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Abstract: Background: Genotyping-by-Sequencing (GBS) provides affordable methods for
genotyping hundreds of individuals using millions of markers. However, this challenges
bioinformatic procedures that must overcome possible artifacts such as the bias
generated by PCR duplicates and sequencing errors. Genotyping errors lead to data
that deviate from what is expected from regular meiosis. This, in turn, leads to
difficulties in grouping and ordering markers resulting in inflated and incorrect linkage
maps. Therefore, genotyping errors can be easily detected by linkage map quality
evaluations.
Results: We developed and used the Reads2Map workflow to build linkage maps with
simulated and empirical GBS data of diploid outcrossing populations. The workflows
run GATK, Stacks, TASSEL, and Freebayes for SNP calling and updog, polyRAD, and
SuperMASSA for genotype calling, and OneMap and GUSMap to build linkage maps.
Using simulated data, we observed which genotype call software fails in identifying
common errors in GBS sequencing data and proposed specific filters to better handle
them. We tested whether it is possible to overcome errors in a linkage map using
genotype probabilities from each software or global error rates to estimate genetic
distances with an updated version of OneMap. We also evaluated the impact of
segregation distortion, contaminant samples, and haplotype-based multiallelic markers
in the final linkage maps. Through our evaluations, we observed that some of the
approaches produce different results depending on the dataset (dataset-dependent)
and others produce consistent advantageous results among them (dataset-
independent).  
Conclusions: We set as default in the Reads2Map workflows the approaches that
showed to be dataset-independent for GBS datasets according to our results. This
reduces the number required of tests to identify optimal pipelines and parameters for
other empirical datasets. Using Reads2Map, users can select the pipeline and
parameters that best fit their data context. The Reads2MapApp shiny app provides a
graphical representation of the results to facilitate their interpretation.
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Supplementary File 1 - Genotype probabilities in OneMap 3.0 Hid-
den Markov Model

With a combination of a hidden Markov model (HMM) and the expectation-
maximization algorithm (EM) (Lander and Green, 1987), OneMap (Margarido
et al., 2007) can perform multipoint estimation of map genetic distance for F2,
backcross, RILs, and outcrossing populations. For the multipoint estimation,
OneMap algorithms use code adapted from R/QTL package (Broman et al., 2003).

In short, the latent variable Gi, i = 1, ..., n, denotes the true underlying
genotypes for the individual at a set of n ordered loci; Oi is the observed variable
of the molecular phenotype (observed genotypes) for the locus i. The HMM can
be represented as (Broman et al., 2009):

P (O|Gi = gi) =
∑
g1

...
∑
gi−1

∑
gi+1

...
∑
gn

π(g1)

n−1∏
j=1

tj(gj , gj+1)

n∏
j=1

e(gj , Oj) (1)

The initial probability π(g1) is the probability of having a given genotype for
the first locus (G1), and its value depends on the cross-type. For example, for an
outcrossing population, this value will be 0.25, assuming a uniform distribution
of all four possible genotypes (AA, BA, AB, and BB). The same reasoning
applies to backcross data, with probabilities of 0.5 since there are only two
possible genotypes (AA and AB).

The transition probability tj(gj , gj+1) is the probability of the genotype in a
locus (Gj=i+1) changing to the next locus genotype (Gj+1). The initial value for
this probability is based on the phase, and recombination fraction estimated by
a two-point approach using maximum likelihood estimators (Maliepaard et al.,
1997), and is updated after iterations of the EM algorithm.

The emission probability e(gj , Oj) is the probability of the observed variable
given the genotype, it considers a probability for every possible phased genotype
and can include an associated genotyping error. For outcrossing and F2 inter-
crossing, there are four possibilities. Here we will denote them generically as
“AA”, “AB”, “BA”, and “BB”. The probability value that each one will receive
depends on which genotype was observed, the marker type, and the associated
error of the genotype (e). As an example, If we have a marker type A (“ab”
x “cd”) we can observe four different genotypes, if we observe the genotype
“ac” with high confidence (e = 0), the phase “AA” would receive the maximum
probability (1) and the others would receive 0. In the older version, OneMap
considered a unique error of 10−5 (e), which means that if the genotype was
called as “ac”, the “AA” phased genotype has a probability of 1 − 10−5 and
the others have 10−5/3. This way, we can include an uncertainty between the
observed genotype and the estimated phased genotype, which characterizes the
hidden aspect of the HMM.

For marker type A, this could not seem very useful because the genotype
phase is already represented in the observed genotypes. But other marker types
do not have a direct relationship between the observed genotype and the esti-
mated phased genotype. For example, if we have a marker type B3.7 and observe
the “ab” genotype, the estimated phased genotype can be the “AB” or “BA”,
and we will consider equal probabilities for them in the emission function. The
multipoint aspect of the HMM combined with the expectation-maximization
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(EM) will change these probabilities, and, in the end, we will be able to differ-
entiate between phased genotypes.

In OneMap 3.0, users can now provide customized error rates or genotype
probabilities to control specific errors in their dataset. The values defined by
users will be applied in three different ways in the emission function of the HMM.
The variable e represents the error rate described in equation 3.1. If users define
a single value (global error argument), it will be the error rate for all observed
genotypes. If users provide the genotype errors (genotype errors), each genotype
observed can receive a different error rate value. If users provide a probability
for each genotype (genotypes probs), the values in each cell of the following
table will be replaced by their respective user-provided genotype probability.
The tables below are based on R/QTL (Broman et al., 2003) emission function
and describe how the error values are implemented in OneMap HMM.

Each observed genotype (columns) receives specific genotype probabilities
according to marker type segregation and the error rate. The emission function
returns from the iterative steps of the HMM the estimated probability for the
phased genotypes. In general, the error rate allows the HMM to change the
genotypes according to the information from the entire sequence (Mollinari and
Garcia, 2019) or batches with proper size (Schiffthaler et al., 2017).

Table S1: Emission function values according to marker types. The error rate is
represented by e, unphased genotypes as “a”, “b”, “c”, “d” and their combina-
tion. The estimated phased genotype s are represented by “AA”, “AB”, “BA”
and “BB”. The “o” represents null alleles. Marker types follow the segregation
pattern as described in Wu et al. (2002)

Marker type A observed genotypes
Marker sub-types A1 ac ad bc bd

A2 a ac ba bc
A3 ac a bc b
A4 ab a b o

Estimated phased genotypes AA 1-e e/3 e/3 e/3
AB e/3 1-e e/3 e/3
BA e/3 e/3 1-e e/3
BB e/3 e/3 e/3 1-e

OneMap codification 1 2 3 4

Table S2: Continued from table
Marker type B1 observed genotypes
Marker sub-types B1.5 a ab b
Estimated phased genotypes AA 1-e e/3 e/3

AB 1-e e/3 e/3
BA e 1-e e/3
BB e e/3 1-e

OneMap codification 1 2 3
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Table S5: Continued from table
Marker type C observed genotypes
Marker sub-types C.8 a o
Estimated phased genotypes AA (1-e)/3 e/3

AB (1-e)/3 e/3
BA (1-e)/3 e/3
BB e 1-e

OneMap codification 1 2

Table S3: Continued from table
Marker type B2 observed genotypes
Marker sub-types B2.6 a ab b
Estimated phased genotypes AA 1-e e/3 e/3

AB e 1-e e/3
BA 1-e e/3 e/3
BB e e/3 1-e

OneMap codification 1 2 3

Table S4: Continued from table
Marker type B3 observed genotypes
Marker sub-types B3.7 a ab b
Estimated phased genotypes AA 1-e e e/3

AB e/3 1-e e/3
BA e/3 1-e e/3
BB e/3 e 1-e

OneMap codification 1 2 3

Table S6: Continued from table
Marker type D1 observed genotypes
Marker sub-types D1.9 ac bc

D1.10 a ab
D1.11 a b
D1.12 ab a
D1.13 a o

Estimated phased genotypes AA 1-e e
AB 1-e e
BA e 1-e
BB e 1-e

OneMap codification 1 2
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Table S7: Continued from table
Marker type D2 observed genotypes
Marker sub-types D2.14 ac bc

D2.15 a ab
D2.16 a b
D2.17 ab a
D2.18 a o

Estimated phased genotypes AA 1-e e
AB e 1-e
BA 1-e e
BB e 1-e

OneMap codification 1 2
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Supplementary File 2 - Reads2MapApp interface demonstration

To access Reads2MapApp, install and run it in the R environment:

library(devtools)

install_github("Cristianetaniguti/Reads2MapApp")

Reads2MapApp::run_app()

The command will make the app interface pop up. The first page has a short
description of the app’s functionalities. Other page options can be accessed by
clicking on the menu icon.

Figure S1: Reads2MapApp about page. The red arrow indicates the menu icon
to access the app’s other pages.
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Users can upload their data in the ”Upload data” section:

Figure S2: Reads2MapApp upload page. The red arrow indicates the button to
upload the EmpiricalMaps workflow results.

Once uploaded the options available in each one of the ”Empiricalreads2Map”
sections will be updated according to the results of the workflow.
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Figure S3: Example of the ”SNP calling efficiency” section. Venn diagrams are
built to show the number of markers identified in the pipelines defined in the
options and the common markers between them.

Figure S4: Example of the ”Map size” section of Reads2MapApp. The graphic
shows the number of markers (left) and the distances between adjacent markers
(right) for each method.
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Figure S5: Example of the ”Breakpoint count” section of Reads2MapApp. The
graphic shows the number of estimated breakpoints in each progeny haplotype
according to the method selected in the options.

Figure S6: Example of the ”Progeny haplotypes” section of Reads2MapApp.
The graphic shows the estimated haplotype for the individuals selected in the
”Individuals from progeny” options according to the method selected in the
options.
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Figure S7: Venn diagrams show the number of markers identified by freebayes,
GATK, and simulated (true). The intersection between the data sets represents
markers with the same position in the reference genome Populus trichocarpa
version 3.0. The Empirical data sets include markers spread across the entire
reference genome. The simulations only include markers in the first 8.426 Mb
of chromosome 10 (2.1% of the genome). The mean and standard deviation of
number markers are shown for the simulated data set once the simulation and
SNP calling are repeated 60 times. Markers were filtered by 25% maximum
missing data and MAF 5% in empirical and simulated data. * Number of
markers common to all 60 repetitions.

10



S
u
p
p
le
m
en
ta
ry

T
ab

le
8
-
L
is
t
of

th
ir
d
-p
ar
ty

so
ft
w
a
re

a
n
d
im

a
g
es

ve
rs
io
n
s
u
se
d

S
of
tw

ar
e

R
ef
er
en
ce

Im
a
g
e

B
W
A

L
i
(2
01
3)

u
s.
g
cr
.i
o
/
b
ro
a
d
-g
o
tc
-p
ro
d
/
g
en
o
m
es
-i
n
-t
h
e-
cl
o
u
d
:2
.5
.7
-2
0
2
1
-0
6
-0
9
1
6
-4
7
-4
8
Z

cu
ta
d
ap

t
M
ar
ti
n
(2
01
1)

cr
is
ta
n
ig
u
ti
/
p
ir
s-
d
d
ra
d
-c
u
ta
d
a
p
t:
0
.0
.1

F
re
eb
ay
es

G
ar
ri
so
n
an

d
M
ar
th

(2
01
2
)

C
ri
st
a
n
ig
u
ti
/
fr
ee
b
ay
es
:0
.0
.1

G
A
T
K

M
cK

en
n
a
et

al
.
(2
01
0)

u
s.
g
cr
.i
o
/
b
ro
a
d
-g
o
tc
-p
ro
d
/
g
en
o
m
es
-i
n
-t
h
e-
cl
o
u
d
:2
.5
.7
-2
0
2
1
-0
6
-0
9
1
6
-4
7
-4
8
Z

T
A
S
S
E
L

G
la
u
b
it
z
et

al
.
(2
01
4)

cr
is
ta
n
ig
u
ti
/
ja
va
-i
n
-t
h
e-
cl
o
u
d
:0
.0
.2

S
T
A
C
K
s

C
at
ch
en

et
al
.
(2
01
3)

cr
is
ta
n
ig
u
ti
/
st
a
ck
s:
0
.0
.1

P
ed
ig
re
eS
im

V
o
or
ri
p
s
an

d
M
al
ie
p
aa
rd

(2
01
2
)

cr
is
ta
n
ig
u
ti
/
re
a
d
s2
m
a
p
:0
.0
.1

p
ic
ar
d

In
st
it
u
te

(2
00
9)

u
s.
g
cr
.i
o
/
b
ro
a
d
-g
o
tc
-p
ro
d
/
g
en
o
m
es
-i
n
-t
h
e-
cl
o
u
d
:2
.5
.7
-2
0
2
1
-0
6
-0
9
1
6
-4
7
-4
8
Z

sa
m
to
ol
s

L
i
et

al
.
(2
00
9)

u
s.
g
cr
.i
o
/
b
ro
a
d
-g
o
tc
-p
ro
d
/
g
en
o
m
es
-i
n
-t
h
e-
cl
o
u
d
:2
.5
.7
-2
0
2
1
-0
6
-0
9
1
6
-4
7
-4
8
Z

R
A
D
in
it
io

R
iv
er
a-
C
ol
ón

et
al
.
(2
02
0)

cr
is
ta
n
ig
u
ti
/
ra
d
in
it
io
:0
.0
.1

S
u
p
er
M
A
S
S
A

S
er
an

g
et

al
.
(2
01
2)

cr
is
ta
n
ig
u
ti
/
re
a
d
s2
m
a
p
:0
.0
.1

b
cf
to
ol
s

D
an

ec
ek

et
al
.
(2
02
1)

li
fe
b
it
a
i/
b
cf
to
o
ls
:1
.1
0
.2

O
n
eM

ap
M
ar
ga
ri
d
o
et

al
.
(2
00
7)

an
d
u
p
d
at
ed

in
th
is

w
or
k

cr
is
ta
n
ig
u
ti
/
re
a
d
s2
m
a
p
:0
.0
.1

R
ea
d
s2
M
ap

T
o
ol
s

D
ev
el
op

ed
in

th
is

w
or
k

cr
is
ta
n
ig
u
ti
/
re
a
d
s2
m
a
p
:0
.0
.1

G
U
S
M
ap

B
il
to
n
et

al
.
(2
01
8)

cr
is
ta
n
ig
u
ti
/
re
a
d
s2
m
a
p
:0
.0
.1

u
p
d
og

G
er
ar
d
et

al
.
(2
01
8)

cr
is
ta
n
ig
u
ti
/
re
a
d
s2
m
a
p
:0
.0
.1

p
ol
y
R
A
D

C
la
rk

et
al
.
(2
01
9)

cr
is
ta
n
ig
u
ti
/
re
a
d
s2
m
a
p
:0
.0
.1

R
ea
d
s2
M
ap

A
p
p

D
ev
el
op

ed
in

th
is

w
or
k

cr
is
ta
n
ig
u
ti
/
re
a
d
s2
m
a
p
A
p
p
:0
.0
.1

si
m
u
sc
op

R
D
ev
el
op

ed
in

th
is

w
or
k

cr
is
ta
n
ig
u
ti
/
re
a
d
s2
m
a
p
:0
.0
.1

11



Figure S8: The relation between filters applied (x-axis), the map size (A y-axis),
and the number of markers (B y-axis) for genotype calling software used in the
empirical data sets. The data sets shown in the figure contain only biallelic
markers. The horizontal red line indicates the expected map size (38 cM) for
the subset of the genomes used.
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Figure S9: ROC curves with the true and estimated genotypes from the five
families simulated with mean depth 10 and 20 and with the firsts 8.426 Mb of the
chromosome 10 (37% or 38 cM). Here only biallelic markers are considered. The
specificity and sensitivity profiles consider different thresholds in the genotype
probabilities for each scenario. The higher the area under the curve, the higher
the genotype’s probability reliability. Genotype probabilities thresholds closer
to the left superior corner have a higher capacity to differentiate right and wrong
genotypes.
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Figure S10: See supplementary figure S9 description.
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Figure S11: Effect of contaminant samples in the map size (A) and in the number
of estimated recombination breakpoints range (B) among progeny individuals.
The empirical aspen data sets presented in this figure contain multiallelic mark-
ers, the allele counts from the VCF file, and is filtered by genotype probability
higher than 0.8 to keep only informative markers.
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Abstract
Background Genotyping-by-Sequencing (GBS) provides affordable methods for genotyping hundreds of individuals usingmillions of markers. However, this challenges bioinformatic procedures that must overcome possible artifacts such as the biasgenerated by PCR duplicates and sequencing errors. Genotyping errors lead to data that deviate from what is expected from regularmeiosis. This, in turn, leads to difficulties in grouping and ordering markers resulting in inflated and incorrect linkage maps.Therefore, genotyping errors can be easily detected by linkage map quality evaluations.
Results We developed and used the Reads2Map workflow to build linkage maps with simulated and empirical GBS data of diploidoutcrossing populations. The workflows run GATK, Stacks, TASSEL, and Freebayes for SNP calling and updog, polyRAD, and
SuperMASSA for genotype calling, and OneMap and GUSMap to build linkage maps. Using simulated data, we observed which genotypecall software fails in identifying common errors in GBS sequencing data and proposed specific filters to better handle them. Wetested whether it is possible to overcome errors in a linkage map using genotype probabilities from each software or global errorrates to estimate genetic distances with an updated version of OneMap. We also evaluated the impact of segregation distortion,contaminant samples, and haplotype-based multiallelic markers in the final linkage maps. Through our evaluations, we observedthat some of the approaches produce different results depending on the dataset (dataset-dependent) and others produceconsistent advantageous results among them (dataset-independent).
Conclusions We set as default in the Reads2Map workflows the approaches that showed to be dataset-independent for GBS datasetsaccording to our results. This reduces the number required of tests to identify optimal pipelines and parameters for otherempirical datasets. Using Reads2Map, users can select the pipeline and parameters that best fit their data context. The
Reads2MapApp shiny app provides a graphical representation of the results to facilitate their interpretation.
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Introduction

Advances in sequencing technologies and the development of dif-ferent genome-reduced representation library protocols result inmillions of genetic markers from hundreds of samples in a singlesequencing run [1, 2, 3, 4]. Increasing the number of markers andindividuals genotyped can enhance the capacity of linkage mapsto locate recombination events that occur, resulting in higher mapresolution and better statistical power for the localization of QTL infurther analysis. This large amount of data and genotyping errorscommon with genotyping-by-sequencing approaches [5] increasesthe need for computational resources and multiple bioinformatictools.Genotyping errors are frequent when high-throughput se-quencing technology is applied to reduced representation libraries.There are a variety of protocols to create these types of libraries[4], called Restriction-site Associated DNA sequencing (RADseq)or genotyping-by-sequencing (GBS) [6, 7]. Generally, one or morerestriction enzymes are used to digest the sample DNA. The result-ing DNA fragments are filtered by size, connected to adaptors andbarcodes, amplified by PCR, and sequenced. Consequently, mostsequences obtained are PCR duplicates of the regions around theenzyme cut site. By relying on duplicates to increase sequencingdepth, such methods introduce errors and a sequencing bias to-wards one of the alleles due to variabilities in the PCR amplification.These errors are hard to detect by bioinformatic tools [8, 9].To overcome genotyping errors coming from GBS meth-ods, genotype calling software model sequencing error, allelicbias, overdispersion, outlying observations, and the populationMendelian expected segregation [10]. Building a genetic map withgenotypes obtained using these methods can be a powerful tool tovalidate their efficiency. Wrong decisions or inefficient methodsin all steps before linkage map building can be identified in theresulting map as errors that dissociate the map properties from bio-logical processes. For example, genotyping errors generate inflatedmap sizes that show an excessive number of recombination break-points during meiosis [11]. The first genetic map studies by Morganand Sturtevant [12] discovered that crossing-overs are unlikely tohappen too close to each other, a phenomenon named interference.Later studies describing the meiotic molecular mechanisms con-firmed the low expected number of recombination breaks in a singleevent [13].Recently developed approaches to build linkage maps [14, 15, 16]were implemented in OneMap [17] 3.0 package. They use quantita-tive genotype probability measurements rather than the traditionalqualitative genotypic information from SNP and genotype call-ing methods to account for genotyping errors and provide higher-quality genetic maps. These probabilities can be applied in differentways: using the probability of each possible genotype (PL field inVCF format); using an error probability associated with the calledgenotype (GQ field in VCF format); or using a global error rate thatwill be applied to all genotypes. Nevertheless, even using these ap-proaches, building a linkage map will succeed only if the upstreamsoftware can identify the errors and provide reliable genotypes ortheir probabilities.The biallelic codominant nature of SNPs is another characteristicof high-throughput markers that can affect linkage map buildingof outcrossing species. Although biallelic markers can distinguishonly two haplotypes, the mapping population of outcrossing diploidspecies inherits two haplotypes with combinations of four differentparental haplotypes. With biallelic markers, the observed parentalgenotypes are limited to types ab× ab, ab× aa, and aa× ab. Whenone of the parents is homozygous (ab× aa and aa× ab), it is impos-sible to observe the crossing-over change for this uninformative

parent. So this is taken as missing information (non-measurablecrossing-overs) for linkage map building if only two-point infor-mation is considered. Therefore, building a linkage map with onlybiallelic markers requires a multi-point approach that uses lociinformation with both parents heterozygous (ab× ab) to estimatethe recombination of loci where one parent is homozygous, and therecombination information is missing for closely linked loci. Themulti-point approach applies likelihood computations involvingseveral loci and has been successfully used since the seminal publi-cation of Lander and Green [18]. The approach makes it possibleto identify the four different parental haplotypes by phasing thebiallelic information so that the SNPs can be used to identify all theallelic diversity.Other approaches to overcome the low informativeness of bial-lelic markers involve combining adjacent biallelic markers in thesame disequilibrium block (high LD) into a single multiallelic hap-lotype. These haplotype-based markers showed higher accuracy inassociation analysis than individual biallelic SNPs [19, 20, 21, 22,23, 24, 25]. N’Diaye et al. [21] and Jiang et al. [25] pointed out sev-eral advantages of haplotype-based markers, including the highercapacity to identify epistatic interactions, the presence of moreinformation to estimate identical-by-descent alleles and the reduc-tion of the number of statistical tests to perform.Despite the availability of many software for estimating geno-type probabilities [26, 2, 27, 26, 28, 29, 10] and haplotype-basedmultiallelic markers [26, 30], there are no recommendations aboutwhich combination and choice of parameters are the best for build-ing linkage maps. Therefore, this work evaluates the consequencesof building maps by applying genotype probabilities and haplotype-based markers from different software and parameters. To achievethese, we implemented new features in OneMap [17], a widely-usedsoftware for building maps. We also developed the Reads2Map work-flow, a tool to help users select a bioinformatic pipeline that providesthe best quality markers to build a linkage map for their dataset.Here, we performed tests with simulated and empirical data andwere able to make recommendations to users to obtain better link-age maps in several situations, such as low and high-depth sequenc-ing, with and without segregation distortion, contaminant samples,and multiallelic markers, and using different software to performthe SNP and genotype calling.

Material and Methods

We developed Reads2Map (RRID SCR_023593), a collection of bioin-formatics workflows using Workflow Description Language (WDL)[31]. It enables sequence alignment, SNP and genotype calling anal-ysis, and linkage map construction. With Reads2Map, researchershave the flexibility to explore various software options and param-eter combinations, enhancing the construction of linkage maps.The workflows are available in GitHub [32] and in workflowhub.eu[33, 34].The EmpiricalReads2Map workflow was designed to evaluate em-pirical (real) datasets; and the SimulatedReads2Map workflow, wasto simulate and evaluate datasets (figure 1). Both are composedof sub-workflows that can be run independently, which increasesusage flexibility. There are multiple options available for runningWDL workflows. Some of them are Terra.bio platform [35] andCromwell Execution Engine [31].Each WDL task in Reads2Map is related to a Docker [36], or Sin-gularity [37] container. Some of the container’s images used in
Reads2Map are available in open repositories and others were builtusing Dockerfiles stored in the Reads2Map repository and availablein DockerHub. Check a list of all software and image versions used
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in Supplementary Table 1. We ran the analysis testing workflows ontwo high-performance computers (Texas A&M University HPRC,University of São Paulo Águia Cluster).For building linkage maps, we implemented updates in OneMappackage version 3.0 and used this version in the workflows. We alsodeveloped the Reads2MapTools [38] R package for support functionsand Reads2MapApp shiny app [39]), a visualization tool that receivesas input the final workflow output and provides summary statisticsabout the resulting linkage maps, intermediary steps, and workflowperformance.
SNP calling

The first step of the workflows is the SNP calling. To start with
GATK [27], Stacks [2], and Freebayes [26] approaches, the demulti-plexed FASTQ sequences are first aligned to their respective refer-ence genomes using BWA-MEM [40]. The workflow uses samtools [41]to merge the alignment of replicates, keeping the libraries iden-tification on the BAM header and filtering out reads with MAPQ< 10. After the alignment, BAM files for each sample are used asinputs for sub-workflows with GATK, Stacks, and Freebayes tasks.The gatk_genotyping sub-workflow reproduces GATK joint geno-typing via HaplotypeCaller, GenomicsDBImport, and GenotypeGVCFstools and applies the suggested hard-filtering procedures [8].The freebayes_genotyping sub-workflow runs Freebayes paral-lelized by reference genome intervals. The stacks_genotyping sub-workflow includes the option to input the population file. If notincluded, all individuals are considered from the same population.It runs the gstacks and the populations plugins.The TASSEL [1] SNP caller is implemented in the
tassel_genotyping sub-workflow. It first adds fake barcodes tothe demultiplexed FASTQ sequences. After, it runs the plugins
GBSSeqToTagDBPlugin and TagExportToFastqPlugin. The generatedtags are aligned to the reference genome using BWA-MEM andthe alignment files are input for the SAMToGBSdbPlugin pluginwhich produces a database. The database was processed by the
DiscoverySNPCallerPluginV2, SNPQualityProfilerPlugin, and
ProductionSNPCallerPluginV2 plugins.After obtaining the VCF file using one or more of the SNP callingmethods, indel marker positions are left-aligned and normalizedwith BCFtools [42].
Genotype calling

The VCF files with biallelic markers from Freebayes, TASSEL, Stacks,and GATK are the input for the genotype caller software polyRAD[28], SuperMASSA [29], and updog [10]. These three software areimplemented in the sub-workflows genotyping_empirical and
genotyping_simulated.To use the polyRAD approach, the VCF files are imported using
VCF2RADdata without applying any filters or considering phase infor-mation. The polyRAD model is run with PipelineMapping2Parentsdefault arguments which assume an F1 bi-parental popula-tion. The function Export_MAPpoly is used to export the geno-type probabilities. The vcfR package [43] and custom R (func-tion polyRAD_genotype_vcf in Reads2MapTools package) code isused to store outputted genotypes and their probabilities ina new VCF file. We also adapted SuperMASSA scripts to out-put the genotype probabilities information. The modified ver-sion is available in Reads2MapTools package. A wrapper func-tion called supermassa_genotype, available in the package, canrun the model in parallel and export the results to a newVCF file. The F1 SuperMASSA model is run with the parame-ter naive_posterior_reporting_threshold set to zero to not filterany genotype. The updog F1 model is used in parallel using thefunction multidog through the Reads2MapTools wrapper function
updog_genotype which outputs the results in a new VCF file.

The software GUSMap performs the genotype calling and link-age map building with a single model. We use VCFtoRA functionto convert the outputted VCF files from GATK, TASSEL, Stacks, and
Freebayes approaches into GUSMap format. A pedigree of the popula-tion and a list of filters (MAF = 0.05, MISS=0.25, BIN=0, DETPH=0,and PVALUE=0.05) is provided to the readRA function. The function
makeFS is used to create the full-sib population information. Func-tions infer_OPGP_FS and rf_est_FS are used to estimate the phaseand recombination fraction given the genomic order of the markers.In some situations, the function rf_est_FS outputs infinite valuesof the recombination fraction. In these situations, our pipeline re-moves the respective marker and runs the function again. Thisworkaround code can increase the time required to run GUSMap.

Updates in OneMap 3.0 for building linkage maps

OneMap is an open-source R package that has been serving the re-search community since its initial release in 2007. It offers a com-prehensive suite of functions designed to facilitate marker filtering,grouping, ordering, and genetic distance estimation in both in-bred and outbred populations. The genetic distance estimation ismade using a Hidden Markov Model (HMM) multipoint approach.The forward-backward algorithm [44] is implemented to computethe HMM combined with the expectation-maximization algorithm(EM).
The OneMap latest version (3.0) is implemented in Reads2Mapworkflows. In this new version, we have introduced a new featureto enhance the flexibility of the HMM in scenarios where genotyp-ing errors are expected in the dataset. This update includes thecreate_probs function and modifications to the HMM algorithm.With this option, users can provide OneMap with prior informationregarding the reliability of each input genotype, thereby increasingthe HMM’s adaptability. The create_probs function allows usersto input three types of values: a global error value (global_error);an error probability for each inferred genotype (genotypes_error);or genotype probabilities for each possible genotype in individu-als (genotypes_probs). This flexibility empowers users to tailorthe analysis to their specific dataset characteristics and improvethe accuracy of the results. This update is described in detail inSupplementary File 1.
The OneMap software previous to version 3.0 considered the HMMerror probability as a single value of 10–5 for every genotype. Inversion 3.0, this value is kept as default to keep the code reproducible.However, it is noteworthy that this probability can be unreliablein several situations when the genotypes are more prone to errors,especially for new genotyping technology (e.g. GBS data).
OneMap 3.0 updates also include the possibility to parallelize theHMM using the approach described by [45]. It parallelizes the pro-cedure into a maximum of four cores. We used this new OneMapfeature to estimate the genetic distances. We also implementednew functions for linkage maps quality diagnostics such as interac-tive plots for recombination fraction matrices, progeny haplotyperepresentation, and counts of the recombination breakpoints inprogeny.
Despite using the parallelized HMM, the genetic distance esti-mations in OneMap can take time to run with a high number of mark-ers, chromosomes, and tested combinations of software. Therefore,the EmpiricalReads2Map workflow runs the HMM in just a subsetof markers which can be a single chromosome or a fragment of achromosome. The alignment, the SNP, and genotype calling stepsare performed with the entire dataset. After running the work-flow and deciding the pipeline that provided the best results, therespective VCF output can be used to build the linkage map for allchromosomes in the R environment with OneMap functions.
The OneMap function onemap_read_vcfR is used to convert theVCFs to the OneMap R object format. The markers are filtered againby a maximum number of missing data of 25% because the VCF
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Figure 1. A: Tasks of the two main Reads2Map workflows: EmpiricalReads2Map and SimulatedReads2Map. B: Tools to run the workflows on the Cloud [35] or in High-Performance
Computing (HPC) environments. C: The Reads2Map shiny app has as input the outputs of the workflows. It builds several descriptive graphics to evaluate the best upstream
software combination for linkage map construction.
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files include unexpected genotypes according to the segregationof a given locus (e.g. in a cross “AA x AB”, genotype “BB” cannotexist). OneMap makes this genotype call missing. Markers are alsofiltered if the segregation distortion is under a global significancelevel of 0.05 with Bonferroni correction and if they are redundant.Markers are ordered according to the reference genome position.The Reads2Map workflows give flexibility to the user to definethe probabilities to be used in the OneMap HMM for the estimationof the genetic distances. Users can provide more than one value tobe tested as global errors (global_error input); can choose to use theupstream genotype caller error probability (genoprob_error input);and can provide global error values to be considered together withthe software probabilities (genoprob_global_error input) accordingto the following: 1 – (1 –global error)x(1 – software error probability).For GATK, TASSEL, Stacks, and Freebayes callers, the work-flow uses in the HMM the Phred score genotype error (GQ FOR-MAT value) converted to probabilities. For the software polyRAD,
SuperMASSA, and updog it uses 1 – output genotype probability as agenotype error. For these last, the population’s structure (F1) is usedas a priori information to increase the accuracy of the estimatedgenotypes.The simulations do not consider interference in the recombi-nation events. Therefore the Haldane map function was used toestimate the genetic distances in SimulatedReads2Map. Kosambi’smap function was applied to estimate the genetic distances in the
EmpiricalReads2Map.
Read2Map Workflows App

The shiny app Reads2MapApp was built to display results from theworkflow analysis. It includes graphics and statistics about SNPcalling efficiency, the number of markers discarded by filteringsteps, marker types, computer resources and time spent by eachstep of the workflow, allele depth by genotype, genotype probabili-ties, map size, map phases, recombination fraction matrix, progenyhaplotypes, breakpoints count, and the correlation between linkagemap and reference genome markers positions. Reads2MapApp is amodular R package using the golem framework [46] that can be ren-dered and displayed locally or on a server. It can be installed fromits GitHub repository and run with a single command (run_app).Once the Reads2Map output file is uploaded into the app, all graphicswill be automatically generated.
Empirical datasets

We used the structure of Reads2Map to test the effects in the linkagemap built using different combinations of software, and parametersin datasets with different characteristics. For our tests with empiri-cal data, we used two datasets from previous works. They are GBSdatasets from a bi-parental diploid F1 full-sib mapping populationsof aspen (Populus tremula L.) [47] (BioProject PRJNA395596), androse (Rosa spp.) [48]. The aspen dataset comes from an intraspecificcross of two Populus tremula genotypes. The GBS libraries were builtusing HindIII and NalIII enzymes and sequenced as 150 base pairsingle-end reads on an Illumina HiSeq2500. Eight library replicateswere built and sequenced for the parents and only one for each ofthe 116 F1 offspring. The dataset includes six samples erroneouslysequenced as part of the progeny and later identified as contami-nants. An average read depth of approximately 6x for progeny and58x for parental samples was observed from the sequencing pro-cess. The Populus trichocarpa genome version 3.0 [49] was used asa reference for the sequence’s alignment. It is about 397 Mb in size.The diploid roses dataset comprises 138 individuals from thecross between a Texas A&M breeding line J06-20-14-3 (J14-3) andcultivar Papa Hemeray (PH). GBS libraries were built with NgoMIVenzyme and sequenced as a 113 base pair single-end read on aHiSeq2500. The parent J14-3 was repeated twice, and the PH sam-

ple three times. An average read depth of approximately 94x forprogeny and 528x for parental samples was observed from the se-quencing process. The Rosa chinensis v1.0 genome assembly [50]was used as a reference genome to align the sequences. It is about527 Mb in size.
The sequencing reads of the two empirical datasets were filteredusing the Stacks plugin process_radtags [2] to filter sequences bythe presence of the restriction site and sequencing quality. Thereads were discarded if the average quality score of 50% of its lengthwas below the Phred score of 10 (or 90% probability of being correct).The software cutadapt [51] was used to remove adapters and filterby a minimum read length of 64 bp. The sequences were thenevaluated in our EmpiricalReads2Map workflow.

Simulated GBS data

The first step of the SimulatedReads2Map workflow is to performsimulations of a mapping population, GBS libraries, and sequences.The simulation is based on a given reference genome chromosomesequence. If a reference linkage map and a VCF file are provided,the workflow simulates the marker genetic distances and parentalgenotype frequencies based on them. A cubic spline interpolationwith the Hyman method [52] is applied to simulate the centimorganposition for each marker’s physical position based on this samerelation on the reference linkage map provided.
We based our simulation analysis on the first 37% of the chromo-some 10 sequence of Populus trichocarpa version 3.0, which includesa sequence with 8.426 Mb from a total chromosome size of about 23Mb. This sequence comprises 38 cM (21%) of the linkage group 10built using the aspen empirical data [47]. Due to the computationalresources needed to build such a high number of maps, we usedonly a subset of the data to finish the analysis in a reasonable time.Chromosome 10 was randomly chosen.
We simulated markers with different expected segregation pat-terns according to parental genotypes in each locus. Table 2 showsthe notation for each possible marker type in an outcrossing diploidpopulation. The SimulatedReads2Map workflow simulates parentalhaplotypes using the same proportion of marker types identifiedin the empirical VCF file. This approach overcomes the missingdata present in the empirical dataset. The final VCF file used as areference to the simulations contains 810 markers (126 B3.7, 263D1.10, 278 D2.15, and 143 non-informative markers with both par-ents homozygous), which results from the aspen empirical data

GATK SNP calling, filtered by a maximum of 25% of missing dataand MAF of 5%.
PedigreeSim v2.1 software [54] is implemented in the workflowto simulate the meiosis events and generate an F1 progeny basedon the provided genetic map and simulated parental haplotypes.We did not consider interference in meiotic events (Haldane [55]mapping function). PedigreeSim output files were converted to VCFfiles using Reads2MapTools R package function pedsim2vcf.
While converting the files, the pedsim2vcf function can alsosimulate segregation distortion by applying a selection strength.For that, a high number of individuals in the progeny have to besimulated with the PedigreeSim software and one or more loci tobe under a given selection intensity. In our study, we targeted afinal population size of 200 individuals. For that, we simulated 50

× 200 individuals and applied a selection intensity of 50% in the30th marker, eliminating 50% of the genotypes containing oneof the alleles. Then, 200 individuals of the resulting populationare randomly selected to compose the mapping population. Weused this feature to compare software performance in segregationdistortion.
The VCF file output by pedsim2vcf and the reference genome fileare inputs for the RADinitio [9] software. RADinitio adds the VCFpolymorphisms in the reference genome sequence and simulatesthe GBS sequences. It uses the inherited efficiency model [56] to
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Table 1. Marker types according to parental genotype combinationsand progeny segregation. The letters “a”, “b”, “c” and “d” representdifferent alleles and the letter “o” represents null alleles. Adapted from[53].
Parents Progeny

Marker type Cross Observed genotypes ExpectedsegregationA 1 ab x cd ac,ad,bc,bd 1:1:1:12 ab x ac a,ac,ba,bc 1:1:1:13 ab x co ac,a,bc,b 1:1:1:14 ao x bo ab,a,b,o 1:1:1:1B B1 5 ab x ao ab,2a,b 1:2:1
B2 6 ao x ab ab,2a,b 1:2:1
B3 7 ab x ab a,2ab,b 1:2:1C 8 ao x ao 3a,o 3:1D D1 9 ab x cc ac,bc 1:110 ab x aa a,ab 1:111 ab x oo a,b 1:112 bo x aa ab,a 1:113 ao x oo a,o 1:1
D2 14 cc x ab ac,bc 1:115 aa x ab a,ab 1:116 oo x ab a,b 1:117 aa x bo ab,a 1:118 oo x ao a,o 1:1

simulate a PCR-amplified pool of molecules. The model includesthe heterogeneity of the PCR amplification and the polymerasesubstitution errors. Next, RADinitio applies the user-defined ratiobetween DNA original molecules to be sequenced and PCR dupli-cates to create a distribution that will define the number of timesthe pool of loci is sampled, the number of duplicate molecules thatare generated from a RAD locus template, and the distribution ofPCR errors in the resulting reads. We defined the default parameterwith a proportion of 4:1. Besides the PCR errors inserted during thepool sampling, the software also includes a commonly observederror pattern, where the 3’ end of the read accumulates more errorsthan the 5’ [57]. We tested different values of PCR cycles (5, 9, and14) and mean depth (5, 10, and 20) to simulate the FASTA files. Weset the other RADinitio simulation parameters to obtain 150 basesof read length, sequence size of 350 (parameter "–insert-mean"),and restriction enzymes HindIII and NalIII. The mean read depthparameter for the parental samples was eight times higher than theprogeny. The combination of RADinitio parameters that producedresults closer to those observed in empirical data was selected toperform simulations with and without segregation distortion, fiverepetitions (five families), and two average sequencing depths (10and 20) and 5 PCR cycles.
RADinitio does not output the sequence quality scores, so weconverted the FASTA file format to FASTQ format, including a Phredscore of 40 for every base simulated using seqtk [58] software. Af-ter obtaining the FASTQ files, the SimulatedReads2Map workflowfollowed the same tasks as the EmpiricalReads2Map, with align-ment, SNP and genotype calling, and linkage map build. The

SimulatedReads2Map workflow makes comparisons between realand estimated results within each step. The comparisons made dur-ing the workflow can be visualized in the shiny app Reads2MapApp.

Tested scenarios

We ran all implemented software for SNP calling and genotypecalling (GATK, Freebayes, TASSEL, Stacks, updog, SuperMASSA, and
polyRAD) on the empirical and simulated datasets. In addition, weexplored the substitution of VCF allele counts with counts from thealignment (BAM) files to mitigate potential biases introduced bySNP caller software when analyzing low-coverage sequence data.
GATK inserts the bias when reads are filtered in the local re-assembly

step to avoid sequencing errors [59]. BCFtools is used to find theread depths information for each allele in BAM files and update theallele depths information in the AD (allele depth) field of the VCFfile. For the Aspen dataset, we also executed the workflows for everyscenario in the presence of the contaminant samples.The markers identified by the SNP callers (GATK, TASSEL, Stacks,
Freebayes) were filtered by minor allele frequency (MAF) of 5%and maximum missing data allowed of 25% before proceedingto the genotype callers (updog, polyRAD, and SuperMASSA). At thisstep, we also tested two other filters. One of them was removingnon-informative markers from the VCF file. We considered non-informative markers homozygous in both parents or if at least oneof the parental genotypes was missing. The second filter was toreplace the allele depth (AD) field in the VCF file format by missingdata when the genotype is missing. This avoids that updog, polyRAD,and SuperMASSA use the allele depth when GATK filtered out the geno-type due to bad quality.After the genotype call, we reduce the analysis to a subset ofmarkers (the first 8.426 Mb or 37%) of Populus trichocarpa chromo-some 10 and the first 25 Mb ( 37%) of Rosa chinensis chromosome1 reference genomes. This made it possible to build maps for alltests in a feasible time. The markers were filtered by the maximummissing data allowed of 25%, redundancy, and segregation distor-tion. In addition, we tested filtering the genotypes by a minimumgenotype probability of 0.8.We tested the consequences of building maps applying differentgenotype probabilities in the OneMap 3.0 HMM coming from sevendifferent genotype caller software: GATK, Freebayes, TASSEL, Stacks,
polyRAD [28], SuperMASSA [29] and updog [10]; a global error rateof 0.01, 0.05, 0.1, and the OneMap 2.0 default value of 10–5. Wealso tested the combination of the two distributions. We compared
OneMap 3.0 capacity of estimating accurate genetic distances withthe GUSMap package [14] estimations since it also uses an HMM toaccount for errors present in sequencing data.We also tested the consequences of the presence and absence ofthe and Stacks haplotype-based multiallelic markers in the link-age map. To test the influence of the presence of the multiallelicmarkers in the ordering procedure, we built a map for the entirechromosomes 1 and 10 from the roses and aspen datasets, respec-tively, using the selected pipeline. We ordered the markers usingMDSMap [60] (wrapper function implemented in OneMap 3.0) or-dering algorithm with and without multiallelic markers.In the testing of scenarios in which we considered multiallelicmarkers, the VCFs containing them are merged into the VCF filesfrom polyRAD, SuperMASSA, and updog. The merged VCF is the inputfor linkage map building in OneMap version 3.0.Table 2 shows an overview of the notations used to refer to eachevaluated scenario.

Performance comparison

We conducted performance comparisons of each tested dataset andscenario based on the built linkage map quality. To consider goodquality we evaluate the following linkage map characteristics:
• Marker type:In outcrossing populations, it is important to have markers thathave recombination information for both parents. We avoidedapproaches that provide only ab x aa (D1.10) or aa x ab (D2.15) ina single chromosome. The Reads2MapApp "Marker type" sectiondescribes the amount of each marker type in the linkage mapsbuilt by Reads2Map workflows.• Marker coverage:It refers to how equally distributed markers are in the genome.We avoided approaches that do not detect markers in a large por-tion of the genomic selected area. The graphics in Reads2MapAppsection "cMxMb" section correlate the linkage map position
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Table 2. Notation used to refer to each evaluation scenario in empirical and simulated datasets.
Workflow step Notation Description

Reads simulations Depth 10 Mean read depth usedto simulate the datasetDepth 20
segregation distortion Dataset simulated withsegregation distortion

SNP calling
Freebayes Software used toidentify the variantsGATK

TASSEL
Stacks

Counts source BAM Source files of allele depth informationVCF
Filters only informative markers Filter non-informative markers(both parents homozygousor at least one missing)

missing replaced Replace AD field for missingdata when GT is missing
Genotype calling

polyRAD Software used to perform theestimation of genotype for agiven allele depth informationSuperMASSA
updog

SNPCaller Software used to genotype calling isthe same that performed the SNP calling
Filters genotype prob >0.8 Filter by minimum genotypeprobabilities of 0.8

Marker type biallelics Keep only biallelic markersbiallelics + multiallelics Keep biallelic and multiallelic markers

Map building <Genotype caller name> Maps built with genotypeprobabilities from<Genotype caller name>
<Genotype caller name>(<global error rate>%)

Map built with genotypes from<Genotype caller name>andglobal error of <global error probability>
<Genotype caller name>x(<global error rate>%)

Map build with genotypes probabilitiesfrom <Genotype caller name>and globalerror of <global error probability>

with the genomic positions. This is an excellent tool to evaluatemarker coverage.• Marker density:It refers to how equally distributed markers are on the link-age map. We avoided big gaps (higher than about 10 cM) inthe linkage maps. Some of the gaps observed in the mapsare due to outlier markers (a single marker with gaps in bothedges). Outlier markers can be removed manually in furthersteps. We search for approaches that provided fewer outliermarkers, which would require less manipulation later. The link-age map draw and graphics about the genetic distances amongmarkers present in the section "Map size" of Reads2MapApp aregood tools to evaluate marker density.• Marker order:The efficiency of ordering algorithms can be significantly influ-enced by the presence of marker types that provide recombina-tion information for both parents. In the Reads2Map workflows,to ensure accurate comparisons and to be possible to distinguishif linkage map inflation is due to different orders or genotypingerrors, we have standardized the marker order across the work-flow comparisons. Therefore, the order of the markers is alwaysbased on the reference genome. This means that it is crucial tocarefully select, for the workflows, tests chromosome regionsin the datasets that do not exhibit inversions or translocationswhen compared to the reference genome.However, in order to assess the impact of highly informativehaplotype-based multiallelic markers, we conduct separate ex-periments outside of the workflows. In these experiments, weexclude outlier markers and evaluate the efficiency of the MDSordering algorithms with and without the inclusion of multial-lelic markers. This allows us to investigate these markers’ influ-ence on the algorithm’s performance. We evaluated the orders

provided by the different ordering algorithms by computing theabsolute value of Spearman’s rank correlation between orders.• Marker quality:In cases where all markers are correctly ordered (following thestandardization in Reads2Map comparisons), and there is suffi-cient coverage and density, an inflated size of the linkage mapcan be attributed to a high error rate in the genotypes. Our ob-jective is to find an approach that minimizes this inflation andbrings the linkage map size closer to the expected value (e.g., 38cM in our tested subsets).To identify the causes of inflated maps, the linkage mapdraw and recombination fraction matrix heatmap generatedby Reads2MapApp prove valuable. It enables us to distinguishwhether the inflation is a result of outlier markers creating gapsor due to genotyping errors.• Estimated haplotypes:Together with the linkage map, the OneMap HMM multipointapproach also estimates the parents and progeny haplotypes.In a scenario without contaminant samples, we expect a low(around 1 or 2) and equally distributed number of recombina-tion breaks across all samples. In scenarios where there arecontaminant samples, we expect that their haplotypes containa high number of estimated breaks because wrong assumptionswere made leading to the wrong estimated number for thesesamples. Reads2MapApp contains a section for visualizing theprogeny haplotypes and also for counting the estimated numberof recombination breaks.



8 | GigaScience, 2017, Vol. 00, No. 0

Table 3. Reads2Map workflows default option set based on tests with empirical em simulated data.
Process Workflow options Default

SNP calling

run GATK TRUErun Freebayes FALSErun Stacks TRUErun TASSEL FALSEremove duplicates FALSEreplace AD by BAM counts FALSE
GATK hard filters TRUE

genotype calling
replace AD by missing when GT is missing TRUEprobability threshold 0.8run updog TRUErun polyRAD TRUErun SuperMASSA FALSErun GUSMap FALSE

linkage map
filter non-informative TRUEadd multiallelics TRUE (if available)global errors 0.05genotype caller probabilities FALSEgenotype caller probabilities + global errors 0.05

Results and Discussion

We use the structure of the Reads2Map workflows, the simulated,and the empirical datasets to test each software and some differ-ent parameters and markers filters. Our goal was to identify theapproach that provides the best quality linkage map.We have categorized the approaches used in our analysis intotwo groups: dataset-independent and dataset-dependent. Thedataset-independent approaches consistently produce reliable re-sults across all datasets, while the dataset-dependent approachesexhibit varying efficiency depending on the dataset characteristics.To streamline the user experience, we have selected the dataset-independent approaches that improve linkage map quality as thedefault options in the Reads2Map workflows (table 3). This simplifiesthe process for users by reducing the number of tests required, asthese default approaches consistently yield favorable results acrossdifferent datasets.We focused our tests and set the default options based on
F1 diploid populations and GBS markers. However, because the
Reads2Map workflow is modularized, the EmpiricalSNPCalling sub-workflow can be used separately and applied to other populationstructures, ploidy, and sequencing libraries. In the case of work-ing with sequencing libraries other than RADseq, such as Whole-Genome-Sequencing (WGS) or Exome sequencing, it is importantto set the option "remove duplicates" to TRUE. The PCR duplicatesin RADseq data constitute the majority of the data and they are in-cluded in the allele count while calling the genotypes, but in othertypes of libraries, they are considered artifacts and are removed toavoid errors [61].The genotype call and linkage map building in the EmpiricalMapsub-workflow have the F1 population structure as an assumption.In this current version, they can be applied to another type of se-quencing library but not to another type of population structure.For these steps, it is just important that the VCF file format is stan-dardized and can be processed by BCFtools. They do not need to benecessarily from the SNP call software implemented. They can bealso a combination of VCFs from different software such as the com-mon markers between the implemented SNP call software results("intersect" in Figure 2).We had to perform extra manipulations in TASSEL VCF outputto be able to run the downstream analysis because they presentedmissing header information. Also, processing Freebayes showed toconsume an unexpectedly high amount of RAM memory in somesituations, which made it impossible to automatize the amount ofmemory required from the HPC and Cloud by the workflow task.The number of markers identified by each software is related

to the species, library preparation, and sequencing aspects such asgenome size, restriction enzyme used, and sequencing depth. Infigure 2, we can observe that more markers were identified in theAspen dataset compared to the Roses due to the higher frequency ofenzyme cut sites. There is no consistency between the two datasetsabout which of the software identifies the higher number of mark-ers.After all the filtering steps and linkage map building, it is con-sistent that Freebayes keeps more markers. However, the result-ing maps built with Freebayes markers, genotypes, and genotypesprobabilities presented higher genetic distances inflation comparedto the other approaches. Using TASSEL software markers also re-sulted in higher inflation in Aspen dataset maps which have lowersequencing depth (∼ 6x) compared to the Roses (∼ 94). The otherapproaches also presented outlier markers that inflate the totalmap size, but, because they are individual markers, they can beeasily removed in further steps. The maps built with only com-mon markers among all four software (intersection in figure 2)contained fewer markers and had markers distances similar to GATKand Stacks results.Evaluating the results of our simulations for GATK, we identifieda format characteristic of VCFs from this software that leads togenotyping errors in estimations by updog, polyRAD, and SuperMASSA.In such cases, the genotype is considered missing in the GATK outputVCF GT format field, while the total read depth is always reportedin the reference allele field of the AD format field (e.g., Estimated =GT:AD ./.;22,0 | True = GT:AD 1/1;0,22).We present examples of the consequences of this format in geno-types called by updog, polyRAD, and SuperMASSA in figures 3 and 4.In figure 3 A, allele dropouts are observed in the genotype of parentP2 and some of the progeny individuals. In empirical data, alleledropout can occur due to various reasons, such as polymorphismsin the cut site or the non-amplification of one allele during the PCRstep [9]. Our simulations also consider allele dropout, but in theobserved scenario, the source of allele dropout is due to the formatcharacteristic of the GATK VCF file.The occurrence of genotyping errors while using GATK VCF al-lele counts was previously observed by [59], who suggested usingcounts from BAM alignment files to address the issue (Figure 3B). However, when testing the usage of BAM allele counts, we losethe advantage of the robust filtering applied by the GATK pipeline toretain only high-quality read counts in its VCF allele depth field. Tomaintain the accuracy of the GATK allele depth while overcoming thecommon error observed when the genotype is missing, we replacedthe VCF allele count (AD and DP fields) with zero when the geno-type information is missing before utilizing it for genotyping with
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Figure 2. The top two figures show the number of markers identified by each SNP call software (number above each software name) and Venn diagrams showing the number
of markers with common positions among all software results for the Aspen and Roses complete datasets. The markers were previously filtered by maximum missing data of
25% and MAF of 5%/. The compatibility of positions among markers from different software was only possible after using "BCFtools norm" to left-align the indels positions.
The bottom two figures show the number of markers (bar plot) and distances between markers (boxplot) after building the linkage maps for a subset of 37% of chromosome
10 in the Aspen dataset and 1 in the Roses dataset with the markers from Freebayes, GATK, TASSEL, and Stacks. It was considered in the OneMap HMM the genotypes and a global
error of 5% (global_error0.05); genotypes probabilities (genoprob_error); and the combination of genotype probabilities and a global error of 5% (genoprob_global_error0.0.5).
These figures can be generated for user-defined empirical datasets in the Reads2MapApp sections "SNP calling efficiency" and "Map size" after running the EmpiricalMaps
workflow.
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Figure 3. Example of error (Est: homozygous | True: heterozygous and Est: heterozygous | True: homozygous) in parental genotypes leading to a wrong marker type (Est:
D1.10 | True: D2.15). Estimated reference (x-axis) and alternative (y-axis) allele count. Graphics on the left have colors according to estimated genotypes, and on the right to
the true genotypes. A) show counts from GATK VCF file and B) from BAM file. In the VCF file outputted by GATK the P1 genotype is missing (GT ./.) because the reads did not pass
the quality filters, but it reports the counts in the reference AD field (149,0). The updog software use progeny segregation (1:1) to estimate the parents, but it makes a mistake
identifying which one is heterozygous. Using counts from BAM file (B) fix this issue despite losing the GATK quality filters that can be important in other situations.
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Figure 4. Example of error (Est: homozygous | True: heterozygous) in progeny genotypes leading to wrong marker types in A) Est: B3.7 | True: non-informative and in B) Est:
D1.10 | True: non-informative. Graphics on the left have colors according to estimated genotypes, and on the right to the true genotypes.
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polyRAD, SuperMASSA, and updog. This more precise way of solvingthe issue was only possible due to our simulations studies once theyprovide a clear comparison between simulated (true) and estimateddata which highlighted the sources of the genotyping errors.We also observed situations in updog, polyRAD and SuperMASSAresults where the parental genotypes are wrongly estimated be-cause of the low quality of the progeny genotypes that distort theexpected segregation. These genotype call software consider the ex-pected segregation in their models therefore errors in the progenyleads to errors in the parents. Figure 4 shows examples where themarker would be considered non-informative for an outcrossingpopulation, as both parents are homozygous. However, due to geno-typing errors in the population, SuperMASSA and polyRAD incorrectlyestimate the parents as heterozygous. To tackle this problem, weimplement a filtering step to exclude non-informative markersbefore applying the genotype callers.Solving these issues was particularly important because erro-neous parent genotypes have a higher impact on linkage map qual-ity than progeny genotype errors. OneMap 3.0 does not consider theparental genotype probabilities in its HMM multi-point approach.Thus, it is important to plan the sequencing experiment with high-quality parental genotypes because, if there are errors, they willnot be corrected in downstream processing, and it will cause distor-tions in the resulting distances and haplotypes. To avoid map sizeinflation, erroneous parental genotypes must be removed beforethe linkage map analysis.In general, the evaluations of RADinitio simulations profileshows that we can expect fewer markers and genotyping errorsin the simulated compared to the empirical data (SupplementaryFigure 7). A smaller number of markers should not reduce the builtlinkage map quality because the analysis was made in F1 popula-tions, which have large disequilibrium blocks. However, the smallernumber of genotyping errors overestimates the SNP and genotypecalling software efficiency. This overestimation is commonly ob-served in simulation results once the data cannot capture all biasesand errors in the empirical data. Thus, we used the simulations tounderstand specific software limitations and error sources but notultimately define the best performance [62].We observed the same or improved quality of linkage mapsin the empirical datasets evaluations (Supplementary Figure 8)when we applied these two described filtering steps: removingnon-informative data before genotype calling, and replacing allelecounts with missing data when the genotype is missing in the GATKcalls. After the genotype calling, we applied a threshold of 0.8 tofilter low-quality genotypes, which also was beneficial in all sce-narios. It is important to notice that these filters are applied beforethe segregation test filter, which reduces the number of tests andincreases the permissibility of the threshold corrected by multipletests (Bonferroni correction). Thus, the built map can have moremarkers in some scenarios even if more filters are applied.The simulations were also useful to validate all code developedfor the analysis and to measure the effects of segregation distortion.The results showed that the segregation distortion does not affectthe frequency of correct estimated genotypes in most scenarios, de-spite affecting the reliability of the genotype probabilities providedby updog, SuperMASSA, and polyRAD (Supplementary Figures 9 and10). This can be one of the reasons why using genotype probabil-ities in the HMM did not present consistent results across testeddatasets.Despite we considered the HMM error rate dataset-dependentvalues, we identified that some of the possible values can be dis-carded. Using the OneMap default value of 10–5 global error rate pro-duced bad-quality maps in all situations. The same happened whileusing all the genotype call software relative error. Using highervalues of global error rate and genotypes from GATK, Freebayes,
TASSEL, Stacks, updog, and polyRAD, or the combination of the geno-type probability and a global error rate from software GATK, updog,
Stacks, and polyRAD produced the most reliable linkage maps, with

linkage map sizes closer to the expected.As observed in figure 5, many of the approaches produced link-age maps with distances between all adjacent markers smaller than10 cM. We chose the method that results in less inflated linkagemaps and outlier markers even when applying the small valuesof the global error rate (0.01). Once the method was selected, wetried an intermediary global error rate (0.075) for the roses datasetvalues to adjust to the expected total size. We also checked the re-combination fraction heatmap, the markers coverage, density, andthe number of estimated recombination breakpoints in progenythrough Reads2MapApp figures (see the app interface demonstrationin Supplementary File 2).Before using the map size as a metric for map quality, wechecked if a map with the expected size always means good quality.A map can have the expected size but a poor quality if the number ofoverestimated and underestimated recombination breakpoints inthe progeny haplotypes is the same; in other words, if they cancelout. To test if this happens in our simulated dataset, we comparedthe Euclidean relation of estimated and true genetic distances withthe total number of wrong (overestimated + underestimated) re-combination breakpoints in the progeny haplotypes (Figure 6). Foridentifying a break as overestimated or underestimated, we do notconsider the expected break position but the total breaks expectedfor the evaluated haplotype. For example, if one haplotype for aspecific progeny was simulated with one break and estimated withzero, then we count it as one underestimated break.The comparison shows that overestimated breakpoints are gen-erally more frequent than underestimated ones. We observe thatwhen a map is inflated, it also has many wrong recombinationbreakpoints. However, in some cases, the map has the expectedmap size, but a high number of wrong haplotypes due to both over-estimated and underestimated breaks. A high number of underes-timated breaks can be observed in situations where the Euclideandistance is close to, or less than 1 (log100) and the number of wrongrecombination events is between 10 and 100 (log101 and log102).These situations are more frequent when a global error rate of 5%is used.In the empirical data results, we observed maps with expectedsize and excess recombination breakpoints in just a few individ-uals in the progeny. This variation can be related to contaminantsamples. The study of Zhigunov et al. [47] identified six contami-nants in the Aspen dataset. When we ran the workflows, includingthe contaminant samples, the maps built with Freebayes mark-ers and updog, SuperMASSA, and polyRAD were smaller in size thanwithout the contaminant (Supplementary Figure 11). This would(wrongly) suggest better quality if map size is the only metric used.Nevertheless, the maps presented higher differences in the num-ber of recombination breakpoints among individuals when usingthe genotype probabilities relative to each genotype call software.Some contaminant samples presented more estimated recombi-nation events than the rest of the progeny. Using higher values ofglobal error reduces this difference and can mask the presence ofcontamination.These results show that it is important to exclude contaminantsamples before the linkage map building once the multi-pointHMM approach tends to fix the genotypes according to the bio-logical assumption that they are all F1 individuals. There are severalmethods available for identifying contaminant samples in previoussteps. The ADMIXTURE [63] software analysis as made by Zhigunovet al. [47] is one possibility. Another is to calculate a marker-basedrelationship matrix using the R package AGHmatrix [64].So far, all the evaluations we have discussed have focused ex-clusively on biallelic markers. We also evaluate the impact on thegenetic distances when haplotype-based multiallelic markers areincluded. In most of the tested scenarios, incorporating these mark-ers leads to map inflation. This is primarily due to the fact thatinaccurately estimated multiallelic markers or genotyping errorsassociated with them can significantly affect the quality of the link-
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Figure 5. Process of selecting best pipeline: A) Comparing the effect of different error probabilities in the OneMap 3.0 HMM in the distances between adjacent markers; B)
Comparing the effect of different error probabilities in the linkage maps total size built with a single SNP call software; C) Checking the recombination fraction (rf) heatmap
and markers coverage in the genome using the selected pipeline. These figures were extracted from Reads2MapApp.
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Figure 6. Relation between Euclidean distance (y-axis) and the number of recombination breakpoints (x-axis) in maps built with global error rates (0.001% and 5%), and
with probabilities outputted by the genotype call software (relative error). Each dot represents a map built with simulated data based on the first 37% of aspen chromosome 10.
The red squares highlight maps that do not present inflated size (1 or less Euclidean distance) but have from 10 to 100 wrong recombination breakpoints.

age map. The impact is particularly pronounced because multiallelicmarkers provide richer information, including recombination andphase information for both parents, compared to biallelic mark-ers. However, the advantages of including the multiallelic markersappear in the marker ordering step.
Algorithms that use two-point recombination fractions esti-mations have issues ordering only biallelic markers because of themissing linkage information between markers D1 and D2 (homozy-gous x heterozygous or vice-versa). These markers can only berelated to each other in the presence of more informative markers,such as B3.7 (heterozygous x heterozygous) or multiallelic states.Yet, having few B7.3 markers compared to D1 and D2 can still be anissue for linkage map building. In fact, this characteristic was thereason behind the initial development of separate maps for eachparent in the first methods used for building genetic maps in suchpopulations [65]. These non-integrated genetic maps subsequentlylimited further analysis of multiallelic traits in terms QTL mapping[66].
The markers ordering efficiency is not considered by Reads2Mapworkflows once it uses the genomic order to position the markersin the linkage maps. The reference genome is a required input bythe workflows to standardize the positions of the markers across alltested methods. This avoids the confounding interpretation of bad-quality linkage maps due to wrong ordering and not genotypingerrors.
To test the effect of multiallelic markers in the ordering, webuilt a linkage map for the entire chromosome 1 and 10 of theroses and aspen datasets, respectively, using the selected meth-ods and adding the haplotype-based multiallelic markers providedby Stacks population plugin. We used the OneMap wrapper func-tion mds_onemap to order the markers with MDS [60]. The geneticdistances were estimated by HMM multipoint approach. Figure 7shows the effects of including the multiallelic markers in the two-points-based MDS algorithm.
The impact of multiallelic markers differed between the aspenand roses datasets. In the aspen dataset, characterized by a lower

depth and a higher rate of genotyping errors in the markers, mostof the B3.7 biallelic markers were filtered out during previous steps,resulting in an unsatisfactory performance of the MDS algorithmin ordering the markers. However, incorporating the multiallelicmarkers, although slightly inflating the genetic distances, signif-icantly improved the ordering accuracy using MDS. It should benoted that MDS itself can contribute to genetic distance inflation asit may erroneously invert markers in close proximity. In scenarioswhere a reference genome is unavailable, the inclusion of multial-lelic markers can prove valuable for effective marker ordering inthese types of datasets.
The rose dataset is characterized by higher-quality markers,and the genomic ordering can be almost entirely reproduced usingonly biallelic markers. In this scenario, the inclusion of multial-lelic markers also leads to a slight inflation of the map size whileimproving the ordering accuracy through MDS. Unlike the aspendataset, the MDS algorithm in the rose dataset tends to reduce thegenetic distances, resulting in an underestimation of recombina-tion breakpoints. However, considering that there are no significantinversions or translocations (see dot plots in figure 7), we can havemore confidence in the genomic order, even if the map is larger.Any discrepancies between the MDS-based order and the genomicorder are likely attributed to local changes, which are likely to beerrors introduced by MDS.

Final considerations

The Reads2Map workflows have a robust structure to generateproduction-level results with simple inputs and optimized usage ofcomputational resources. The structure allowed us to test the qual-ity of genetic maps built with the following scenarios: i) using differ-ent SNP calling software (GATK, TASSEL, Stacks, and Freebayes); ii)using different genotype calling software (GATK, Freebayes, TASSEL,
Stacks, updog, polyRAD, SuperMASSA); iii) using different linkagemap building software (OneMap 3.0 and GUSMap); iv) establishing dif-
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Figure 7. Comparison between MDS ordering algorithm performance in the aspen and rose dataset entire linkage group 10 and 1, respectively with only biallelic markers, and
with biallelic and haplotype-based multiallelic markers estimated by Stacks. The heatmaps represent the recombination fraction (rf) matrix between markers positioned at
both axes. In well-ordered linkage groups, we expect a gradient from hot colors in the diagonal (adjacent markers) to cold colors in the upper left and lower right corners. The
figure also presents the Spearman rank correlation (ρ) and the Euclidean distances (D) between the estimated map using MDS and the map built with markers ordered by the
genomic positions (used as reference). The dot plots relate the positions of markers estimated by MDS with the genomic position.
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ferent error probabilities (relative to genotype call software, 10%,1%, 5%, and 0.001% global error, and the combination of the globalerror rate with the genotype call probabilities); v) applying differ-ent marker filtering; vi) with or without multiallelic markers; vi)in empirical and simulated data; vii) with and without segrega-tion distortion; viii) with and without contaminant samples; ix)with different GBS library preparation aspects; and x) with differ-ent sequencing depths. These scenarios are commonly found byresearchers trying to produce high-quality linkage maps using se-quencing technologies. The Reads2Map and Reads2MapApp are thefirst tools to guide best practices for building linkage maps withsequencing data pointing software, parameters, and marker filtersto be used in diverse scenarios.We elaborated and limited the scenarios explored according toour experiences as developers of OneMap. OneMap first version was re-leased in 2007, and since then it has been used to build linkage mapsin a diversity of species. Its strategies and structure also served as abase for more complex software such as MAPpoly [15] for buildinglinkage maps in polyploid species. With time, new methods for ge-netic marker identification using sequencing data emerged, chang-ing the context where OneMap was used. We included updates in thisversion 3.0 to resolve issues with inflated genetic maps and markerordering. Two major changes allow users to read and build geneticmaps with the genotype probabilities and haplotype-based mul-tiallelic markers information from the input files (OneMap formator VCF file). However, the success of genetic map building will beproportional to the quality of the information provided by upstreamprocedures such as library preparation, SNP and genotype calling,genotype probabilities estimation, and the combination of SNPsinto haplotype-based markers. With Reads2Map and Reads2MapApp,we provide users tools to select the best approaches before using
OneMap 3.0 to guarantee that it will result in the best quality geneticmap possible with the data available.It is important to highlight that we did not design the workflowsto be a tool to build a final linkage map but to select the bioinfor-matic pipeline that provides the best quality genetic markers. Oncethe pipeline is selected, the respective VCF file and OneMap functionscan be used in the R environment to build the final map. Build-ing the complete linkage map will require evaluations and editsthat are highly specific and cannot be fully automated within theworkflows. These tasks include addressing the presence of translo-cations and inversions, identifying outlier markers, and linkagebetween markers located in different chromosomes.The diversity in the results of the pipeline suggested for both em-pirical datasets highlights that pipelines perform differently withdatasets with different properties. This means that the pipelinespresented here as the best cannot be considered the best for everydataset. We could reduce the number of required tests by usersidentifying the dataset-independent approaches and setting themas default in Reads2Map. However, we suggest users reproduce thetests presented here for the dataset-dependent approaches usingthe Reads2Map workflows with their empirical dataset and select thebest pipelines for their specific conditions.The workflows were built using WDL and containers to ensurehigh reproducibility. This guarantees that different results runningdifferent datasets is due to the dataset’s properties and not to bioin-formatic pipeline changes. Also, updates can be easily made in theworkflows as the software implemented are improved once the ver-sions are controlled by Docker images. This makes Reads2Map alsoa useful tool for software developers to validate updates because itfacilitates checking the consequences of the changes in the qualityof the markers by easily controlling versions, rerunning datasets,and checking the map quality.Every Reads2Map workflow run returns a large amount of infor-mation. Every step of the workflow, from the reads’ alignment tothe completed linkage map, provides quality measurements forusers to evaluate each scenario. The Reads2MapApp shiny app re-ceives all this information compressed in a single workflow out-

put file and converts it into comprehensive interactive graphics.Through the app interface, users can evaluate the performance ofeach combination of software and parameters in each step. If re-sults show issues in any of them, users can re-run the workflowwith adapted parameters or include new filters that make sense intheir context. Once established the upstream steps based on theapp graphics for the built linkage map subset, users can reproduceit for the complete dataset, inputting the VCF files from Reads2Mapinto OneMap.

Availability of source code and requirements

An archival copy of the code and supporting data is available via theGigaScience repository, GigaDB [67].
• Project name: Reads2Map• Project home page: [32]• Main workflows: EmpiricalReads2Map [33] and Simulate-dReads2Map [34]• Operating system(s): Platform independent• Programming language: WDL• Other requirements: docker or singularity• License: MIT• RRID: SCR_023593• biotoolsID: reads2map

Additional files

Supplementary File 1. Emission function for outcrossing.
Supplementary File 2. Reads2MapApp interface demonstration.
Supplementary Table S8. List of third-party software and im-age versions used
Supplementary Figure S7. Venn diagrams show the number ofmarkers identified by freebayes, GATK, and simulated (true). Theintersection between the data sets represents markers with thesame position in the reference genome Populus trichocarpa version3.0. The Empirical data sets include markers spread across theentire reference genome. The simulations only include markers inthe first 8.426 Mb of chromosome 10 (2.1% of the genome). Themean and standard deviation of number markers are shown for thesimulated data set once the simulation and SNP calling are repeated60 times. Markers were filtered by 25% maximum missing dataand MAF 5% in empirical and simulated data. * Number of markerscommon to all 60 repetitions.
Supplementary Figure S8. The relation between filters applied(x-axis), the map size (A y-axis), and the number of markers (By-axis) for genotype calling software used in the empirical data sets.The data sets shown in the figure contain only biallelic markers.The horizontal red line indicates the expected map size (38 cM) forthe subset of the genomes used.
Supplementary Figure S9. ROC curves with the true and esti-mated genotypes from the five families simulated with mean depth10 and 20 and the first 8.426 Mb of the chromosome 10 (37% or 38cM). Here only biallelic markers are considered. The specificity andsensitivity profiles consider different thresholds in the genotypeprobabilities for each scenario. The higher the area under the curve,the higher the genotype’s probability reliability. Genotype prob-ability thresholds closer to the left superior corner have a highercapacity to differentiate right and wrong genotypes.
Supplementary Figure S10. Supplementary Figure S9 contin-ued.
Supplementary Figure S11. Effect of contaminant samples inthe map size (A) and in the number of estimated recombinationbreakpoints range (B) among progeny individuals. The empiricalaspen data sets presented in this figure contain multiallelic markers,the allele counts from the VCF file, and are filtered by genotype
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probability higher than 0.8 to keep only informative markers.

Abbreviations

GBS: Genotyping-by-Sequencing; PCR: polymerase chain reaction;RADSeq: Restriction-site associated; DNA sequencing; VCF: variantcall format; GQ: genotyping quality; GT: genotype; GWAS: genome-wide association; SNP: single nucleotide polymorphism; LD: link-age disequilibrium; QTL: quantitative trait loci; WDL: workflowdescription language; HPRC: high-performance research comput-ing; CPU: central processing unit; HMM: hidden Markov model;EM: expectation-maximization; MAF: minor allele frequency; NGS:Next Generation Sequencing.
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