream
bioinformatic process such as low depth, dispersion of the read counts, and alignment
quality. Thanks for highlighting the polyOrigin method, if | understood right, it takes into
account only the genotypes to estimate this error rate, it is not based on the
bioinformatic features for each. We kept linkage map polyploid tools out of the scope of
this work to not make it longer than already is, but we are already working to add
MAPpoly as a new option to build the maps. MAPpoly contains a similar approach to
control the errors as implemented in OneMap. While doing this, we can perform tests
to compare with PolyOrigin approach.

Page 6 "recombination fraction giving the genomic order" do you mean "given"?
Answer: Yes. Thanks.

Page 10 section Effects of contaminant samples - if you look at Figure 9 you can see
that the presence of contaminant samples seems to have an impact on the genotypes
of other, non-contaminant samples, especially using GATK and 5% global error. With
the contaminants present, the number of XO points decreases in many other samples.
This is very odd behaviour | would have thought. Is it known whether this apparent
suppresion of recombination breakpoints in non-contaminant individuals is likely to be
"correct"? Perhaps the SNP caller was running under the assumption that all
individuals were part of the same F1? If the SNP caller was run without this assumption
(eg. specifying only HW equilibrium, or model-free) would we still see the same effect?
This is for me a quite worrying result but something that you make no reference to as
far as | can tell.

Answer: The GATK was not used applying an F1 assumption, but the linkage map
was built considering that. The multipoint approach tries to fit the contaminant sample
by redistributing the recombination breaks. This issue is emphasized while using
higher values of global error because we decrease the trust in the observed genotype
and increase the model assumptions. It is indeed a concerning result. We added lines
623-629 to warn users to remove contaminant samples before the linkage map
building.

Page 12 "Effects of segregation distortion" In your study you only considered a single
linkage group. One of the primary issues with segregation distortion in mapping is that
it can lead to linkage disequilibrium between chromosomes, if selection has occurred
on multiple loci. This can then lead to false linkages across linkage groups. Perhaps
good to mention this.

Answer: Interesting. Added in lines 710-717 .

Page 12 "have difficulty missing linkage information" - missing word "with"

Page 17 | see no mention of the impact of errors in the multi-allelic markers on the
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efficiency, particularly of order_seq which seems to be very poorly-performing with only
bi-allelics (Fig 20). If bi-allelic SNPs have errors then it is not obvious why multi-SNP
haplotypes should not also have errors.

Answer: The multiallelic markers do have errors and they have a higher effect on the
estimation of the genetic distances. We updated the figure about the effects of the
multiallelics now including the HMM error rate and the rose dataset. We also decide to
remove order_seq algorithm evaluations because it took a long time to process and the
result was not better than MDS. We updated the discussion about it in lines 630-678.

Page 3 Figure 1 - here the workflow shows multiple options for a number of the steps,
which can lead to the creation of many map variants (e.g. 816 maps as mentioned on
Page 4). Should all users produce 816 variants of their maps? With potentially millions
of markers, this is going to take a huge amount of time (most users will want 100% of
all chromosomes, not 37% of a single chromosome). Or should this be done for only a
subset of markers? What if there is no reference sequence available to select a
subset? As there are no clear recommendations, | suspect that the specific
combination of pipeline choices will usually be dataset-dependent. You actually
mention this in the discussion page 17. And with only 2 real datasets from 2 different
species, there is also no way to tell if eg. GATK works best in rose, or updog should be
used for monocots but not dicots etc. It would be helpful if the authors were more
explicit about how their tool informs "best practices for GBS analysis" for ordinary
users. Perhaps it is there, but for me this message gets lost.

Answer: We run many maps in this work to test our ideas about what could be possibly
causing bad-quality linkage maps. E.g.: different upstream software, presence, and
absence of multiallelic markers, contaminants, segregation distortion, and filters. Some
of our conclusions we do not consider dataset dependent such as the lower
performance of SuperMASSA and GUSMap (they also apparently are not being
updated anymore), the usage of a filter instead of counts from BAM, usage of
multiallelic markers and best filters to be applied. These were set as default in the
workflows (we clarify this in lines 470-477 and Table 3). Therefore, users do not need
to repeat all our tests for every dataset.

Answer: If the user wants to run using a single combination of SNP and genotype
calling resulting in a single linkage map it is also possible. This can be set in the
workflow input file. The need for subsetting the dataset would depend on the number of
tests the user wants to perform and the computational capacity available. It is
important to highlight that we did not design the workflow to be a tool to build a final
linkage map but to select the bioinformatic pipeline that provides the best quality
markers. The SNP and genotype calling are always made for the entire dataset. The
subsetting is only required for the linkage map build step, once the HMM approach is a
slow process. Once the pipeline is selected, the VCF file with markers for the entire
dataset is already available for users to repeat the process in other chromosomes
using the R environment and OneMap functions. We describe this suggestion of
usage in lines 234-241 and lines 710-717.

Answer: In terms of software used, the results are not only dataset-dependent but also
version dependent, as most of the software implemented here is still being actively
developed. Although it would require more bioinformatic skills, users can also test their
own hypotheses, change software versions, or include new software.

Answer: By now, having a reference genome close enough to the species to
determine the markers belonging to each chromosome is required for workflow usage.
This requirement was highlighted in lines 649-653.

Page 17 "updates in this version 3.0 to resolve issues with inflated genetic maps" - if |
look at Figure 20, it seems that issues with inflated map length have not yet been fully
resolved!

Answer: The figure was made to highlight the improvements of multiallelic markers in
the ordering process, but we used the OneMap default global error to estimate the
distances. We rerun the analysis using the markers resulting from the selected
pipeline.
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Page 17 "we provide users tools to select the best approaches" - similar comment as
before - does this mean users should build > 800 maps with a subset of their dataset
first, and then use this single approach for the whole dataset? It is not explicitly stated
whether this is the guidance given. What is the eventual aim - to produce a good
linkage map, or to use the linkage map to critically compare genotyping tools?

Answer: Reads2Map can be useful in both cases. To build a good linkage map, users
need to have good quality markers, and selecting the bioinformatic approach which
provides them is essential. As mentioned above, Reads2Map was not designed to
directly build a final linkage map but to select the pipeline. The total number of maps
generated by it will depend on the tests users wants to make. Currently, using the
default parameters, the workflow will generate 12 maps for the user-defined subset.

Answer: With the goal of comparing genotyping tools, Reads2Map is also useful for
developers to validate updates, because it facilitates checking the consequences of the
changes in the quality of the markers by easily controlling versions, rerunning datasets,
and checking the map quality (added in lines 725-731). One example of it is that during
this review, updog developer implemented a new method to try to overcome the updog
issues identified in this work. We re-run some of our tests to give him feedback on the
update impact (see the GitHub issue for details:
https://github.com/dcgerard/updog/issues/19).

Reviewer #2: The paper titled "Developing best practices for genotyping-by-
sequencing analysis using linkage maps as benchmarks" aims to present an end to
end workflow uses GBS genotyping datasets to generate genetic linkage maps. This is
a valuable tool for geneticists intending to generate a high confidence linkage map
from a mapping population with GBS data as input.

| got confused on reading the MS though, is this a workflow paper or is this a review of
the component software for each step of genetic mapping and how parameter/use
differences affect the output ? If it's a review, then the choice of software reviewed are
not comprehensive enough, esp on SNP calling, and linkage mapping.

Answer: The idea is not to do a review but to provide tools and guidelines for building a
good quality linkage map in different situations. We changed the text to streamline our
findings according to our tests and we set defaults in the workflow to reduce the
number of required tests by users.

There is no clear justification why each component software was used,example the
use of GATK and freebayes for SNP calling | am familiar with using TASSEL GBS and
STACKS for SNP calling using GBS data, why weren't they included in the SNP calling
software.

Answer: We agree. We implemented both software for the SNP calling and perform
new tests in empirical datasets. We updated the text to include the results from them.

The MS would benefit greatly from including these SNP calling software in their
benchmarking.Onemap and gusmap seems also pre-selected for linkage mapping,
without reason for use, or maybe the reason(s) were not highlighted in the text. I've
had experience in the venerable MAPMAKER and MSTMap, and would like to see
more comparisons of the chosen genetic linkage mapping software with others, if this
is the intent of the MS.

Answer: MAPMAKER and MSTMap as well as ASMap are not able to build linkage
maps for the highly heterozygous populations (full-sib or outcrossing populations)
evaluated in this work. Other software such as Lep-MAP and JoinMap are able to build
linkage maps for outcrossing but do not present a method to account for aspects of the
genotype calling (e.g. read depth distribution) in their genetic distance estimation such
GUSMap and OneMap do. Also, JoinMap is not open-access.

The MS also clearly focuses on genetic linkage mapping using GBS, which should be
more explicitly stated in the title. GBS is also extensively used in diversity collections
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and there is scant mention of this in the MS, and whether the workflow could be
adapted to such populations.

Answer: Similar to the first answer given to reviewer #1. We added an explanation
about how Reads2Map can be applied to other sequencing library types in lines 478-
493.

Versions of software used in the workflow are also not explicitly stated within the MS.

Answer: Because there are many used software and libraries versions, we described in
the Reads2Map repository README only the docker images used and their versions.
Some of the used images are available online and the Dockerfile describing the
software and the versions that they contain can be found in their repository. Other
images used were built by us and the Dockerfile for them can be found in their
DockerHub repository or in the Reads2Map GitHub repository (directory .dockerfiles).
The image used by each task of the workflow is indicated in the WDL runtime. We
added Table 8 in the Supplementary Material with a list of docker images version used
for the results presented.

The shiny app is also not demonstrated well in the MS, it could be presented better
with screenshots of the interface, with one or two sample use cases.

Answer: We clarify in the figures caption that they were obtained through the app and
we also added screenshots in Supplementary File 2.

Reviewer #3: In this MS, the authors tried to develop a framework for using GBS data
for downstream analysis and reduce the impact of sequence errors caused by GBS.
However, sequence error is an issue not specific to GBS, it is also for whole genome
sequences. Actually, | think the major issue for GBS is the missing data. However, in
this MS, the authors did not test the impact of missing data on downstream analysis.

Answer: The work does not focus only on sequence errors but on genotype errors
which can be caused also by other sources (e.g. such as low depth, PCR bias)
including missing data. The software used to simulate sequence reads (RADinitio) also
simulates missing data. The higher the read depth set for the software, the lower will
be the rate of missing data once the chance of sequencing common loci between all
samples increases. RADinitio does not have a specific parameter for controlling the
missing data rate but it is proportional to the read depth parameter. This relation (read
depth x missing data) was also observed in the empirical data evaluated. The rose
data set has a smaller percentage of missing data compared to the aspen data. In this
pipeline, the amount of missing data has a higher effect on the number of markers
used to build the linkage map than the genotyping error, once we filter the markers with
a maximum of 25% of missing data before starting the linkage map building. The HMM
method used to estimate the genetic distances have the capacity to input the missing
data, but high percentages of it can demand more time to process. The correct
imputation of the missing data will depend on the correct information of the given
genotypes.

Answer: We highlight in the text that the PCR bias and the duplicates can generate
more genotyping errors in GBS data compared to other library types such as whole
genome and exome sequencing. The bias changes the proportion of alleles in
heterozygous individuals and can lead to wrong estimations of true heterozygous
genotypes as homozygous. Also, differently from other technologies, the GBS data is
composed basically of duplicates (sequences that start and end in the same position,
the cut sites). This makes it impossible to distinguish optical duplicates and sequencing
artifacts. The non-removal of the optical duplicates can lead to the wrong estimation of
homozygous genotypes as heterozygous.

Answer: Other library types can also be evaluated in Reads2Map. In the
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EmpiricalSNPCalling sub-workflow, the single difference would be to set the parameter
to remove duplicates as TRUE (lines 478-493).

The authors also mentioned that sequencing error may cause distortion segregation in
linkage map construction, however, distortion segregation in linkage map construction
can also happen for correct genotyping data. The distortion segregation can be caused
by individual selection during the construction of the population. So | don't think it is
correct to use distortion segregation to correct sequence errors.

Answer: We can think about the effect of segregation distortion in two different steps of
the pipeline. The first is in the genotype calling and the second is in the linkage map.
The genotype/dosage calling software updog, polyRAD, and SuperMASSA use the
population expected segregation as prior to calling the genotypes. Their work
highlights the advantages of doing it. With our simulations, we tested how much their
estimation would be affected in the presence of true segregation distortion
(Supplementary figure 9 and 10), which reveal a slightly lower efficiency.

Answer: In the linkage map step, the presence of true segregation distortion should not
affect the linkage map building. However, at first, it is not possible to distinguish
between markers with segregation distortion caused by genotyping errors and markers
with biologically explained segregation distortion. We adopt the strategy of being
restrictive at the beginning and filter all markers presenting segregation distortion to
avoid higher map inflation. Once the pipeline is selected and the linkage map main
structure is built, we can recover the discarded markers and insert them using the TRY
algorithm. At this point, we will be able to check in the recombination fraction matrix
plot which distorted markers fit the linkage group (true segregation distortion) and
which do not.

The authors need to clear the major question of this MS, in the abstract, the authors
highlight the sequence errors, while in the introduction, the authors highlight the
package for linkage map construction (the last paragraph). Actually, from the MS,
authors were assembling a framework for genotyping-by-sequencing data.

Answer: The same was suggested by the other reviewers. We adapted the text to
highlight the goal of Reads2Map as a tool to select bioinformatic pipelines previously to
the linkage map building.

Two major reduced-represented sequencing approaches, GBS and RADseq, have
specific tools for genotype calling, such as Tassel and Stack. However, the authors
used the GATK and Freebayes pipeline for variant calling, authors need to present the
reason they were not using TASSEL and Stack.

Answer: We implemented TASSEL and Stacks, made new tests, and updated the text
accordingly.

In the genotyping-by-sequencing data, individuals were barcoded and mixed during
sequencing, what package/code was used to split the individuals (demultiplex) from the
fastq for GATK and Freebayes pipeline?

Answer: We used the STACKSs plugin process_radtags for that. This is not included in
the main workflows because we think the sequences need to be evaluated through

FASTQC and the filtering steps need to be made accordingly before starting the SNP
calling. They will variate a lot depending on the library type and technology used. The

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation



Additional Information:

Question

Are you submitting this manuscript to a
special series or article collection?

Experimental design and statistics

Full details of the experimental design and
statistical methods used should be given
in the Methods section, as detailed in our
Minimum Standards Reporting Checklist.
Information essential to interpreting the
data presented should be made available
in the figure legends.

Have you included all the information
requested in your manuscript?

Resources

A description of all resources used,
including antibodies, cell lines, animals
and software tools, with enough
information to allow them to be uniquely
identified, should be included in the
Methods section. Authors are strongly
encouraged to cite Research Resource
Identifiers (RRIDs) for antibodies, model
organisms and tools, where possible.

Have you included the information
requested as detailed in our Minimum

Reads2Map workflows require already filtered and demultiplexed FASTQ files. But we
provided a suggestion on how to do that in the Preprocess.wdl workflow which is also
available in the GitHub repository.

The maximum missing data was allowed at 25% for markers data, how about for the
individual missing rate?

Answer: Our strategy keeps all individuals even if some of them have a higher
percentage of missing data to account for as many as possible recombination events in
the population. As mentioned before, the HMM has the capacity to impute the missing
data.

On page 6, the authors mentioned 'seugnece size of 350', what that means?

Answer: This refers to the RADinitio parameter —insert-mean. We changed the text to
make it clearer.

Response

No

Yes

Yes
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Standards Reporting Checklist?

Availability of data and materials Yes

All datasets and code on which the
conclusions of the paper rely must be
either included in your submission or
deposited in publicly available repositories
(where available and ethically
appropriate), referencing such data using
a unique identifier in the references and in
the “Availability of Data and Materials”
section of your manuscript.

Have you have met the above
requirement as detailed in our Minimum
Standards Reporting Checklist?
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Background Genotyping-by-Sequencing (GBS) provides affordable methods for genotyping hundreds of individuals using
millions of markers. However, this challenges bioinformatic procedures that must overcome possible artifacts such as the bias
generated by PCR duplicates and sequencing errors. Genotyping errors lead to data that deviate from what is expected from regular
meiosis. This, in turn, leads to difficulties in grouping and ordering markers resulting in inflated and incorrect linkage maps.
Therefore, genotyping errors can be easily detected by linkage map quality evaluations.

Results We developed and used the Reads2Map workflow to build linkage maps with simulated and empirical GBS data of diploid
outcrossing populations. The workflows run GATK, Stacks, TASSEL, and Freebayes for SNP calling and updog, polyRAD, and
SuperMASsA for genotype calling, and OneMap and GUSMap to build linkage maps. Using simulated data, we observed which genotype
call software fails in identifying common errors in GBS sequencing data and proposed specific filters to better handle them. We
tested whether it is possible to overcome errors in a linkage map using genotype probabilities from each software or global error
rates to estimate genetic distances with an updated version of 0neMap. We also evaluated the impact of segregation distortion,
contaminant samples, and haplotype-based multiallelic markers in the final linkage maps. Through our evaluations, we observed
that some of the approaches produce different results depending on the dataset (dataset-dependent) and others produce
consistent advantageous results among them (dataset-independent).

Conclusions We set as default in the Reads2Map workflows the approaches that showed to be dataset-independent for GBS datasets
according to our results. This reduces the number required of tests to identify optimal pipelines and parameters for other
empirical datasets. Using Reads2Map, users can select the pipeline and parameters that best fit their data context. The
Reads2MapApp shiny app provides a graphical representation of the results to facilitate their interpretation.
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Advances in sequencing technologies and the development of dif-
ferent genome-reduced representation library protocols result in
millions of genetic markers from hundreds of samples in a single
sequencing run [1, 2, 3, 4]. Increasing the number of markers and
individuals genotyped can enhance the capacity of linkage maps
to locate recombination events that occur, resulting in higher map
resolution and better statistical power for the localization of QTL in
further analysis. This large amount of data and genotyping errors
common with genotyping-by-sequencing approaches [5] increases
the need for computational resources and multiple bioinformatic
tools.

Genotyping errors are frequent when high-throughput se-
quencing technology is applied to reduced representation libraries.
There are a variety of protocols to create these types of libraries
[4], called Restriction-site Associated DNA sequencing (RADseq)
or genotyping-by-sequencing (GBS) [6, 7]. Generally, one or more
restriction enzymes are used to digest the sample DNA. The result-
ing DNA fragments are filtered by size, connected to adaptors and
barcodes, amplified by PCR, and sequenced. Consequently, most
sequences obtained are PCR duplicates of the regions around the
enzyme cut site. By relying on duplicates to increase sequencing
depth, such methods introduce errors and a sequencing bias to-
wards one of the alleles due to variabilities in the PCR amplification.
These errors are hard to detect by bioinformatic tools [8, 9].

To overcome genotyping errors coming from GBS meth-
ods, genotype calling software model sequencing error, allelic
bias, overdispersion, outlying observations, and the population
Mendelian expected segregation [10]. Building a genetic map with
genotypes obtained using these methods can be a powerful tool to
validate their efficiency. Wrong decisions or inefficient methods
in all steps before linkage map building can be identified in the
resulting map as errors that dissociate the map properties from bio-
logical processes. For example, genotyping errors generate inflated
map sizes that show an excessive number of recombination break-
points during meiosis [11]. The first genetic map studies by Morgan
and Sturtevant [12] discovered that crossing-overs are unlikely to
happen too close to each other, a phenomenon named interference.
Later studies describing the meiotic molecular mechanisms con-
firmed the low expected number of recombination breaks in a single
event [13].

Recently developed approaches to build linkage maps (14, 15, 16]
were implemented in OneMap [17] 3.0 package. They use quantita-
tive genotype probability measurements rather than the traditional
qualitative genotypic information from SNP and genotype call-
ing methods to account for genotyping errors and provide higher-
quality genetic maps. These probabilities can be applied in different
ways: using the probability of each possible genotype (PL field in
VCF format); using an error probability associated with the called
genotype (GQ field in VCF format); or using a global error rate that
will be applied to all genotypes. Nevertheless, even using these ap-
proaches, building a linkage map will succeed only if the upstream
software can identify the errors and provide reliable genotypes or
their probabilities.

The biallelic codominant nature of SNPs is another characteristic
of high-throughput markers that can affect linkage map building
of outcrossing species. Although biallelic markers can distinguish
only two haplotypes, the mapping population of outcrossing diploid
species inherits two haplotypes with combinations of four different
parental haplotypes. With biallelic markers, the observed parental
genotypes are limited to types ab x ab, ab x aa, and aa x ab. When
one of the parents is homozygous (ab x aa and aa x ab), it is impos-
sible to observe the crossing-over change for this uninformative
parent. So this is taken as missing information (non-measurable
crossing-overs) for linkage map building if only two-point infor-
mation is considered. Therefore, building a linkage map with only
biallelic markers requires a multi-point approach that uses loci

information with both parents heterozygous (ab x ab) to estimate
the recombination of loci where one parent is homozygous, and the
recombination information is missing for closely linked loci. The
multi-point approach applies likelihood computations involving
several loci and has been successfully used since the seminal publi-
cation of Lander and Green [18]. The approach makes it possible
to identify the four different parental haplotypes by phasing the
biallelic information so that the SNPs can be used to identify all the
allelic diversity.

Other approaches to overcome the low informativeness of bial-
lelic markers involve combining adjacent biallelic markers in the
same disequilibrium block (high LD) into a single multiallelic hap-
lotype. These haplotype-based markers showed higher accuracy in
association analysis than individual biallelic SNPs [19, 20, 21, 22,
23, 24, 25]. N’Diaye et al. [21] and Jiang et al. [25] pointed out sev-
eral advantages of haplotype-based markers, including the higher
capacity to identify epistatic interactions, the presence of more
information to estimate identical-by-descent alleles and the reduc-
tion of the number of statistical tests to perform.

Despite the availability of many software for estimating geno-
type probabilities [26, 2, 27, 26, 28, 29, 10] and haplotype-based
multiallelic markers [26, 30], there are no recommendations about
which combination and choice of parameters are the best for build-
ing linkage maps. Therefore, this work evaluates the consequences
of building maps by applying genotype probabilities and haplotype-
based markers from different software and parameters. To achieve
these, we implemented new features in OneMap [17], a widely-used
software for building maps. We also developed the Reads2Map work-
flow, a tool to help users to select a bioinformatic pipeline that
provides the best quality markers to build a linkage map for their
dataset. Here, we performed tests with simulated and empirical
data and were able to make recommendations to users to obtain bet-
ter linkage maps in several situations, such as low and high-depth
sequencing, with and without segregation distortion, contaminant
samples, and multiallelic markers, and using different software to
perform the SNP and genotype calling.

We developed Reads2Map (RRID SCR_023593), a collection of bioin-
formatics workflows using Workflow Description Language (WDL)
[31]. It enables sequence alignment, SNP and genotype calling anal-
ysis, and linkage map construction. With Reads2Map, researchers
have the flexibility to explore various software options and pa-
rameter combinations, enhancing the construction of linkage
maps. The workflows are available in GitHub (https://github.com/
Cristianetaniguti/Reads2Map) and in workflowhub.eu [32, 33).

The EmpiricalReads2Map workflow was designed to evaluate em-
pirical (real) datasets; and the SimulatedReads2Map workflow, to
simulate and evaluate datasets (figure 1). Both are composed of sub-
workflows that can be run independently, which increases usage
flexibility. There are multiple options available for running WDL
workflows. Some of them are Terra.bio platform [34] and Cromwell
Execution Engine [31].

Each WDL task in Reads2Map is related to a Docker [35], or Sin-
gularity [36] container. Some of the container’s images used in
Reads2Map are available in open repositories and others were built
using Dockerfiles stored in the Reads2Map repository and available
in DockerHub. Check a list of all software and image versions used
in Supplementary Table 1. We ran the analysis testing workflows on
two high-performance computers (Texas A&M University HPRC,
University of Sao Paulo Aguia Cluster).

For building linkage maps, we implemented up-
dates in OneMap package version 3.0 (https://CRAN.
R-project.org/package=onemap) and used this version in
the workflows. We also developed the Reads2MapTools
(https://github.com/Cristianetaniguti/Reads2MapTools) R


https://github.com/Cristianetaniguti/Reads2Map
https://github.com/Cristianetaniguti/Reads2Map
https://CRAN.R-project.org/package=onemap
https://CRAN.R-project.org/package=onemap

package for support functions and Reads2MapApp shiny app
(nttps://github.com/Cristianetaniguti/Reads2MapApp), a visual-
ization tool that receives as input the final workflow output and
provides summary statistics about the resulting linkage maps,
intermediary steps, and workflow performance.

The first step of the workflows is the SNP calling. To start with
GATK [27], Stacks [2], and Freebayes [26] approaches, the demulti-
plexed FASTQ sequences are first aligned to their respective refer-
ence genomes using BWA-MEM [37]. The workflow uses samtools [38]
to merge the alignment of replicates, keeping the libraries iden-
tification on the BAM header and filtering out reads with MAPQ
< 10. After the alignment, BAM files for each sample are used as
inputs for sub-workflows with GATK, Stacks, and Freebayes tasks.
The gatk_genotyping sub-workflow reproduces GATK joint geno-
typing via HaplotypeCaller, GenomicsDBImport, and GenotypeGVCFs
tools and applies the suggested hard-filtering procedures [8].
The freebayes_genotyping sub-workflow runs Freebayes paral-
lelized by reference genome intervals. The stacks_genotyping Sub-
workflow includes the option to input the population file. If not
included, all individuals are considered from the same population.
It runs the gstacks and the populations plugins.

The TASSEL [1] SNP caller is implemented in the
tassel_genotyping sub-workflow. It first adds fake barcodes to
the demultiplexed fastq sequences. After, it runs the plugins
GBSSeqToTagDBPlugin and TagExportToFastqPlugin. The generated
tags are aligned to the reference genome using BwA-MEM and
the alignment files are input for the SAMToGBSdbPlugin plugin
which produces a database. The database was processed by the
DiscoverySNPCallerPluginV2, SNPQualityProfilerPlugin, and
ProductionSNPCallerPluginV2 plugins.

After obtaining the VCF file using one or more of the SNP calling
methods, indel marker positions are left-aligned and normalized
with BCFtools [39].

The VCF files with biallelic markers from Freebayes, TASSEL, Stacks,
and GATK are the input for the genotype caller software polyRAD
[28], SuperMAssA [29], and updog [10]. These three software are
implemented in the sub-workflows genotyping_empirical and
genotyping_simulated.

To use the polyRAD approach, the VCF files are imported using
VCF2RADdata without applying any filters or considering phase infor-
mation. The polyRAD model is run with PipelineMapping2Parents
default arguments which assume an F; bi-parental popula-
tion. The function Export_MAPpoly is used to export the geno-
type probabilities. The vcfR package [40] and custom R (func-
tion polyRAD_genotype_vcf in Reads2MapTools package) code is
used to store outputted genotypes and their probabilities in
a new VCF file. We also adapted SuperMASSA scripts to out-
put the genotype probabilities information. The modified ver-
sion is available in Reads2MapTools package. A wrapper func-
tion called supermassa_genotype, available in the package, can
run the model in parallel and export the results to a new
VCF file. The F; SuperMAssA model is run with the parame-
ter naive_posterior_reporting_threshold set to zero to not filter
any genotype. The updog F; model is used in parallel using the
function multidog through the Reads2MapTools wrapper function
updog_genotype Which outputs the results in a new VCF file.

The software GUsMap performs the genotype calling and link-
age map building with a single model. We use vVCFtoRA function
to convert the outputted VCF files from GATK, TASSEL, Stacks, and
Freebayes approaches into GusMap format. A pedigree of the popula-
tion and a list of filters (MAF = 0.05, MISS=0.25, BIN=0, DETPH=0,

and PVALUE=0.05) is provided to the readrA function. The function
makeFs is used to create the full-sib population information. Func-
tions infer_OPGP_FS and rf_est_FS are used to estimate the phase
and recombination fraction given the genomic order of the markers.
In some situations, the function rf_est_Fs outputs infinite values
of the recombination fraction. In these situations, our pipeline re-
moves the respective marker and runs the function again. This
workaround code can increase the time required to run GusMap.

OneMap is an open-source R package that has been serving the re-
search community since its initial release in 2007. It offers a com-
prehensive suite of functions designed to facilitate marker filtering,
grouping, ordering, and genetic distance estimation in both in-
bred and outbred populations. The genetic distances estimation is
made using a Hidden Markov Model (HMM) multipoint approach.
The forward-backward algorithm [41] is implemented to compute
the HMM combined with the expectation-maximization algorithm
(EM).

The 0OneMap latest version (3.0) is implemented in Reads2Map
workflows. In this new version, we have introduced a new feature
to enhance the flexibility of the HMM in scenarios where genotyp-
ing errors are expected in the dataset. This update includes the
create_probs function and modifications to the HMM algorithm.
With this option, users can provide 0neMap with prior information
regarding the reliability of each input genotype, thereby increasing
the HMM'’s adaptability. The create_probs function allows users
to input three types of values: a global error value (global_error);
an error probability for each inferred genotype (genotypes_error);
or genotype probabilities for each possible genotype in individu-
als (genotypes_probs). This flexibility empowers users to tailor
the analysis to their specific dataset characteristics and improve
the accuracy of the results. This update is described in detail in
Supplementary File 1.

The OneMap software previous to version 3.0 considered the HMM
error probability as a single value of 107 for every genotype. In
version 3.0, this value is kept as default to keep the code reproducible.
But it is noteworthy that this probability can be unreliable in several
situations when the genotypes are more prone to errors, especially
for new genotyping technology (e.g. GBS data).

OneMap 3.0 updates also include the possibility to parallelize the
HMM using the approach described by [42]. It parallelizes the pro-
cedure into a maximum of four cores. We used this new 0OneMap
feature to estimate the genetic distances. We also implemented
new functions for linkage maps quality diagnostics such as interac-
tive plots for recombination fraction matrices, progeny haplotypes
representation, and counts of the recombination breakpoints in
progeny.

Despite using the parallelized HMM, the genetic distances esti-
mations in OneMap can take time to run with a high number of mark-
ers, chromosomes, and tested combinations of software. Therefore,
the EmpiricalReads2Map workflow runs the HMM in just a subset
of markers which can be a single chromosome or a fragment of a
chromosome. The alignment, the SNP, and genotype calling steps
are performed with the entire dataset. After running the work-
flow and deciding the pipeline that provided the best results, the
respective VCF output can be used to build the linkage map for all
chromosomes in the R environment with OneMap functions.

The OneMap function onemap_read_vcfR is used to convert the
VCFs to the OneMap R object format. The markers are filtered again
by a maximum number of missing data of 25% because the VCF
files include unexpected genotypes according to the segregation
of a given locus (e.g. in a cross “AA x AB”, genotype “BB” cannot
exist). OneMap makes this genotype calls missing. Markers are also
filtered if the segregation distortion is under a global significance
level of 0.05 with Bonferroni correction and if they are redundant.
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Markers are ordered according to the reference genome position.

The Reads2Map workflows give flexibility to the user to define
the probabilities to be used in the 0neMap HMM for the estimation
of the genetic distances. Users can provide more than one value to
be tested as global errors (global_error input); can choose to use the
upstream genotype caller error probability (genoprob_error input);
and can provide global error values to be considered together with
the software probabilities (genoprob_global_error input) according
to the following: 1 — (1 — global error)x(1 — software error probability).

For GATK, TASSEL, Stacks, and Freebayes callers, the work-
flow uses in the HMM the Phred score genotype error (GQ FOR-
MAT value) converted to probabilities. For the software polyRAD,
SuperMASSA, and updog it uses 1 — output genotype probability as a
genotype error. For these last, the population’s structure (F; ) is used
as a priori information to increase the accuracy of the estimated
genotypes.

The simulations do not consider interference in the recombi-
nation events. Therefore the Haldane map function was used to
estimate the genetic distances in SimulatedReads2Map. Kosambi’s
map function was applied to estimate the genetic distances in the
EmpiricalReads2Map.

The shiny app Reads2MapApp was built to display results from the
workflow analysis. It includes graphics and statistics about SNP
calling efficiency, the number of markers discarded by filtering
steps, marker types, computer resources and time spent by each
step of the workflow, allele depth by genotype, genotype probabili-
ties, map size, map phases, recombination fraction matrix, progeny
haplotypes, breakpoints count, and the correlation between linkage
map and reference genome markers positions. Reads2MapApp is a
modular R package using the golem framework [43] that can be
rendered and displayed locally or on a server. It can be installed from
its GitHub repository and run with a single command (run_app).
Once the Reads2Map output file is uploaded into the app, all graphics
will be automatically generated.

We used the structure of Reads2Map to test the effects in the linkage
map built using different combinations of software, and parameters
in datasets with different characteristics. For our tests with empiri-
cal data, we used two datasets from previous works. They are GBS
datasets from a bi-parental diploid F; full-sib mapping populations
of aspen (Populus tremula L.) (44] (BioProject PRINA395596), and
rose (Rosaspp.) [45]. The aspen dataset comes from an intraspecific
cross of two Populus tremula genotypes. The GBS libraries were built
using HindIII and Nallll enzymes and sequenced as 150 base pair
single-end reads on an Illumina HiSeq2500. Eight library replicates
were built and sequenced for the parents and only one for each of
the 116 F1 offspring. The dataset includes six samples erroneously
sequenced as part of the progeny and later identified as contami-
nants. An average read depth of approximately 6x for progeny and
58x for parental samples were observed from the sequencing pro-
cess. The Populus trichocarpa genome version 3.0 [46] was used as a

reference for the sequence’s alignment. It has about 397 Mb in size.

The diploid roses dataset comprises 138 individuals from the

cross between a Texas A&M breeding line J06-20-14-3 (J14-3) and

cultivar Papa Hemeray (PH). GBS libraries were built with NgoMIV
enzyme and sequenced as a 113 base pair single-end read on a

HiSeq2500. The parent J14-3 was repeated twice, and the PH sam-
ple three times. An average read depth of approximately 94x for
progeny and 528x for parental samples were observed from the

sequencing process. The Rosa chinensis v1.0 genome assembly [47]

was used as a reference genome to align the sequences. It has about
527 Mb in size.

Table 1. Marker types according to parental genotype combinations
and progeny segregation. The letters “a”, “b”, “c” and “d” represent
different alleles and the letter “o” represents null alleles. Adapted from
[50].

Parents Progeny
Marker type Cross Observed genotypes Expecte?d
segregation
A 1 abxcd ac,ad,bc,bd 1:1:1:1
2 abxac a,ac,ba,bc 1:1:1:1
3 abxco ac,a,bc,b 1:1:1:1
4 aox bo ab,a,b,0 1:1:1:1
B B 5 abxao ab,2a,b 1:2:1
B, 6 aoxab ab,2a,b 1:2:1
B; 7 abxab a,2ab,b 1:2:1
C 8 ao x ao 3a,0 31
D D 9 abxcc ac,bc 1:1
10 abxaa a,ab 11
1 abxoo a,b 1:1
12 boxaa ab,a 11
13  aoxo00 a,0 11
D, 14 ccxab ac,bc 1:1
15 aaxab a,ab 1:1
16 ooxab a,b 11
17 aaxbo ab,a 1:1
18 00 X a0 a,0 1:1

The sequencing reads of the two empirical datasets were filtered
using the stacks plugin process_radtags [2] to filter sequences by
the presence of the restriction site and sequencing quality. The
reads were discarded if the average quality score of 50% of its length
was below the Phred score of 10 (or 90% probability of being correct).
The software cutadapt [48] was used to remove adapters and filter
by a minimum read length of 64 bp. The sequences were then
evaluated in our EmpiricalReads2Map workflow.

The first step of the SimulatedReads2Map workflow is to perform
simulations of a mapping population, GBS libraries, and sequences.
The simulation is based on a given reference genome chromosome
sequence. If a reference linkage map and a VCF file are provided,
the workflow simulates the marker genetic distances and parental
genotype frequencies based on them. A cubic spline interpolation
with the Hyman method [49] is applied to simulate the centimorgan
position for each marker’s physical position based on this same
relation on the reference linkage map provided.

We based our simulation analysis on the first 37% of the chromo-
some 10 sequence of Populus trichocarpa version 3.0, which includes
a sequence with 8.426 Mb from a total chromosome size of about 23
Mb. This sequence comprises 38 cM (21%) of the linkage group 10
built using the aspen empirical data [44]. Due to the computational
resources needed to build such a high number of maps, we used
only a subset of the data to finish the analysis in a reasonable time.
Chromosome 10 was randomly chosen.

We simulated markers with different expected segregation pat-
terns according to parental genotypes in each locus. Table 2 shows
the notation for each possible marker type in an outcrossing diploid
population. The SimulatedReads2Map workflow simulates parental
haplotypes using the same proportion of marker types identified
in the empirical VCF file. This approach overcomes the missing
data present in the empirical dataset. The final VCF file used as a
reference to the simulations contains 810 markers (126 B3.7, 263
D1.10, 278 D2.15, and 143 non-informative markers with both par-
ents homozygous), which results from the aspen empirical data
GATK SNP calling, filtered by a maximum of 25% of missing data
and MAF of 5%.

PedigreeSim V2.1 software [51] is implemented in the workflow



to simulate the meiosis events and generate an F; progeny based
on the provided genetic map and simulated parental haplotypes.
We did not consider interference in meiotic events (Haldane [52]
mapping function). Pedigreesim output files were converted to VCF
files using Reads2MapTools R package function pedsim2vct.

While converting the files, the pedsim2vct function can also
simulate segregation distortion by applying a selection strength.
For that, a high number of individuals in the progeny have to be
simulated with the Pedigreesim software and one or more loci to
be under a given selection intensity. In our study, we targeted a
final population size of 200 individuals. For that, we simulated 50
x 200 individuals and applied a selection intensity of 50% in the
3oth marker, eliminating 50% of the genotypes containing one
of the alleles. Then, 200 individuals of the resulting population
are randomly selected to compose the mapping population. We
used this feature to compare software performance in segregation
distortion.

The VCF file output by pedsim2vcf and the reference genome file
are inputs for the RADinitio [9] software. RADinitio adds the VCF
polymorphisms in the reference genome sequence and simulates
the GBS sequences. It uses the inherited efficiency model [53] to
simulate a PCR-amplified pool of molecules. The model includes
the heterogeneity of the PCR amplification and the polymerase
substitution errors. Next, RADinitio applies the user-defined ratio
between DNA original molecules to be sequenced and PCR dupli-
cates to create a distribution that will define the number of times
the pool of loci is sampled, the number of duplicate molecules that
are generated from a RAD locus template, and the distribution of
PCR errors in the resulting reads. We defined the default parameter
with a proportion of 4:1. Besides the PCR errors inserted during the
pool sampling, the software also includes a commonly observed
error pattern, where the 3’ end of the read accumulates more errors
than the 5’ [54]. We tested different values of PCR cycles (5, 9, and
14) and mean depth (5, 10, and 20) to simulate the FASTA files. We
set the other RADinitio simulation parameters to obtain 150 bases
of read length, sequence size of 350 (parameter "—insert-mean"),
and restriction enzymes HindIII and NallIl. The mean read depth
parameter for the parental samples was eight times higher than the
progeny. The combination of RADinitio parameters that produced
results closer to those observed in empirical data was selected to
perform simulations with and without segregation distortion, five
repetitions (five families), and two average sequencing depths (10
and 20) and 5 PCR cycles.

RADinitio does not output the sequence quality scores, so we
converted the FASTA file format to FASTQ format, including a Phred
score of 40 for every base simulated using seqtk [55] software. Af-
ter obtaining the FASTQ files, the SimulatedReads2Map Workflow
followed the same tasks as the EmpiricalReads2Map, with align-
ment, SNP and genotype calling, and linkage map build. The
SimulatedReads2Map workflow makes comparisons between real
and estimated results within each step. The comparisons made dur-
ing the workflow can be visualized in the shiny app Reads2MapApp.

We ran all implemented software for SNP calling and genotype
calling (GATK, Freebayes, TASSEL, Stacks, updog, SuperMASSA, and
polyRAD) on the empirical and simulated datasets. In addition, we
explored the substitution of VCF allele counts with counts from the
alignment (BAM) files to mitigate potential biases introduced by
SNP caller software when analyzing low-coverage sequence data.
GATK inserts the bias when reads are filtered in the local re-assembly
step to avoid sequencing errors [56]. BCFtools is used to find the
read depths information for each allele in BAM files and update the
allele depths information in the AD (allele depth) field of the VCF
file. For the Aspen dataset, we also executed the workflows for every
scenario in the presence of the contaminant samples.

The markers identified by the SNP callers (GATK, TASSEL, Stacks,
Freebayes) were filtered by minor allele frequency (MAF) of 5%
and maximum missing data allowed of 25% before proceeding
to the genotype callers (updog, polyRAD, and SuperMASSA). At this
step, we also tested two other filters. One of them was removing
non-informative markers from the VCF file. We considered non-
informative markers homozygous in both parents or if at least one
of the parental genotypes was missing. The second filter was to
replace the allele depth (AD) field in the VCF file format by missing
data when the genotype is missing. This avoids that updog, polyRAD,
and superMASsA use the allele depth when cATX filtered out the geno-
type due to bad quality.

After the genotype call, we reduce the analysis to a subset of
markers (the first 8.426 Mb or 37%) of Populus trichocarpa chromo-
some 10 and the first 25 Mb ( 37%) of Rosa chinensis chromosome
1 reference genomes. This made it possible to build maps for all
tests in a feasible time. The markers were filtered by the maximum
missing data allowed of 25%, redundancy, and segregation distor-
tion. In addition, we tested filtering the genotypes by a minimum
genotype probability of 0.8.

We tested the consequences of building maps applying different
genotype probabilities in the 0neMap 3.0 HMM coming from seven
different genotype caller software: GATK, Freebayes, TASSEL, Stacks,
polyRAD [28], SuperMASSA [29] and updog [10]; a global error rate
of 0.01, 0.05, 0.1, and the OneMap 2.0 default value of 1075. We
also tested the combination of the two distributions. We compared
OneMap 3.0 capacity of estimating accurate genetic distances with
the GusMap package [14] estimations since it also uses an HMM to
account for errors present in sequencing data.

We also tested the consequences of the presence and absence of
the and Stacks haplotype-based multiallelic markers in the link-
age map. To test the influence of the presence of the multiallelic
markers in the ordering procedure, we built a map for the entire
chromosome 1 and 10 from the roses and aspen datasets, respec-
tively, using the selected pipeline. We ordered the markers using
MDSMap [57] (wrapper function implemented in OneMap 3.0) order-
ing algorithm with and without multiallelic markers.

In the testing of scenarios in which we considered multiallelic
markers, the VCFs containing them are merged into the VCF files
from polyRAD, SuperMASSA, and updog. The merged VCF is the input
for linkage map building in oneMap version 3.0.

Table 2 shows an overview of the notations used to refer to each
evaluated scenario.

We conducted performance comparisons of each tested dataset and
scenario based on the built linkage map quality. To consider good
quality we evaluate the following linkage map characteristics:

- Marker type:
In outcrossing populations, it is important to have markers that
have recombination information for both parents. We avoided
approaches that provide only ab x aa (D1.10) or aa x ab (D2.15) in
a single chromosome. The Reads2MapApp '"'Marker type" section
describes the amount of each marker type in the linkage maps
built by Reads2Map workflows.

- Marker coverage:
It refers to how equally distributed markers are in the genome.
We avoided approaches that do not detect markers in a large por-
tion of the genomic selected area. The graphics in Reads2MapApp
section "cMxMb'" section correlate the linkage map position
with the genomic positions. This is an excellent tool to evaluate
marker coverage.

+ Marker density:
It refers to how equally distributed markers are on the link-
age map. We avoided big gaps (higher than about 10 cM) in



Table 2. Notation used to refer to each evaluation scenario in empirical and simulated datasets.

Workflow step Notation
Depth 10
Reads simulations Depth 20

segregation distortion

Freebayes
GATK
TASSEL
Stacks
BAM
VCF

SNP calling

Counts source

. only informative markers
Filters y

missing replaced

polyRAD
SuperMASSA

Genotype calling updog

SNPCaller

Filters genotype prob >0.8

biallelics
Marker type biallelics + multiallelics
<Genotype caller name>
Map building

<Genotype caller name>
(<global error rate>%)

<Genotype caller name>x
(<global error rate>%)

the linkage maps. Some of the gaps observed in the maps
are due to outlier markers (a single marker with gaps in both
edges). Outlier markers can be removed manually in further
steps. We search for approaches that provided fewer outlier
markers, which would require less manipulation later. The link-
age map draw and graphics about the genetic distances among
markers present in the section "Map size" of Reads2MapApp are
good tools to evaluate marker density.
- Marker order:

The efficiency of ordering algorithms can be significantly influ-
enced by the presence of marker types that provide recombina-
tion information for both parents. In the Reads2Map workflows,
to ensure accurate comparisons and to be possible to distinguish
if linkage map inflation is due to different orders or genotyping
errors, we have standardized the marker order across the work-
flow comparisons. Therefore, the order of the markers is always
based on the reference genome. This means that it is crucial to
carefully select, for the workflows, tests chromosome regions
in the datasets that do not exhibit inversions or translocations
when compared to the reference genome.

However, in order to assess the impact of highly informative
haplotype-based multiallelic markers, we conduct separate ex-
periments outside of the workflows. In these experiments, we
exclude outlier markers and evaluate the efficiency of the MDS
ordering algorithms with and without the inclusion of multial-
lelic markers. This allows us to investigate these markers’ influ-

Description
Mean read depth used
to simulate the dataset
Dataset simulated with
segregation distortion

Software used to
identify the variants

Source files of allele depth information

Filter non-informative markers
(both parents homozygous
or at least one missing)
Replace AD field for missing
data when GT is missing
Software used to perform the
estimation of genotype for a
given allele depth information
Software used to genotype calling is
the same that performed the SNP calling
Filter by minimum genotype
probabilities of 0.8
Keep only biallelic markers
Keep biallelic and multiallelic markers
Maps built with genotype
probabilities from
<Genotype caller name>
Map built with genotypes from
<Genotype caller name>and
global error of <global error probability >
Map build with genotypes probabilities
from <Genotype caller name>and global
error of <global error probability>

cient coverage and density, an inflated size of the linkage map
can be attributed to a high error rate in the genotypes. Our ob-
jective is to find an approach that minimizes this inflation and
brings the linkage map size closer to the expected value (e.g., 38
cM in our tested subsets).

To identify the causes of inflated maps, the linkage map
draw and recombination fraction matrix heatmap generated
by Reads2MapApp prove valuable. It enables us to distinguish
whether the inflation is a result of outlier markers creating gaps
or due to genotyping errors.

- Estimated haplotypes:

Together with the linkage map, the 0neMap HMM multipoint
approach also estimates the parents and progeny haplotypes.
In a scenario without contaminant samples, we expect a low
(around 1 or 2) and equally distributed number of recombina-
tion breaks across all samples. In scenarios where there are
contaminant samples, we expect that their haplotypes contain
a high number of estimated breaks because wrong assumptions
were made leading to the wrong estimated number for these
samples. Reads2MapApp contains a section for visualizing the
progeny haplotypes and also for counting the estimated number
of recombination breaks.

ence on the algorithm’s performance. We evaluated the orders
provided by the different ordering algorithms by computing the
absolute value of Spearman’s rank correlation between orders.

- Marker quality:

In cases where all markers are correctly ordered (following the
standardization in Reads2Map comparisons), and there is suffi-

We use the structure of the Reads2Map workflows, the simulated,
and the empirical datasets to test each software and some differ-
ent parameters and markers filters. Our goal was to identify the
approach that provides the best quality linkage map.

We have categorized the approaches used in our analysis into
two groups: dataset-independent and dataset-dependent. The



Table 3. Reads2Map workflows default option set based on tests with empirical em simulated data.

Process Workflow options Default
run GATK TRUE
run Freebayes FALSE
run Stacks TRUE
SNP calling run TASSEL FALSE
remove duplicates FALSE
replace AD by BAM counts FALSE
GATK hard filters TRUE
replace AD by missing when GT is missing TRUE
probability threshold 0.8
. run updog TRUE
genotype calling run polyRAD TRUE
run SuperMASSA FALSE
run GUsMap FALSE
filter non-informative TRUE
add multiallelics TRUE (if available)
linkage map global errors 0.05
genotype caller probabilities FALSE
genotype caller probabilities + global errors 0.05

dataset-independent approaches consistently produce reliable re-
sults across all datasets, while the dataset-dependent approaches
exhibit varying efficiency depending on the dataset characteristics.
To streamline the user experience, we have selected the dataset-
independent approaches that improve linkage map quality as the
default options in the Reads2Map workflows (table 3). This simplifies
the process for users by reducing the number of tests required, as
these default approaches consistently yield favorable results across
different datasets.

We focused our tests and set the default options based on
F; diploid populations and GBS markers. However, because the
Reads2Map workflow is modularized, the EmpiricalSNPCalling sub-
workflow can be used separately and applied to other population
structures, ploidy, and sequencing libraries. In the case of work-
ing with sequencing libraries other than RADseq, such as Whole-
Genome-Sequencing (WGS) or Exome sequencing, it is important
to set the option "remove duplicates' to TRUE. The PCR duplicates
in RADseq data constitute the majority of the data and they are in-
cluded in the allele count while calling the genotypes, but in other
types of libraries, they are considered artifacts and are removed to
avoid errors [58].

The genotype call and linkage map building in the EnpiricalMap
sub-workflow have the F; population structure as an assumption.
In this current version, they can be applied to another type of se-
quencing library but not to another type of population structure.
For these steps, it is just important that the VCF file format is stan-
dardized and can be processed by BCFtools. They do not need to be
necessarily from the SNP call software implemented. They can be
also a combination of VCFs from different software such as the com-
mon markers between the implemented SNP call software results
("intersect" in Figure 2).

We had to perform extra manipulations in TASSEL VCF output
to be able to run the downstream analysis because they presented
missing header information. Also, processing Freebayes showed to
consume an unexpectedly high amount of RAM memory in some
situations, which made it impossible to automatize the amount of
memory required from the HPC and Cloud by the workflow task.

The number of markers identified by each software is related
to the species, library preparation, and sequencing aspects such
as genome size, restriction enzyme used, and sequencing depth.
In figure 2, we can observe that more markers were identified in
Aspen dataset compared to the Roses due to the higher frequency
of enzymes cut sites. There is no consistency between the two
datasets about which of the software identifies the higher number
of markers.

After all the filtering steps and linkage map building, it is con-

sistent that Freebayes keeps more markers. However, the result-
ing maps built with Freebayes markers, genotypes, and genotypes
probabilities presented higher genetic distances inflation compared
to the other approaches. Using TASSEL software markers also re-
sulted in higher inflation in Aspen dataset maps which have lower
sequencing depth (~ 6x) compared to the Roses (~ 94). The other
approaches also presented outlier markers that inflate the total map
size, but, because they are individual markers, they can be easily re-
moved in further steps. The maps built with only common markers
among all four software (intersection in figure 2) contained fewer
markers and have markers distances similar to GATK and Stacks
results.

Evaluating the results of our simulations for GATK, we identified
a format characteristic of VCFs from this software that leads to
genotyping errors in estimations by updog, polyRAD, and SuperMASSA.
In such cases, the genotype is considered missing in the GATK output
VCF GT format field, while the total read depth is always reported
in the reference allele field of the AD format field (e.g., Estimated =
GT:AD ./.;22,0 | True = GT:AD 1/1;0,22).

We present examples of the consequences of this format in geno-
types called by updog, polyRAD, and SuperMASSA in figures 3 and 4.
In figure 3 A, allele dropouts are observed in the genotype of parent
P2 and some of the progeny individuals. In empirical data, allele
dropout can occur due to various reasons, such as polymorphisms
in the cut site or the non-amplification of one allele during the PCR
step [9]. Our simulations also consider allele dropout, but in the
observed scenario, the source of allele dropout is due to the format
characteristic of the GATK VCF file.

The occurrence of genotyping errors while using GATK VCF al-
lele counts was previously observed by [56], who suggested using
counts from BAM alignment files to address the issue (Figure 3
B). However, when testing the usage of BAM allele counts, we lose
the advantage of the robust filtering applied by the GATK pipeline to
retain only high-quality read counts in its VCF allele depth field. To
maintain the accuracy of the GATK allele depth while overcoming the
common error observed when the genotype is missing, we replaced
the VCF allele count (AD and DP fields) with zero when the geno-
type information is missing before utilizing it for genotyping with
polyRAD, SuperMASSA, and updog. This more precise way of solving
the issue was only possible due to our simulations studies once they
provide a clear comparison between simulated (true) and estimated
data which highlighted the sources of the genotyping errors.

We also observed situations in updog, polyRAD and SuperMASSA
results where the parental genotypes are wrongly estimated be-
cause of the low quality of the progeny genotypes that distort the
expected segregation. These genotype call software consider the ex-
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Figure 2. The top two figures show the number of markers identified by each SNP call software (number above each software name) and Venn diagrams showing the number
of markers with common positions among all software results for the Aspen and Roses complete datasets. The markers were previously filtered by maximum missing data of
25% and MAF of 5%]/. The compatibility of positions among markers from different software was only possible after using "BCFtools norm" to left-align the indels positions.
The bottom two figures show the number of markers (bar plot) and distances between markers (boxplot) after building the linkage maps for a subset of 37% of chromosome
10 in the Aspen dataset and 1 in the Roses dataset with the markers from Freebayes, GATK, TASSEL, and Stacks. It was considered in the 0neMap HMM the genotypes and a global
error of 5% (global_erroro.05); genotypes probabilities (genoprob_error); and the combination of genotype probabilities and a global error of 5% (genoprob_global_erroro.0.5).
These figures can be generated for user-defined empirical datasets in the Reads2MapApp sections "SNP calling efficiency" and '"Map size" after running the EmpiricalMaps
workflow.
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Figure 3. Example of error (Est: homozygous | True: heterozygous and Est: heterozygous | True: homozygous) in parental genotypes leading to a wrong marker type (Est:
D1.10 | True: D2.15). Estimated reference (x-axis) and alternative (y-axis) allele count. Graphics on the left have colors according to estimated genotypes, and on the right to
the true genotypes. A) show counts from GATK VCF file and B) from BAM file. In the VCF file outputted by GATK the P1 genotype is missing (GT ./.) because the reads did not pass
the quality filters, but it reports the counts in the reference AD field (149,0). The updog software use progeny segregation (1:1) to estimate the parents, but it makes a mistake
identifying which one is heterozygous. Using counts from BAM file (B) fix this issue despite losing the GATK quality filters that can be important in other situations.
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pected segregation in their models therefore errors in the progeny
leads to errors in the parents. Figure 4 shows examples where the
marker would be considered non-informative for an outcrossing
population, as both parents are homozygous. However, due to geno-
typing errors in the population, SuperMAsSSA and polyRAD incorrectly
estimate the parents as heterozygous. To tackle this problem, we
implement a filtering step to exclude non-informative markers
before applying the genotype callers.

Solving these issues was particularly important because erro-
neous parent genotypes have a higher impact on linkage map qual-
ity than progeny genotype errors. OneMap 3.0 does not consider the
parental genotype probabilities in its HMM multi-point approach.
Thus, it is important to plan the sequencing experiment with high-
quality parental genotypes because, if there are errors, they will
not be corrected in downstream processing, and it will cause distor-
tions in the resulting distances and haplotypes. To avoid map size
inflation, erroneous parental genotypes must be removed before
the linkage map analysis.

In general, the evaluations of RADinitio simulations profile
shows that we can expect fewer markers and genotyping errors
in the simulated compared to the empirical data (Supplementary
Figure 7). A smaller number of markers should not reduce the built
linkage map quality because the analysis was made in F; popula-
tions, which have large disequilibrium blocks. However, the smaller
number of genotyping errors overestimates the SNP and genotype
calling software efficiency. This overestimation is commonly ob-
served in simulation results once the data cannot capture all biases
and errors in the empirical data. Thus, we used the simulations to
understand specific software limitations and errors source but not
ultimately define the best performance [59].

We observed the same or improved quality of linkage maps
in the empirical datasets evaluations (Supplementary Figure 8)
when we applied these two described filtering steps: removing
non-informative data before genotype calling, and replacing allele
counts with missing data when the genotype is missing in the GATK
calls. After the genotype calling, we applied a threshold of 0.8 to
filter low-quality genotypes, which also was beneficial in all sce-
narios. It is important to notice that these filters are applied before
the segregation test filter, which reduces the number of tests and
increases the permissibility of the threshold corrected by multiple
tests (Bonferroni correction). Thus, the built map can have more
markers in some scenarios even if more filters are applied.

The simulations were also useful to validate all code developed
for the analysis and to measure the effects of segregation distortion.
The results showed that the segregation distortion does not affect
the frequency of correct estimated genotypes in most scenarios, de-
spite affecting the reliability of the genotype probabilities provided
by updog, SuperMASsA, and polyRAD (Supplementary Figures 9 and
10). This can be one of the reasons why using genotype probabil-
ities in the HMM did not present consistent results across tested
datasets.

Despite we considered the HMM error rate dataset-dependent
values, we identified that some of the possible values can be dis-
carded. Using the OneMap default value of 10~ global error rate pro-
duced bad-quality maps in all situations. The same happened while
using all the genotype call software relative error. Using higher
values of global error rate and genotypes from GATK, Freebayes,
TASSEL, Stacks, updog, and polyRAD, or the combination of the geno-
type probability and a global error rate from software GATK, updog,
Stacks, and polyRAD produced the most reliable linkage maps, with
linkage map sizes closer to the expected.

As observed in figure 5, many of the approaches produced link-
age maps with distances between all adjacent markers smaller than
10 cM. We chose the method that results in less inflated linkage
maps and outlier markers even when applying the small values
of the global error rate (0.01). Once the method was selected, we
tried an intermediary global error rate (0.075) for the roses dataset
values to adjust to the expected total size. We also checked the re-

combination fraction heatmap, the markers coverage, density, and
the number of estimated recombination breakpoints in progeny
through Reads2MapApp figures (see the app interface demonstration
in Supplementary File 2).

Before using the map size as a metric for map quality, we
checked if a map with the expected size always means good quality.
A map can have the expected size but a poor quality if the number of
overestimated and underestimated recombination breakpoints in
the progeny haplotypes is the same; in other words, if they cancel
out. To test if this happens in our simulated dataset, we compared
the Euclidean relation of estimated and true genetic distances with
the total number of wrong (overestimated + underestimated) re-
combination breakpoints in the progeny haplotypes (Figure 6). For
identifying a break as overestimated or underestimated, we do not
consider the expected break position but the total breaks expected
for the evaluated haplotype. For example, if one haplotype for a
specific progeny was simulated with one break and estimated with
zero, then we count it as one underestimated break.

The comparison shows that overestimated breakpoints are gen-
erally more frequent than underestimated ones. We observe that
when a map is inflated, it also has many wrong recombination
breakpoints. However, in some cases, the map has the expected
map size, but a high number of wrong haplotypes due to both over-
estimated and underestimated breaks. A high number of underes-
timated breaks can be observed in situations where the Euclidean
distance is close to, or less than 1 (log;,0) and the number of wrong
recombination events is between 10 and 100 (log;1 and log;¢2).
These situations are more frequent when a global error rate of 5%
is used.

In the empirical data results, we observed maps with expected
size and excess recombination breakpoints in just a few individ-
uals in the progeny. This variation can be related to contaminant
samples. The study of Zhigunov et al. [44] identified six contami-
nants in the Aspen dataset. When we ran the workflows, including
the contaminant samples, the maps built with Freebayes mark-
ers and updog, SuperMASSA, and polyRAD were smaller in size than
without the contaminant (Supplementary Figure 11). This would
(wrongly) suggest better quality if map size is the only metric used.
Nevertheless, the maps presented higher differences in the num-
ber of recombination breakpoints among individuals when using
the genotype probabilities relative to each genotype call software.
Some contaminant samples presented more estimated recombi-
nation events than the rest of the progeny. Using higher values of
global error reduces this difference and can mask the presence of
contamination.

These results show that it is important to exclude contaminant
samples before the linkage map building once the multi-point
HMM approach tends to fix the genotypes according to the bio-
logical assumption that they are all F; individuals. There are several
methods available for identifying contaminant samples in previ-
ous steps. The ADMIXTURE [60] software analysis as made by
Zhigunov et al. [44] is one possibility. Another is to calculate a
marker-based relationship matrix using the R package AGHmatrix
[61].

So far, all the evaluations we have discussed have focused ex-
clusively on biallelic markers. We also evaluate the impact on the
genetic distances when haplotype-based multiallelic markers are
included. In most of the tested scenarios, incorporating these mark-
ers leads to map inflation. This is primarily due to the fact that
inaccurately estimated multiallelic markers or genotyping errors
associated with them can significantly affect the quality of the link-
agemap. The impact is particularly pronounced because multiallelic
markers provide richer information, including recombination and
phase information for both parents, compared to biallelic mark-
ers. However, the advantages of including the multiallelic markers
appear in the marker ordering step.

Algorithms that use two-point recombination fractions esti-
mations have issues ordering only biallelic markers because of the
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Figure 5. Process of selecting best pipeline: A) Comparing the effect of different error probabilities in the oneMap 3.0 HMM in the distances between adjacent markers; B)
Comparing the effect of different error probabilities in the linkage maps total size built with a single SNP call software; C) Checking the recombination fraction (rf) heatmap
and markers coverage in the genome using the selected pipeline. These figures were extracted from Reads2MapApp.
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Figure 6. Relation between Euclidean distance (y-axis) and the number of recombination breakpoints (x-axis) in maps built with global error rates (0.001% and 5%), and
with probabilities outputted by the genotype call software (relative error). Each dot represents a map built with simulated data based on the first 37% of aspen chromosome 10.
The red squares highlight maps that do not present inflated size (1 or less Euclidean distance) but have from 10 to 100 wrong recombination breakpoints.

missing linkage information between markers D1and D2 (homozy-
gous x heterozygous or vice-versa). These markers can only be
related to each other in the presence of more informative markers,
such as B3.7 (heterozygous x heterozygous) or multiallelic states.
Yet, having few B7.3 markers compared to D1 and D2 can still be an
issue for linkage map building. In fact, this characteristic was the
reason behind the initial development of separate maps for each
parent in the first methods used for building genetic maps in such
populations [62]. These non-integrated genetic maps subsequently
limited further analysis of multiallelic traits in terms QTL mapping
[63].

The markers ordering efficiency is not considered by Reads2Map
workflows once it uses the genomic order to position the markers
in the linkage maps. The reference genome is a required input by
the workflows to standardize the positions of the markers across all
tested methods. This avoids the confounding interpretation of bad-
quality linkage maps due to wrong ordering and not genotyping
erTors.

To test the effect of multiallelic markers in the ordering, we
built a linkage map for the entire chromosome 1 and 10 of the
roses and aspen datasets, respectively, using the selected meth-
ods and adding the haplotype-based multiallelic markers provided
by Stacks population plugin. We used the OneMap wrapper func-
tion mds_onemap to order the markers with MDS [57]. The genetic
distances were estimated by HMM multipoint approach. Figure 7
shows the effects of including the multiallelic markers in the two-
points-based MDS algorithm.

The impact of multiallelic markers differed between the aspen
and roses datasets. In the aspen dataset, characterized by a lower
depth and a higher rate of genotyping errors in the markers, most
of the B3.7 biallelic markers were filtered out during previous steps,
resulting in an unsatisfactory performance of the MDS algorithm
in ordering the markers. However, incorporating the multiallelic
markers, although slightly inflating the genetic distances, signif-
icantly improved the ordering accuracy using MDS. It should be
noted that MDS itself can contribute to genetic distance inflation as

it may erroneously invert markers in close proximity. In scenarios
where a reference genome is unavailable, the inclusion of multial-
lelic markers can prove valuable for effective marker ordering in
these types of datasets.

The rose dataset is characterized by higher-quality markers,
and the genomic ordering can be almost entirely reproduced using
only biallelic markers. In this scenario, the inclusion of multial-
lelic markers also leads to a slight inflation of the map size while
improving the ordering accuracy through MDS. Unlike the aspen
dataset, the MDS algorithm in the rose dataset tends to reduce the
genetic distances, resulting in an underestimation of recombina-
tion breakpoints. However, considering that there are no significant
inversions or translocations (see dot plots in figure 7), we can have
more confidence in the genomic order, even if the map is larger.
Any discrepancies between the MDS-based order and the genomic
order are likely attributed to local changes, which are likely to be
errors introduced by MDS.

The Reads2Map workflows have a robust structure to generate
production-level results with simple inputs and optimized usage of
computational resources. The structure allowed us to test the qual-
ity of genetic maps built with the following scenarios: i) using differ-
ent SNP calling software (GATK, TASSEL, Stacks, and Freebayes); ii)
using different genotype calling software (GATK, Freebayes, TASSEL,
Stacks, updog, polyRAD, SuperMASSA); iii) using different linkage
map building software (0neMap 3.0 and GUSMap); iv) establishing dif-
ferent error probabilities (relative to genotype call software, 10%,
1%, 5%, and 0.001% global error, and the combination of the global
error rate with the genotype call probabilities); v) applying differ-
ent marker filtering; vi) with or without multiallelic markers; vi)
in empirical and simulated data; vii) with and without segrega-
tion distortion; viii) with and without contaminant samples; ix)
with different GBS library preparation aspects; and x) with differ-
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ent sequencing depths. These scenarios are commonly found by
researchers trying to produce high-quality linkage maps using se-
quencing technologies. The Reads2Map and Reads2MapApp are the
first tools to guide best practices for building linkage maps with
sequencing data pointing software, parameters, and marker filters
to be used in diverse scenarios.

We elaborated and limited the scenarios explored according to
our experiences as developers of OneMap. OneMap first version was re-
leased in 2007, and since then it has been used to build linkage maps
in a diversity of species. Its strategies and structure also served as a
base for more complex software such as MAPpoly [15] for building
linkage maps in polyploid species. With time, new methods for ge-
netic marker identification using sequencing data emerged, chang-
ing the context where 0neMap was used. We included updates in this
version 3.0 to resolve issues with inflated genetic maps and marker
ordering. Two major changes allow users to read and build genetic
maps with the genotype probabilities and haplotype-based mul-
tiallelic markers information from the input files (0neMap format
or VCF file). However, the success of genetic map building will be
proportional to the quality of the information provided by upstream
procedures such as library preparation, SNP and genotype calling,
genotype probabilities estimation, and the combination of SNPs
into haplotype-based markers. With Reads2Map and Reads2MapApp,
we provide users tools to select the best approaches before using
OneMap 3.0 to guarantee that it will result in the best quality genetic
map possible with the data available.

It is important to highlight that we did not design the workflows
to be a tool to build a final linkage map but to select the bioinfor-
matic pipeline that provides the best quality genetic markers. Once
the pipeline is selected, the respective VCF file and 0neMap functions
can be used in the R environment to build the final map. Build-
ing the complete linkage map will require evaluations and edits
that are highly specific and cannot be fully automated within the
workflows. These tasks include addressing the presence of translo-
cations and inversions, identifying outlier markers, and linkage
between markers located in different chromosomes.

Thediversity in the results of the pipeline suggested for both em-
pirical datasets highlights that pipelines perform differently with
datasets with different properties. This means that the pipelines
presented here as the best cannot be considered the best for every
dataset. We could reduce the number of required tests by users
identifying the dataset-independent approaches and setting them
as default in Reads2Map. However, we suggest users reproduce the
tests presented here for the dataset-dependent approaches using
the Reads2Map workflows with their empirical dataset and select the
best pipelines for their specific conditions.

The workflows were built using WDL and containers to ensure
high reproducibility. This guarantees that different results running
different datasets is due to the dataset’s properties and not to bioin-
formatic pipeline changes. Also, updates can be easily made in the
workflows as the software implemented are improved once the ver-
sions are controlled by Docker images. This makes Reads2Map also
a useful tool for software developers to validate updates because it
facilitates checking the consequences of the changes in the quality
of the markers by easily controlling versions, rerunning datasets,
and checking the map quality.

Every Reads2Map workflow run returns a large amount of infor-
mation. Every step of the workflow, from the reads’ alignment to
the completed linkage map, provides quality measurements for
users to evaluate each scenario. The Reads2MapApp shiny app re-
ceives all this information compressed in a single workflow out-
put file and converts it into comprehensive interactive graphics.
Through the app interface, users can evaluate the performance of
each combination of software and parameters in each step. If re-
sults show issues in any of them, users can re-run the workflow
with adapted parameters or include new filters that make sense in
their context. Once established the upstream steps based on the
app graphics for the built linkage map subset, users can reproduce

it for the complete dataset, inputting the VCF files from Reads2Map
into OneMap.

- Project name: Reads2Map

- Project home page: https://github.com/Cristianetaniguti/
Reads2Map

- Main workflows: EmpiricalReads2Map [32] and Simulate-
dReads2Map [33]

- Operating system(s): Platform independent

- Programming language: WDL

- Other requirements: docker or singularity

- License: GNU GPL

Supplementary File 1. Emission function for outcrossing.
Supplementary File 2. Reads2MapApp interface demonstration.
Supplementary Table S8. List of third-party software and im-

ages versions used

Supplementary Figure S7. Venn diagrams show the number of
markers identified by freebayes, GATK, and simulated (true). The
intersection between the data sets represents markers with the
same position in the reference genome Populus trichocarpa version
3.0. The Empirical data sets include markers spread across the
entire reference genome. The simulations only include markers in
the first 8.426 Mb of chromosome 10 (2.1% of the genome). The
mean and standard deviation of number markers are shown for the
simulated data set once the simulation and SNP calling are repeated
60 times. Markers were filtered by 25% maximum missing data
and MAF 5% in empirical and simulated data. * Number of markers
common to all 60 repetitions.

Supplementary Figure S8. The relation between filters applied
(x-axis), the map size (A y-axis), and the number of markers (B
y-axis) for genotype calling software used in the empirical data sets.
The data sets shown in the figure contain only biallelic markers.
The horizontal red line indicates the expected map size (38 cM) for
the subset of the genomes used.

Supplementary Figure S9. ROC curves with the true and esti-
mated genotypes from the five families simulated with mean depth
10 and 20 and the first 8.426 Mb of the chromosome 10 (37% or 38
cM). Here only biallelic markers are considered. The specificity and
sensitivity profiles consider different thresholds in the genotype
probabilities for each scenario. The higher the area under the curve,
the higher the genotype’s probability reliability. Genotype proba-
bilities thresholds closer to the left superior corner have a higher
capacity to differentiate right and wrong genotypes.

Supplementary Figure S10. Supplementary Figure S9 contin-
ued.

Supplementary Figure S11. Effect of contaminant samples in
the map size (A) and in the number of estimated recombination
breakpoints range (B) among progeny individuals. The empirical
aspen data sets presented in this figure contain multiallelic mark-
ers, the allele counts from the VCF file, and is filtered by genotype
probability higher than 0.8 to keep only informative markers.

GBS: Genotyping-by-Sequencing; PCR: polymerase chain reaction;
RADSeq: Restriction-site associated; DNA sequencing; VCF: variant
call format; GQ: genotyping quality; GT: genotype; GWAS: genome-
wide association; SNP: single nucleotide polymorphism; LD: link-
age disequilibrium; QTL: quantitative trait loci; WDL: workflow
description language; HPRC: high-performance research comput-


https://github.com/Cristianetaniguti/Reads2Map
https://github.com/Cristianetaniguti/Reads2Map

ing; CPU: central processing unit; HMM: hidden Markov model;
EM: expectation-maximization; MAF: minor allele frequency; NGS:
Next Generation Sequencing.
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