Supplementary Information

Using drivers and transmission pathways to identify SARS-like coronavirus spillover risk hotspots

Renata L. Muylaert^{1*}, David A Wilkinson², Tigga Kingston³, Paolo D'Odorico⁴, Maria Cristina Rulli⁵, Nikolas Galli⁵, Reju Sam John⁶, Phillip Alviola⁷, David T. S. Hayman¹

¹ Massey University, Palmerston North, New Zealand

² UMR ASTRE, CIRAD, INRAE, Université de Montpellier, Plateforme Technologique CYROI, Sainte-Clotilde, La Réunion France

³ Department of Biological Sciences, Texas Tech University, Lubbock, TX, U.S.A.

⁴ Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, CA, U.S.A.

⁵Department of Civil and Environmental Engineering, Politecnico di Milano, Milan, Italy

⁶Department of Physics, Faculty of Science, University of Auckland, Auckland, New Zealand

⁷ Institute of Biological Sciences, University of the Philippines- Los Banos, Laguna, Philippines

*Corresponding author: <u>R.deLaraMuylaert[at]massey.ac.nz</u>

This file includes:

Supplementary Table 1

Supplementary Table 2

Supplementary Table 3

Supplementary Figures 1-11

Supplementary Table 1: Average time in hours to reach healthcare in areas where high emergent risk co-occurred with areas far from healthcare (third upper quantile). In Scenario 3, the average time to reach healthcare is considerably higher.

Scenario	High-risk areas (N) far from healthcare	Average time to reach healthcare (hours, minutes, seconds)	min	max	SD
Scenario 1	26	3.93 (3 h 55 min 48 s)	3.13	4.13	0.62
Scenario 2	78	4.06 (4 h 03 min 36 s)	3.13	4.43	0.81
Scenario 3	236	4.81 (4 h 48 min 36 s)	3.13	5.22	1.81
Scenario 4	59	4.05 (4 h 03 min 00 s)	3.13	4.33	0.82

Higher-level indicator	Univariate spatial layers	Rationale for inclusion	References	Spatial layer details	Spatial layer source
Landscape change (all scenarios).	Three layers were used, representing anthropogenic stressor intensities of: Built up area; Energy and mining; Agriculture and harvest.	Coronavirus shedding may be higher in human-dominated areas. Mining and agricultural areas are a signal of human activity even when population counts are low and can represent the margins where natural host habitat may be closer to human encounters.	1	Summarizes land use intensity by human modification in 2017 (~1 km).	2
Landscape change (all scenarios).	Forest quality.	Emerging infectious disease risk is elevated in forested tropical regions experiencing land-use changes and where wildlife	3	Forest landscape integrity index, where highest values indicate highest quality (low=0, high=10) for 2019 (~1 km). It	4

Supplementary Table 2: Hypothesized risk indicators informing the transmission scenarios, their rationale for inclusion, description, and sources. Original rasters were warped to 0.25 decimal degrees and World Geodetic System (WGS 84).

		biodiversity		is based on inferred	
		(mammal species		and observed	
		richness) is high.		human pressures	
				(infrastructure,	
				agriculture, tree	
				cover loss) and loss	
				of forest	
				connectivity.	
Landscape change	Risk of cover loss	Theory on land-use	5–7	It informs the risk	8
(all scenarios).	based on threats and	induced spillover;		of a forest becoming	
	dynamics.	Agricultural		removed in the	https://futureclimates.conservatio
		land-uses		future (transition	n.org/riskstreecoverloss.html
		exacerbate many		potential, ~1 km),	
		infectious diseases		based on neural	
		in Southeast Asia		network models	
		(malaria,		using historical data	
		Schistosomiasis,		(2001-2014) from	
		Spotted fever,		low (0) to high risk	
		hookworms).		(1). Here we use	
				continental model	
				outcomes and not	
				global, as the	
				regional model	
				estimates for Asia	
				had better	
				performance than	
				the global model.	

Potential secondary	Pigs.	Coronaviruses with	9,11	Areal-weighted	12
host (Scenario 2,		origins tracing to		GLW model	
Scenario 4).		bats causing disease		('Aw.tif' files) from	
		in pigs. Sporadic		GLW3 Gilbert's	
		infections cannot be		livestock of the	
		excluded, but		world estimates for	
		large-scale		2010 (~10 km).	
		SARS-CoV-2		This layer's original	
		transmission among		data spreads	
		pigs is unlikely		individuals of a	
		9. Respiratory		census polygon	
		illness symptoms		evenly, so the	
		have been		density of animals	
		associated with		in each pixel	
		human contact with		corresponds to the	
		wildlife and		average number of	
		livestock 10.		animals/km ² of	
				suitable land in the	
				census unit.	
Potential secondary	Cattle, bovid	Recent evidence	13,14	Areal-weighted	12
host (Scenario 2,	livestock.	from Germany.		GLW model	
Scenario 4).		Concerns the		('Aw.tif' files) from	
		potential for		Gilbert's livestock	
		anthropozoonotic		of the world	
		infections of cattle		estimates for 2010	
		reported as the		(~10 km).	
		presence of a		This layer's original	

		preexisting		data spreads	
		coronavirus did not		individuals of a	
		protect from		census polygon	
		infection with		evenly, so the	
		another		density of animals	
		betacoronavirus in a		in each pixel	
		study. Also,		corresponds to the	
		multiple infections		average number of	
		of individual		animals/km ² of	
		animals might lead		suitable land in the	
		to recombination		census unit. Results	
		events between a		with all bovid	
		SARS-like		livestock in the	
		coronavirus and		supplements	
		Bovine		(buffalo, cattle,	
		Coronavirus, a		goat, sheep).	
		phenomenon			
		already described			
		for other pandemic			
		coronaviruses.			
Potential secondary	Wild mammals	Emerging infectious	3,15	IUCN data (~30	https://www.iucnredlist.org/resou
host (Scenario 3,	minus known bat	disease risk is		km), Search on	rces/other-spatial-downloads#SR
Scenario 4).	hosts.	elevated in forested		2022-04-04.	2021 3
		tropical regions		Original Mollweide	
		experiencing		projection was	
		land-use changes		warped to WGS84	
		and where wildlife		in QGIS 3.24 after	
		biodiversity		subtracting known	

		(mammal species richness) is high. SARS-Cov-2 has been detected in wildlife (spillback events).		bat host ranges.	
Primary host (all	Average estimated	Peak of	16–19	Average values used	16,17
scenarios).	number of species	sarbecovirus hosts		from the two	
	of known bat hosts.	in Asia; Both the		sources. Sánchez et	
		evolutionary and		al. (2022) data (~1	
		ecological aspects		km areas of habitat)	
		of emergence risk		was resampled to	
		are higher in		match Muylaert et	
		southeast Asia—a		al. (2022) resolution	
		fact that will only		(0.25 dd).	
		become more			
		relevant, as bats			
		track shifting			
		climates and			
		exchange viruses			
		with other species,			
		creating a hotspot of			
		elevated			
		cross-species			
		transmission unique			
		to the region.			
		Experimental			
		evidence for bat			

		(SARS-like) coronaviruses viruses infecting human cells			
Exposure (all	Human population	Population size is a	20,21	Worldpop	https://hub.worldpop.org/geodata
scenarios).	counts.	crucial factor for		unconstrained	/listing?id=64
		SARS-like disease		global mosaics of	
		spread.		population counts	
				for 2020 (1 km	
				spatial resolution).	
Detection and	Travel time to	City remoteness and	22	Travel time to	23
spread in humans	healthcare.	hence access to		healthcare	
(not in the		healthcare are key		(motorized minutes,	
scenarios).		to understanding		1 km spatial	
		zoonotic disease		resolution). This	
		outbreaks. They can		layer provides travel	
		be used to		times to a nearest	
		understand early		geolocated hospital	
		detection and		or clinic. Hospital	
		connectivity.		and clinic	
				definitions vary	
				among countries,	
				but they assume	
				they are: Fixed	
				facilities providing	
				urgent or emergency	

		medical care with	
		an entry subtype	
		indicating they were	
		a hospital or clinic,	
		that were open in	
		August 2019.	
		Mobile or	
		temporary clinics	
		for providing	
		healthcare in remote	
		areas are not	
		considered. Weiss et	
		al. (2020) report	
		that travel time	
		estimates were	
		generally accurate.	
		All data is recent,	
		including datasets	
		that were published	
		in 2019. The	
		authors emphasize	
		that Google Maps	
		and OSM data are	
		frequently updated	
		with robust quality	
		controls. In terms of	
		sources of data and	
		coverage, the	

		Google dataset	
		provided the best	
		source of	
		information on	
		facility location in	
		Asia.	
		Data coverage for	
		healthcare varies by	
		country. We assume	
		that there is good	
		data completeness	
		in Asia, and Google	
		had the best	
		healthcare facility	
		data sources for	
		Asian countries.	
		China has the	
		largest number of	
		pixels with	
		healthcare facilities	
		in the world	
		(Supplementary	
		Table 3), followed	
		by other Asian	
		countries considered	
		in our analysis, such	
		as India, Indonesia,	
		Thailand, and	

	Malaysia.	
--	-----------	--

Country	People per hospitals and clinics pixel	Hospitals and clinics pixel count	% Hospitals and clinics pixel count per world total
World total	19200	379231	100.000%
China	25900	53451	14.095%
India	52200	24136	6.364%
Indonesia	14800	17014	4.486%
Thailand	6900	9735	2.567%
Malaysia	10800	2769	0.730%
Philippines	43200	2358	0.622%
Vietnam	40100	2282	0.602%
Bangladesh	131400	1208	0.319%
Sri Lanka	25600	838	0.221%
Nepal	54300	582	0.153%
Myanmar	147500	339	0.089%
Singapore	23000	252	0.066%
Cambodia	80500	192	0.051%
Timor-East	9300	128	0.034%
Lao PDR	89400	76	0.020%
Bhutan	33100	24	0.006%
Brunei	36300	11	0.003%

Supplementary Table 3: Travel time and healthcare facility pixel count for the region of study based on the source data set²³. A pixel is counted when it contains one healthcare facility or more.

Supplementary Fig. 1: Hotspots of potential factors contributing to emergence of SARS-like coronaviruses. A. Spatial distribution of hotspots based on putative drivers of risk of new *Sarbecovirus* emergence evaluated in four scenarios. B. List of variables per scenario marked as black dots and proportion (%) of areas classified as hotspots, intermediate or coldspots across the study region, including wildlife, landscape change, livestock and exposure in humans. This classification used the critical value at the 0.99 percentile to define hotspots and coldspots.

Supplementary Fig. 2: Sensitivity analysis of hotspots of potential factors contributing to emergence of SARS-like coronaviruses at 99% and 95% critical values of quantiles for determining hotspots. Hotspots were insensitive to change in critical values while coldspots tended to decrease and intermediate areas tended to increase.

Supplementary Fig. 3: Hotspot values for cattle and all Bovidae livestock. Hotspots in dark red, intermediate zones in yellow, coldspots in blue.

Supplementary Fig. 4: Principal component analysis (PCA) biplot indicates variation between
19 clusters defined by multivariate spatial cluster analyses considering all variables (Scenario
4). Upper panel: cattle-only version. Bottom panel: all Bovidae livestock version.

Supplementary Fig. 5: Skater within-cluster sum of squares variation from 1 to 40 clusters for all selected variables (Scenario 4). The optimal number of clusters informed by the max-p algorithm was 9 and 19 (respectively, for 10% and 5% human population used as minimum bound variables). Upper panel: Cattle-only version. Bottom panel: all Bovidae livestock version.

Supplementary Fig. 6: Hierarchical nature of the spatial clusters with 9 and 19 optimal number of clusters considering the global scenario (Scenario 4). Results presented with 19 clusters are in the main text. Upper panel: Cattle-Only. Bottom: all Bovidae livestock.

Supplementary Fig. 7: Optimal number of multivariate clusters of all selected components associated with potentially new emerging SARS-like coronavirus (Scenario 4). This version uses all Bovidae livestock instead of cattle-only.

Supplementary Fig. 8: Distribution of clusters of risk factors associated with potentially new emerging SARS-like coronaviruses. The values include all potential mammalian hosts, land use change and human exposure density distributions (Scenario 4). Areas located in the red zone represent hotspots, yellow zones are intermediate areas and coldspots in blue, at a 95% alpha error level.

Supplementary Fig. 9: Risk associated with transmission scenarios according to time to reach healthcare (lower and higher quantiles for healthcare access). Boundaries in black represent the 19 clusters. Upper panel shows areas that are close from healthcare, with high hotspot overlap, in yellow. Bottom panel shows areas that are far from healthcare, with high hotspot overlap, in red. The number below every title corresponds to the grid count for the colour value. Landscape, human population and known bat hosts are included in all models, and are the sole indicators in Scenario 1, representing direct transmission. To incorporate indirect transmission through secondary hosts, mammalian livestock are included in Scenario 2, wild mammals in Scenario 3, and both mammalian livestock and wild mammals in Scenario 4.

Supplementary Fig. 10: Human population variation according to motorized travel time. Colours represent quantiles from the bivariate map of inferred risk from Scenario 4 as a function of time to reach healthcare.

Supplementary Fig. 11: Product-moment correlation values (*r***) of selected variables.** Known bat hosts were combined in a single layer after averaging their values. Results with the cattle-only version are displayed in the main text, and all Bovidae livestock in the supplements.

Supplementary references

- 1. Anthony, S. J. et al. Global patterns in coronavirus diversity. Virus Evol 3, vex012 (2017).
- Theobald, D. M. *et al.* Earth transformed: detailed mapping of global human modification from 1990 to 2017. *Earth System Science Data* 12, 1953–1972 (2020).
- Allen, T. *et al.* Global hotspots and correlates of emerging zoonotic diseases. *Nat. Commun.* 8, 1–10 (2017).
- Grantham, H. S. *et al.* Anthropogenic modification of forests means only 40% of remaining forests have high ecosystem integrity. *Nat. Commun.* 11, 5978 (2020).
- Shah, H. A., Huxley, P., Elmes, J. & Murray, K. A. Agricultural land-uses consistently exacerbate infectious disease risks in Southeast Asia. *Nat. Commun.* 10, 1–13 (2019).
- 6. Plowright, R. K. *et al.* Land use-induced spillover: a call to action to safeguard environmental, animal, and human health. *Lancet Planet Health* **5**, e237–e245 (2021).
- Rulli, M. C., D'Odorico, P., Galli, N. & Hayman, D. T. S. Land-use change and the livestock revolution increase the risk of zoonotic coronavirus transmission from rhinolophid bats. *Nature Food* 2, 409–416 (2021).
- Hewson, J., Crema, S. C., González-Roglich, M., Tabor, K. & Harvey, C. A. New 1 km Resolution Datasets of Global and Regional Risks of Tree Cover Loss. *Land* 8, 14 (2019).
- Sikkema, R. S. *et al.* Experimental and field investigations of exposure, replication and transmission of SARS-CoV-2 in pigs in the Netherlands. *Emerg. Microbes Infect.* 11, 91–94 (2022).
- Li, H. *et al.* Human-animal interactions and bat coronavirus spillover potential among rural residents in Southern China. *Biosaf Health* 1, 84–90 (2019).
- Zhou, P. *et al.* Fatal swine acute diarrhoea syndrome caused by an HKU2-related coronavirus of bat origin. *Nature* 556, 255–258 (2018).
- 12. Gilbert, M. *et al.* Global distribution data for cattle, buffaloes, horses, sheep, goats, pigs, chickens and ducks in 2010. *Sci Data* **5**, 180227 (2018).
- 13. Wernike, K. et al. Antibodies against SARS-CoV-2 Suggestive of Single Events of Spillover to

Cattle, Germany. Emerg. Infect. Dis. 28, 1916–1918 (2022).

- Ulrich, L., Wernike, K., Hoffmann, D., Mettenleiter, T. C. & Beer, M. Experimental Infection of Cattle with SARS-CoV-2. *Emerg. Infect. Dis.* 26, 2979–2981 (2020).
- Nerpel, A. *et al.* SARS-ANI: a global open access dataset of reported SARS-CoV-2 events in animals. *Scientific Data* 9, 1–13 (2022).
- Muylaert, R. L. *et al.* Present and future distribution of bat hosts of sarbecoviruses: implications for conservation and public health. *Proc. Biol. Sci.* 289, 20220397 (2022).
- Sánchez, C. A. *et al.* A strategy to assess spillover risk of bat SARS-related coronaviruses in Southeast Asia. *Nat. Commun.* 13, 4380 (2022).
- Forero, N. *et al.* The coevolutionary mosaic of bat betacoronavirus emergence risk. *EcoEvoRxiv* (2022) doi:10.32942/osf.io/8mgv6.
- Temmam, S. *et al.* Bat coronaviruses related to SARS-CoV-2 and infectious for human cells. *Nature* 604, 330–336 (2022).
- Zhang, X. *et al.* The effect of population size for pathogen transmission on prediction of COVID-19 spread. *Sci. Rep.* 11, 18024 (2021).
- John, R. S., Miller, J. C., Muylaert, R. L. & Hayman, D. T. S. High connectivity and human movement limits the impact of travel time on infectious disease transmission. *medRxiv* 2023.07.26.23293210 (2023) doi:10.1101/2023.07.26.23293210.
- Winck, G. R. *et al.* Socioecological vulnerability and the risk of zoonotic disease emergence in Brazil. *Sci Adv* 8, eabo5774 (2022).
- Weiss, D. J. *et al.* Global maps of travel time to healthcare facilities. *Nat. Med.* 26, 1835–1838 (2020).