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Disease risk near point sources: statistical issues
for analyses using individual or spatially
aggregated data

Peter Diggle, Paul Elliott

Abstract
Study objective - To examine the statistical
issues involved in the analysis of disease
risk near point sources of environmental
pollution, where data are held at both the
individual and group (areal) level. To ex-
plore these issues with reference to pos-
sible socioeconomic confounding.
Design - Statistical review.
Setting - Point sources of environmental
pollution.
Main results - Except in very specific cir-
cumstances unlikely to hold in practice,
aggregation of data to the areal level will
lead to bias in the estimation of disease
risk.
Conclusions - There is no easy solution to
the analysis of spatial data when some
covariates (for example, age and sex of
cases) are known at individual level,
whereas others (for example, populations,
age-sex distributions, small area dep-
rivation indices) are known only at the
areal (ecological) level. The underlying as-
sumptions inherent in the analysis ofthese
data need to be explicitly recognised in
order to understand better the limitations
of the available methodology as well as to
inform interpretation of results. Ideally,
the data should be kept as disaggregated
as possible, to maximise the information
available and minimise potential for bias.
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This paper addresses the statistical and in-
terpretive issues arising from a common prob-
lem in small area studies of environment and
health: how to proceed when the necessary data
(health, population, pollution, confounders)
are available at different levels of spatial ag-
gregation? What assumptions are implicitly
made when data are aggregated spatially before
analysis? What effects will this have on the
results?
The resurgence of interest in the in-

vestigation of disease risk in small areas near

point sources of environmental pollution' fol-
lows identification of a cluster of childhood
leukaemia cases near the Sellafield nuclear
plant in 1983.2 Although a range of statistical
methods has been developed to deal with such
problems, none is ideal and interpretation is
complex.3 Often routine sources of data are

used, which are subject to important lim-
itations, errors, and possible biases. The health

data are susceptible in varying degrees, to in-
accuracy, diagnostic and coding variation, and,
for cancer registrations and congenital mal-
formations in particular, to incompleteness and
duplication. Population data, necessary for cal-
culation of disease risks, are usually obtained
in aggregate form from national census (every
10 years in the UK) and may not reflect well
local population structure and migration pat-
terns during the inter-censual years. Worse still,
exposure data may not be available at all - for
example, historical pollution patterns around
a putative source, and some proxy for exposure
(such as distance) may have to be used. These
potential sources of error are unlikely to be
spatially neutral and could substantially bias
small area studies of environment and health.

In this paper, we shall be concerned with
two further issues in small area analyses. First
is the problem of the availability of data for
small area studies, alluded to above. The sec-
ond, given these problems of data aggregation
and measurement, is how to deal appropriately
with the potentially major confounding effects
of social deprivation.

In the UK, we are fortunate that many health
data, including mortality and cancer re-
gistrations, are available at an individual level
through use of the postcode of residence; but
other data, including information on the popu-
lation at risk (from census) and possible social
and other confounding variables, may only be
available for areal units such as census wards
(10 000 people approximately) or enumeration
districts (440 people). In the classic approach
to epidemiology, relationships between health
outcome, exposure, and potential confounders
are investigated at the level of individuals -
that is, in longitudinal, case-control, or cross
sectional studies. But because of data avail-
ability problems, this approach is often not
feasible or practicable in studies of pollution
and health near a point source. The prospect
of obtaining individual level data (including use
ofpopulation based controls) may be remote, as
purpose designed studies to obtain these data
are notoriously expensive and time consuming.4

Unfortunately, as we shall show in the ana-
lysis of aggregated data it is not valid to assume
that relationships found at the aggregated
(areal) level will hold for individuals within
those areas - that is, the so called ecological
fallacy.5
How then should we deal with potential

socioeconomic confounding and its effects
on estimates of risk near point sources of
environmental pollution, as individual meas-

S20



S21Statistical issues in socioeconomic confounding

Figure 1 Hypothetical data on the spatial incidence of disease, in a unit square region
with a relatively high population density in the lower left quarter square, and a cluster of
cases in the lower right quarter square. Crosses represent 25 individual cases, dots 100
individual controls. Straight lines define a subdivision of the unit square study region into
ten polygonal subregions.

ures of social class are rarely available? Often,
use is made of proxy measures, which in the
UK can readily be obtained at the small area

scale. For example, areal deprivation measures
- such as Carstairs or Townsend scores - are

commonly based on census small area statistics
variables such as unemployment rates, house-
hold overcrowding, and car ownership.6 That
deprivation is a true confounder of small area

studies around a point source is apparent from
the following: (i) it is well documented that for
many diseases, including common cancers such
as stomach and lung, occurrence of disease
may be up to two- to threefold higher in areas

of deprivation compared with affluent areas;

and (ii) many sources of pollution are located
in poor or deprived areas.6 Therefore, an ana-

lysis of disease risk near a source that ignores
the possibility of socioeconomic confounding,
may reach seriously misleading or false con-

clusions about the effects of emissions on

health.
Our objective in this paper is to present an

idealised model of spatial variation in disease,
formulated at the individual level. We are then
able to examine the assumptions implicitly
made, and the problems that arise, when we

are forced (through non-availability of data) to
aggregate to the group (areal) level. These
problems are concealed if we simply analyse
the data at the group level from the start. The
model incorporates explicit assumptions about
the pattern of risk associated with proximity to
a point source, in the absence of information
on pollution levels and individual exposure.

It also incorporates adjustment for relevant
explanatory variables measured at the in-
dividual level.
We end by discussing the "real world" prob-

lem mentioned at the start of this section of
how we might try to deal with situations in
which some variables, such as health, can be
measured at the individual level while others,
such as socioeconomic confounders, are avail-
able only at group level.

An idealised point process model
A spatial point process is a statistical model for
determining the locations of events of interest
in a geographical region. In this paper, we
shall discuss point processes very informally.
Mathematically precise descriptions can be
found in a number of textbooks including Cox
and Isham7 or, at a more advanced level, Daley
and Vere-Jones.8 In the epidemiological con-
text, the events represent reference locations
(typically place of residence at diagnosis or
death) of all known individual cases of a disease,
although the appropriateness of this may be
open to debate. In particular, no allowance is
made for local commuting patterns, work hab-
its, etc (for example, in studies of air pollution
and health), nor are effects of migration into
or out of the area taken into account. We shall
initially assume that a second set of events is
also observed, representing the corresponding
reference locations for a set of controls selected
at random from the population at risk. The
data for analysis can then be presented as a
dot map of both types of event within some
designated study region, R say (fig 1).
We shall assume that each type of event

can be modelled as a partial realisation of
an inhomogeneous Poisson process. This model
incorporates a spatially varying intensity func-
tion, the intensity at a point x being defined as
the expected number of events per unit area in
a small neighbourhood around x, but allows
no direct interactions amongst the events. In
other words, the events are assumed to occur
independently in space, with the possibility of
an event occurring being unaffected by the
occurrence of other events nearby. The model
would therefore be inappropriate for studying
the spatial distribution of an infectious disease,
but is reasonable as a model for non-infectious
diseases whose spatial distribution reflects the
spatial distribution of the population at risk
and of any relevant demographic, socio-
economic, or environmental risk factors.
We let k(x) and k0(x) denote the intensity

functions of the case and control processes,
respectively, and r(x) = k(x)/k0(x) the risk func-
tion. In practice, we would want to assume
that the overall risk derives from one or more
measured risk factors, and we shall consider
how to deal with this in a later section. For the
time being, we assume only that there is a
spatial distribution of the population at risk,
represented by the control intensity function
X0(x), and a spatially varying overall risk func-
tion, r(x), which together determine the spatial
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variation in the case intensity function X(x) via
the equation

(x) = k,O(x) r(x). ((1)
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by the observed population count Ni (or, as
noted above, by an appropriately weighted av-
erage of subcounts in different risk groups such
as age and sex) to obtain

Ip* = N,r.
A model based interpretation of
aggregation bias
Ecological bias arises when estimates of the
variation in risk between groups of individuals
exposed to different average levels of a risk
factor are wrongly interpreted as estimates of
the variation in risk between individuals.9
Greenland and Morgenstern9 give numerical
examples which illustrate its potentially severe
effects. They also make the important point
that ecological bias can arise for a range of
reasons, including spatial aggregation and con-
founding. The bias which arises as a direct
consequence of spatial aggregation, and which
we will call aggregation bias, is therefore a special
case of the more general phenomenon of eco-
logical bias. Note, however, that aggregation
bias and ecological bias are sometimes taken as
synonyms.9 In the present context, the practical
relevance of aggregation bias is that it is often
difficult to obtain reliable data on the locations
of individual controls. Suppose, instead, that
we know only the numbers of individuals at
risk, say N1, . . ., Nm, in a designated partition
of the study region into subregions, A1, *,
A,,, (fig 1). For example, the subregions may
correspond to local government wards or cen-
sus enumeration districts. We can then base
our analysis not on individual locations, but on
counts of the numbers of cases in the sub-
regions. Under the assumed Poisson process
model, the number of cases in Ai, say Yi, follows
a Poisson distribution with expectation

pti= { (x)dx= X,(x)r(x)dx (2)
Ai Ai

and counts in different subregions are mutually
independent. If we were able to evaluate the
integrals which appear on the right hand side
of equation (2), an ecological analysis of the
aggregated counts Yi would give consistent es-
timates of parameters in any assumed re-
gression model for the spatial variation in the
individual level risk, r(x). This is rarely feasible,
except when the only risk factors under con-
sideration are categorical variables and the
numbers at risk within each category are
known. For example, the subregional counts
N1, . . ., N,,, may be further subdivided by age
and sex.
The more usual way in which the analysis

proceeds is by invoking (often implicitly) a
spatially aggregated version of equation (1), in
which we assume that the Yi follow independent
Poisson distributions with expectations

p* = poiri,

where pto represents the size of the population
at risk in the subregion A,, and ri the assumed
risk in subregion Ai. We can then replace po0

(3)

The theoretical justification for this is that,
under the assumed Poisson process model,
conditional on the numbers of people at risk
in the m subregions Ai, the numbers of cases
follow independent binomial distributions with
numbers of trials Ni and probabilities ri, and the
Poisson distribution is a good approximation to
the binomial because the ri are small. Note that
if the ri are not small, we would need to work
with the exact binomial distributions, or
Normal approximations, rather than with the
Poisson approximation.
As noted above, a variant of (3) is to replace

the population count N,by an expected number
of cases, Ei say, calculated as a weighted sum
of numbers in different risk categories. The
implicit assumption in this analysis is the fol-
lowing. Imagine that the number of cases, Yij,
and corresponding numbers at risk, Nij, were
available for each of c risk categories j= 1, . . ..
c within each of m subregions i= 1, . .., m.
Furthermore, suppose that the risk factors, pj
say, are known for each of the c risk categories,
and that our objective is to investigate the
effects of further possible risk factors at the
subregional level. We would then model the
counts Yij as independent, Poisson distributed
random variables with expectations pij=Nijrij,
where the risks rij are factorised as rij=pjri. In
practice, we do not observe the individual Yj,
but only the subregional totals Yi= 1jc., Y1j. But
it then follows that these subregional totals
are also independent, Poisson distributed ran-
dom variables with means pi= p = Eiri, as
required.

Analyses based on equation (3) are usually
called Poisson regression methods, because the
risks ri are typically specified by a regression
model in which the explanatory variables define
the characteristics of the corresponding sub-
regions (see section below). One objection to
this approach is that the inferences then depend
on the definition of the subregions, which are
usually entirely arbitrary with respect to the
disease under investigation. A more fun-
damental problem is that if we describe both
population density and risk only at the sub-
regional rather than the individual level, we are
liable to fall foul of the ecological fallacy. A
theoretical explanation of this is as follows.
Under the assumed Poisson process model

for the spatial distribution of individual cases,
the correct model for the Yi is that they are
mutually independent, Poisson distributed ran-
dom variables, with expectations pi given by
equation (2). A spatially aggregated Poisson
regression analysis would assume that the Yi are
mutually independent and Poisson distributed,
but with expectations given by equation (3),
for suitably defined risks ri. Aggregation bias
now manifests itself because in general, p, pz'.
Conditions under which pi= p* - that is, no
aggregation bias - are derived in the appendix.
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Figure 2 A circular region R of unit radius, divided into
m= 5 subregions A, by a series of equaUly spaced,
concentric circles. The subregion A3 is shaded.

These occur if, and only if, at least one of the
following statements is true:

* Xo(x) is constant within Ai,
* r(x) is constant within Ai,
* Xo(x) and r(x) are spatially uncorrelated -

that is, the risk of disease at any point is
unrelated to the density of the population
at risk at that point.

None ofthese conditions seems likely to hold
in practice. However, they are more likely to
hold approximately if the subregions are made
as small as is practicable. Of course, if the
ecological bias operated in opposite directions
within different subregions, there might be

0.4
Distance

0-8

Figure 3 Ratios of notional to true average risk against distance from point source when
a circular study region of unit radius, with a point source at its centre, is partitioned into
n circular subregions. Results are shown for m = 5 (solid dots), m = 10 (crosses), and
m = 20 (continuous line). See text for details of the mathematical model used.

some overall cancellation, but this seems highly
implausible in practice.
We now give a specific numerical example

of the effects of aggregation bias, based on an
idealised but qualitatively plausible model for
the variation in population density and risk
around a point source. We consider a single
point source to be located at the centre of a
circular region R of unit radius, divided into m
subregions Ai by a series of equally spaced,
concentric circles (fig 2). Thus, Ai consists of
all locations whose distance from the point
source is between (i- 1)d and id, where d= 1/
m. Using x to denote distance from the point
source, we model the variation in population
density by the linear function

Xo(x) =a+bx

and the variation in risk by

r(x) = p{ 1 + a exp(- Px')}

as in Diggle and Rowlingson.9 By adjusting the
values of a, b, oa, and P this model can mimic
a range of situations which might arise in prac-
tice. In particular, choosing positive values for
a, ax and 1, and a negative value for b cor-
responds to the common situation in which
both population density and risk decrease with
increasing distance from the point source.
Straightforward integration gives the popu-
lation in the subregion Ai as

koi= irad(2i- 1) + 2bd (3i'-3i+ 1)/3

and, from (2), the mean number of cases in Ai
as

ti =itp[ad(2i- 1)

+ 2bd3(3i2-3i+ 1)/3

+ aotP-{exp(-Pd2(i- 1)2)

-exp(-Pd2-i2)} +±b J(id)

-J7((i- 1)d)}/2],
where

J(z) = -z13- exp(- 13z2)

+ iCt"213/2{>D(z(2)"1/2) -0*5}
and 4(DI) is the cumulative distribution function
of the standard normal distribution.
For any values of the model parameters, we

can now compare the true average risk gi in
the subregion Ai with the notional risk ri which
we would ascribe to Ai if we assumed, in-
correctly, that all individuals in Ai were subject
to the same risk. Figure 3 shows the risk ratio,
riJui plotted against (i-2)/m, for m = 5, 10, and
20, a=5, b= -5, oa=5, and 13=40 (the ratio
does not depend on p). The aggregation bias at
small distances from the putative point source is
marked when m = 5, but almost negligible when
m = 20. The bias is negligible at large distances,
whatever the value of m, because, as shown in
figure 4, the risk in this particular example is
essentially constant for distances x 0 A4.
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Figure 4 True relative risk as a function of distance, for
the mathematical model used in figure 3.

We conclude that spatial aggregation is un-

desirable on two counts - arbitrariness in-
troduced by the choice ofsubregions and bias in
estimation of risk. However, we recognise that
spatial aggregation is often forced upon us by
the unavailability of control or covariate data at
the individual level, and note that the practical
consequences of aggregation bias can be di-
minished by using the smallest subregions which
are practicable in a particular application.

Regression modelling of risk
The usual way to recognise multiple risk factors
in models for spatially aggregated data is via
the following log-linear regression equation.
Let ri denote the risk in the it" subregion and Zij:
j= 1, . .. , p the values for each ofp explanatory
variables attached to the z"h subregion. We then
model the risk in the ith subregion as

ri=expP{f3o± fizj'. (4)

By combining the regression equation (4)
with (3) and the Poisson distributional as-

sumption for the numbers of cases Yi, we obtain
the class of Poisson regression models, within
which inferences about the effects of putative
risk factors can be made using standard
methodology for generalised linear models."
For modelling at the individual level, we

revert to a description of risk at an arbitrary
point, x. Now, a log-linear regression equation
for risk would take the form

r(x) = exp{ Po + 13zj(x)T, (5)

where zj(x) represents the value of the jth ex-

planatory variable at the point x. We shall

describe in the next section the technicalities
involved in fitting this model to case-control
data. For the moment, we simply point out
that the explanatory variables zj(x) could be of
several logically different kinds.
The most straightforward situation arises

when zj(x) is a characteristic of an individual
whose reference location is x. Examples include
the age, sex, social class, or occupation of the
individual concerned. Although an explanatory
variable of this kind is not strictly a char-
acteristic of a point x in geographical space,
it is standard, and not unreasonable, practice
to adjust for its effect at the individual level
using the regression in equation (5).

It is slightly less obvious how we should
deal with explanatory variables which directly
describe the location x, for example, distance
from a putative point source, or height above
sea level. Although mathematically straight-
forward, incorporation of this kind of ex-
planatory variable into the regression in
equation (5) raises several operational diffi-
culties. Firstly, interpretation of the cor-
responding regression coefficient requires us to
believe that it is the value of the variable at a
point which affects risk, whereas it might be
more realistic to acknowledge that individuals
in effect occupy a finite "territory" around their
reference location, so that zj(x) should ideally
be replaced by a spatial average of values zj(y)
over points y in some neighbourhood of x.
Secondly, spatial explanatory variables of this
kind often cannot be measured directly at every
location x, but their values must be estimated
by some kind of interpolation procedure. This
would be true, for example, of measurements
of air pollution. From a statistical point of view,
any such interpolation introduces measure-
ment error, which in the simple case will result
in attenuation of the corresponding regression
coefficient towards zero.'1 Thirdly, a special
difficulty applies to the explanatory variable
"distance from putative point source", which
is of particular interest in this context. The
regression relationship for this variable cannot
be log-linear, for the following reason. In mod-
elling the distance based effect of a putative
point source we would typically assume that
risk decreases with increasing distance from the
source and approaches the background level of
risk at distances so large that the source no
longer has any conceivable influence. However,
in a log-linear model the assumed risk would
automatically tend to be zero as distance from
the point source increases.

In applications where the potential influence
of the point source extends throughout the
study region, this would not be a crucial ob-
jection, since it is clearly unwise to extrapolate
any fitted model beyond the range of the data.
However, such studies would be open to cri-
ticism on the grounds that they would not be
capable of reliably estimating the true re-
lationship between risk and distance from the
point source in question. For example, if the
true risk were approximately constant within
5 km of a point source, and thereafter declined
rapidly to reach background level by 10 km, a
study confined to a circular region of radius

S24
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5 km around the source would necessarily con-
clude that there was no relationship between
risk and distance.
A third kind of explanatory variable is one

which is only defined at the subregional level,
for example, indices of social deprivation. A
pragmatic way forward in such cases is to as-
sume that the same value of zj(x) holds for
every point x within a given subregion. The
resulting discontinuities between subregions
make little physical sense, but the alternative
of deriving the value of zj(x) from a moving
geographical window centred on x is entirely
impracticable. The underlying statistical issue
is again one of dealing with explanatory vari-
ables whose values are measured imprecisely,
but with the added complication that the
"measurement errors" are themselves highly
structured spatially.
We return to these questions in the final

section. For the time being, we allow ourselves
the luxury of assuming that any relevant ex-
planatory variable can be assigned a value for
any location x at which we have either a case
or a control.

A point process model for the association
between risk and one or more point
sources
We first summarise a modelling proposal in
Diggle and Rowlingson" (henceforth DR).
They note that if data on individual case loc-
ations xl, ..., x,n and control locations xn+1,

. Xn+no are generated by Poisson processes
with intensity functions X(x) and ko(x) related
by equation (1), then conditional on all n + nO
locations xi, the labels of the locations into
cases and controls are mutually independent,
with the probability that an event at x is a case
given by

p(x) = X(x)/{k(x) + X(X)} (6)
=r(x)/{1 +r(x)}.

The important feature of equation (6) is that
the conditioning on the locations xi has re-
moved the control intensity function ko(x) from
the problem - which is an appropriate thing to
do precisely because it is of no interest to us.
For a single point source, DR assume that

r(x) =f{d(x) } exp{3o + 3 zj(x) (7)

where d(x) denotes the distance from x to the
point source. Their specific implementation
assumes that

f(d) = 1 + 0 exp(- d'). (8)

We emphasise that the particular algebraic form
of (8) is neither crucial nor compelling. Its
important features are that the parameters 0
and q are readily interpretable as elevation in
risk at the point source and rate of decay in
risk with squared distance from the source, and
that f(d) approaches the "neutral" value 1 at
large distances. Although the binary regression

model defined by (7) and (8) is inherently
non-linear in 0 and ¢, its associated likelihood
function is easily written down, and likelihood
based inference can be implemented using
a general purpose numerical optimisation
routine.
For multiple sources, DR suggest a mo-

dification of (7) to

r(x) = f{di(x)}I ...f{d(x)}]

{ ]}p
x expjPo,+> pjz/x)

in which dk(x) denotes the distance from x to
the k" of s point sources, and the effects of
the different sources are here assumed to be
multiplicative. This is a strong assumption.
However, as with the choice of the function
f(*), the multiplicative model could be replaced
by whatever other model was thought to be
appropriate in a given application.
The simplest version of (9) is one in which

all sources are governed by the same parameter
values for 0 and k. If preferred, these can be
replaced by source-specific parameters ok and
kk, or grouped to reflect point sources of two
or more qualitatively different kinds. Note that
in all of these variants of the DR model, the
parameter PI3 is an artefact of the relative num-
bers of cases and controls. It provides no in-
formation about the overall risk, and the models
seek only to describe variation in relative risk
with distance after allowing for other ex-
planatory variables.

If individual control data are not available,
the risk equation (9) can be incorporated into
the Poisson regression formulation by simply
replacing all of the zj(x) by spatially averaged
versions zi; and defining all locations within a
given subregion to be the same distance from
any given point source. For example, we could
define dik to be the distance from the centroid
of the i?' subregion to the k"' point source.
As noted in section 3, this device introduces
aggregation bias. We intend to explore the
practical consequences of this simple approach
in a future paper.

Discussion
In this final section, we raise two general issues
which arise when using these models in practice
- dealing with a mixture of explanatory vari-
ables at individual and at group level, which
is most commonly the case in practice, and
recognising the possibility of residual spatial
correlation in the data. In each case, the options
for dealing with the problem are different de-
pending on whether we have control data at
the individual level or spatially aggregated in-
formation on the size of the population at risk.
We assume that case data are always available
at the individual level (typically the postcode
of residence in UK studies).
For individual level control data, the ideal

situation is when all relevant explanatory vari-
ables are available at the individual level. In
the present context, this would include, for

(9)
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example, information on the individual's social
class. As noted earlier, for variables which pur-
port to describe the conditions of an in-
dividual's environment (for example, distance
from a point source), there may be substantive
difficulties even when the analysis is technically
straightforward. If a relevant explanatory vari-
able is available only as an average value for a
subregion (for example, deprivation score), the
options would seem to be the following.

* Pretend that the average applies to every
location x within the subregion, and attach
the average value to each individual
accordingly.

* Recognise that if the explanatory variable,
z(x) say, is not constant within subregions,
then z(x) = fi+ U(x), where U(x) rep-
resents the local deviation of z(x) from its
subregional average value i; we then need
to think about appropriate statistical mod-
els for the deviations U(x) which might,
for example, be assumed to be a spatially
smooth stochastic process. This is ana-
logous to the empirical Bayes procedure
used by Clayton and Kaldor"3 to estimate
smooth spatial variation in risk.

* Aggregate everything to the subregional
level and proceed as outlined at the end
of the section above.

For spatially aggregated control data (for
example, population counts for census wards
or enumeration districts), the simplest option
is the last of the above - that is, aggregate
everything to the subregional level. As indicated
earlier, the effect of this is to induce aggregation
bias. To minimise this effect, we recommend
using the smallest available areal units, for
example, enumeration districts rather than
electoral wards. Some covariates, such as av-
erage social class of head of household, based
on a 10% sample, may be reliably available
only at the ward level. We would then assign the
same value ofthe covariate to each enumeration
district within each ward. Note that if all rel-
evant covariates are only available at ward level,
this simply recovers the ward level analysis.
A slightly more subtle, but still approximate,

approach would be to apply a variant of the
integration equation (2), taking outside the
integral sign the multiplicative factors arising
from explanatory variables recorded at the sub-
region level (including the populations sizes
N), and numerically integrating the remainder
to give expected numbers of cases

p,=Ni exp(j z){ exp{ Pzj (x)}dx

We turn now to the issue of residual spatial
correlation, by which we mean that even after
adjustment for the effects of explanatory vari-
ables, the numbers of cases in spatially adjacent
subregions seem to be correlated. This rep-
resents a departure from the assumed Poisson
process model. For non-infectious diseases, the
most likely source of residual spatial correlation
is the omission of one or more relevant ex-

planatory variables which are themselves
smoothly varying over the study region. In
principle, this can be accommodated by the
device of treating the combined effects of all
such explanatory variables as an unobserved
stochastic process, U(x) say, the effect of which
is to induce spatial correlation into the model
for the data. This has a strong connection to
generalised linear mixed models."3"4

In summary, there is no easy solution to the
analysis of spatial data when some covariates
(for example, age and sex of cases) are known
at individual level, whereas others (for example,
population, age-sex distributions, small area
deprivation indices) are known only at the areal
(ecological) level. However, we urge strongly
that the underlying assumptions inherent in
the analysis of such data are explicitly re-
cognised, in order to understand better the
limitations of the available methodology, as
well as to inform the interpretation of results.
Our current view is that the data should be
kept as disaggregated as possible, both to max-
imise the information available and to minimise
the potential for bias, and the entire analysis
conducted at this minimal level of spatial
aggregation.

Appendix
CONDITIONS FOR ABSENCE OF
AGGREGATION BIAS
Recall that our model for cases and controls is
that controls form a Poisson process with spatial
intensity function k0(x), and cases an in-
dependent Poisson process with spatial in-
tensity k(x) = k0(x)r(x). Furthermore, for a
partition of the study region into subregions
A,, with respective areas denoted by IAi, we
define:

Hi= o0(x)r(x)dx
JAi

and jt* = k0jii where

ko= ko(x)dx
JAi

and

ri= IAtI -' r(x)dx.
AW

If Yi denotes the number ofcases in subregion
Ai, an ecological analysis assumes that the ex-
pectation of Yi is E(Y) = t*, whereas in fact
E(Y3) = 1ti.
Now, ifwe pick a point x uniformly at random

within Ai, we induce a bivariate probability
distribution for the pair of random variables
L= ko(x) and R= r(x). Furthermore, L has
expectation E(L)== jAi -'ki and R has ex-
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pectation E(R) = ti, whence:

i=IA E(L)E(R).

Similarly, the product LR has expectation

E(LR) = Ail - ko(x)r(x)dx

whence

= AiA IE(LR).

Thus, the ecological bias induced by the
spatial aggregation is given by

p*-i Ai JE(L)E(R)-E(LR) }

--A iI Cov(L,R). (10)

We call the covariance on the right hand side
of equation (10) the spatial covariance between
k0(x) and r(x), and conclude that the ecological
bias is zero - that is, [C*= gi, only when the
spatial covariance is zero. This is trivially sat-
isfied if either X0(x) or r(x) is constant through-
out Ai, in which case an ecological analysis is
both unbiased and fully efficient. Otherwise, it
can only be true if k0(x) and r(x) are spatially
uncorrelated - that is, if there is no linear
association, however weak, between population
density and risk.
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Open discussion
ELLIOTT - The intensity function X0 that drops out

of the analysis is contained in the controls; but, of
course, as you say, Professor Diggle, you are then
just moving the problem one step down the line and
asking the epidemiologist or the data collectors to

produce the population distribution for you. The
problem is not resolved.

DIGGLE - No, it becomes the question, "Can you
get what you regard from your practical expertise as
an appropriate set of controls?" If you do there is
no need to estimate the functions. They are just in
the model to make your assumptions explicit. The
thing that you are interested in, which is the risk,
drops out of the analysis naturally. I am not trying
to say that things should be done this way, but I do
think that it behoves statisticians to model the truth
as best they can and then ask if the model is fittable
to the data they have and if not what should be fitted
to the data? You should not start by saying, "These
are the data I have and here is a model that looks
as though it might fit". You should ask what is
actually happening on the ground, model that, and
then ask whether you can derive a statistical dis-
tribution for the data. If you can ... fit it, and if not
... then you begin the more delicate business of
balancing practicality against idealism. As with many
modelling exercises in my experience, this approach
does not create problems, it reveals them, and it
forces you to address them. Sometimes when you
do not model the process you may try to tell yourself
that you have solved the problem by putting in
something like an extra Poisson variation parameter.
I say "What does it mean? - it has no spatial in-
terpretation".

STAINES - Your presentation was very illuminating,
but it did not seem to address a real problem that
occurs when the effects you are looking for are not
individual effects. I think there is a large body of
social theory as well as practical experience that
suggests that many effects result from living in a
particular area or in a particular community and
these are inherent in area based effects. Individual
level measurements will not address them.

DIGGLE - If my Z(x) is piece-wise constant and if
Z(x) is really equal to 0 3 everywhere in an areal
region, that is the value it will have in my model. If
you believe you have covariates at that level they
should go in the model at that level.

STAINES - If the effect is constant that would be
both agreeable and astonishing because clearly the
geographical boundary problem is actually in-
surmountable. What I am saying is different. I be-
lieve, for various reasons, that there are real effects
which are not individual level effects - they are
related to where you live, the social structure within
which you live, and the community in which you
live. This is not captured particularly intelligently by
existing boundaries because the evidence available
suggests that boundaries of enumeration districts are
completely arbitrary. They mean absolutely nothing.
Ward boundaries, although probably more mean-
ingful in a conceptual sense, perhaps because of
political rigging down the centuries, are still not very
satisfactory. There is not a good way of approaching
this problem, to capture areal level effects.

DIGGLE - No model can address and analyse data
you have not got, but ifyou hypothesise that in some
area everybody is exposed to the same effect because
it is an effect of living in that area, then you should
define that area and the statistician should analyse
whether in fact your hypothesis is correct. I would
then do that by attaching the same value Z(x) to all
individuals living within that area. But I would not
wish to impose the use of arbitrary areas on you.
That was my other point - I want the areas to be
medically defined, not politically defined.


