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Supplementary Table 1: Average time in hours to reach healthcare in areas where high emergent risk
co-occurred with areas far from healthcare (third upper quantile). In Scenario 3, the average time to
reach healthcare is considerably higher.

Scenario High-risk areas (N) far
from healthcare

Average time to reach
healthcare (hours, minutes,
seconds)

min max SD

Scenario 1 26 3.93 (3 h 55 min 48 s) 3.13 4.13 0.62

Scenario 2 78 4.06 (4 h 03 min 36 s) 3.13 4.43 0.81

Scenario 3 236 4.81 (4 h 48 min 36 s) 3.13 5.22 1.81

Scenario 4 59 4.05 (4 h 03 min 00 s) 3.13 4.33 0.82
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Supplementary Table 2: Hypothesized risk indicators informing the transmission scenarios, their rationale for inclusion, description, and sources.

Original rasters were warped to 0.25 decimal degrees and World Geodetic System (WGS 84).

Higher-level

indicator

Univariate spatial

layers

Rationale for

inclusion

References Spatial layer

details

Spatial layer source

Landscape change

(all scenarios).

Three layers were

used, representing

anthropogenic

stressor intensities

of: Built up area;

Energy and mining;

Agriculture and

harvest.

Coronavirus

shedding may be

higher in

human-dominated

areas. Mining and

agricultural areas

are a signal of

human activity even

when population

counts are low and

can represent the

margins where

natural host habitat

may be closer to

human encounters.

1 Summarizes land

use intensity by

human modification

in 2017 (~1 km).

2

Landscape change

(all scenarios).

Forest quality. Emerging infectious

disease risk is

elevated in forested

tropical regions

experiencing

land-use changes

and where wildlife

3 Forest landscape

integrity index,

where highest

values indicate

highest quality

(low=0, high=10)

for 2019 (~1 km). It
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biodiversity

(mammal species

richness) is high.

is based on inferred

and observed

human pressures

(infrastructure,

agriculture, tree

cover loss) and loss

of forest

connectivity.

Landscape change

(all scenarios).

Risk of cover loss

based on threats and

dynamics.

Theory on land-use

induced spillover;

Agricultural

land-uses

exacerbate many

infectious diseases

in Southeast Asia

(malaria,

Schistosomiasis,

Spotted fever,

hookworms).

5–7 It informs the risk

of a forest becoming

removed in the

future (transition

potential, ~1 km),

based on neural

network models

using historical data

(2001-2014) from

low (0) to high risk

(1). Here we use

continental model

outcomes and not

global, as the

regional model

estimates for Asia

had better

performance than

the global model.

8
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Potential secondary

host (Scenario 2,

Scenario 4).

Pigs. Coronaviruses with

origins tracing to

bats causing disease

in pigs. Sporadic

infections cannot be

excluded, but

large-scale

SARS-CoV-2

transmission among

pigs is unlikely
9. Respiratory

illness symptoms

have been

associated with

human contact with

wildlife and

livestock 10.

9,11 Areal-weighted

GLW model

(’Aw.tif’ files) from

GLW3 Gilbert's

livestock of the

world estimates for

2010 (~10 km).

This layer's original

data spreads

individuals of a

census polygon

evenly, so the

density of animals

in each pixel

corresponds to the

average number of

animals/km2 of

suitable land in the

census unit.

12

Potential secondary

host (Scenario 2,

Scenario 4).

Cattle, bovid

livestock.

Recent evidence

from Germany.

Concerns the

potential for

anthropozoonotic

infections of cattle

reported as the

presence of a

13,14 Areal-weighted

GLW model

(’Aw.tif’ files) from

Gilbert's livestock

of the world

estimates for 2010

(~10 km).

This layer's original

12
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preexisting

coronavirus did not

protect from

infection with

another

betacoronavirus in a

study. Also,

multiple infections

of individual

animals might lead

to recombination

events between a

SARS-like

coronavirus and

Bovine

Coronavirus, a

phenomenon

already described

for other pandemic

coronaviruses.

data spreads

individuals of a

census polygon

evenly, so the

density of animals

in each pixel

corresponds to the

average number of

animals/km2 of

suitable land in the

census unit. Results

with all bovid

livestock in the

supplements

(buffalo, cattle,

goat, sheep).

Potential secondary

host (Scenario 3,

Scenario 4).

Wild mammals

minus known bat

hosts.

Emerging infectious

disease risk is

elevated in forested

tropical regions

experiencing

land-use changes

and where wildlife

biodiversity

3,15 IUCN data (~30

km), Search on

2022-04-04.

Original Mollweide

projection was

warped to WGS84

in QGIS 3.24 after

subtracting known

https://www.iucnredlist.org/resou

rces/other-spatial-downloads#SR

_2021_3
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(mammal species

richness) is high.

SARS-Cov-2 has

been detected in

wildlife (spillback

events).

bat host ranges.

Primary host (all

scenarios).

Average estimated

number of species

of known bat hosts.

Peak of

sarbecovirus hosts

in Asia; Both the

evolutionary and

ecological aspects

of emergence risk

are higher in

southeast Asia—a

fact that will only

become more

relevant, as bats

track shifting

climates and

exchange viruses

with other species,

creating a hotspot of

elevated

cross-species

transmission unique

to the region.

Experimental

evidence for bat

16–19 Average values used

from the two

sources. Sánchez et

al. (2022) data (~1

km areas of habitat)

was resampled to

match Muylaert et

al. (2022) resolution

(0.25 dd).

16,17
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(SARS-like)

coronaviruses

viruses infecting

human cells

Exposure (all

scenarios).

Human population

counts.

Population size is a

crucial factor for

SARS-like disease

spread.

20,21 Worldpop

unconstrained

global mosaics of

population counts

for 2020 (1 km

spatial resolution).

https://hub.worldpop.org/geodata

/listing?id=64

Detection and

spread in humans

(not in the

scenarios).

Travel time to

healthcare.

City remoteness and

hence access to

healthcare are key

to understanding

zoonotic disease

outbreaks. They can

be used to

understand early

detection and

connectivity.

22 Travel time to

healthcare

(motorized minutes,

1 km spatial

resolution). This

layer provides travel

times to a nearest

geolocated hospital

or clinic. Hospital

and clinic

definitions vary

among countries,

but they assume

they are: Fixed

facilities providing

urgent or emergency

23
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medical care with

an entry subtype

indicating they were

a hospital or clinic,

that were open in

August 2019.

Mobile or

temporary clinics

for providing

healthcare in remote

areas are not

considered. Weiss et

al. (2020) report

that travel time

estimates were

generally accurate.

All data is recent,

including datasets

that were published

in 2019. The

authors emphasize

that Google Maps

and OSM data are

frequently updated

with robust quality

controls. In terms of

sources of data and

coverage, the
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Google dataset

provided the best

source of

information on

facility location in

Asia.

Data coverage for

healthcare varies by

country. We assume

that there is good

data completeness

in Asia, and Google

had the best

healthcare facility

data sources for

Asian countries.

China has the

largest number of

pixels with

healthcare facilities

in the world

(Supplementary

Table 3), followed

by other Asian

countries considered

in our analysis, such

as India, Indonesia,

Thailand, and

10



Malaysia.
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Supplementary Table 3: Travel time and healthcare facility pixel count for the region of study based
on the source data set23. A pixel is counted when it contains one healthcare facility or more.
Country People per hospitals

and clinics pixel
Hospitals and clinics
pixel count

% Hospitals and clinics
pixel count per world total

World total 19200 379231 100.000%
China 25900 53451 14.095%
India 52200 24136 6.364%
Indonesia 14800 17014 4.486%
Thailand 6900 9735 2.567%
Malaysia 10800 2769 0.730%
Philippines 43200 2358 0.622%
Vietnam 40100 2282 0.602%
Bangladesh 131400 1208 0.319%
Sri Lanka 25600 838 0.221%
Nepal 54300 582 0.153%
Myanmar 147500 339 0.089%
Singapore 23000 252 0.066%
Cambodia 80500 192 0.051%
Timor-East 9300 128 0.034%
Lao PDR 89400 76 0.020%
Bhutan 33100 24 0.006%
Brunei 36300 11 0.003%
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Supplementary Fig. 1: Hotspots of potential factors contributing to emergence of SARS-like

coronaviruses. A. Spatial distribution of hotspots based on putative drivers of risk of new

Sarbecovirus emergence evaluated in four scenarios. B. List of variables per scenario marked as black

dots and proportion (%) of areas classified as hotspots, intermediate or coldspots across the study

region, including wildlife, landscape change, livestock and exposure in humans. This classification

used the critical value at the 0.99 percentile to define hotspots and coldspots.
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Supplementary Fig. 2: Sensitivity analysis of hotspots of potential factors contributing to

emergence of SARS-like coronaviruses at 99% and 95% critical values of quantiles for

determining hotspots. Hotspots were insensitive to change in critical values while coldspots tended

to decrease and intermediate areas tended to increase.
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Supplementary Fig. 3: Hotspot values for cattle and all Bovidae livestock. Hotspots in dark red,
intermediate zones in yellow, coldspots in blue.
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Supplementary Fig. 4: Principal component analysis (PCA) biplot indicates variation between

19 clusters defined by multivariate spatial cluster analyses considering all variables (Scenario

4). Upper panel: cattle-only version. Bottom panel: all Bovidae livestock version.
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Supplementary Fig. 5: Skater within-cluster sum of squares variation from 1 to 40 clusters for
all selected variables (Scenario 4). The optimal number of clusters informed by the max-p algorithm
was 9 and 19 (respectively, for 10% and 5% human population used as minimum bound variables).
Upper panel: Cattle-only version. Bottom panel: all Bovidae livestock version.
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Supplementary Fig. 6: Hierarchical nature of the spatial clusters with 9 and 19 optimal number
of clusters considering the global scenario (Scenario 4). Results presented with 19 clusters are in
the main text. Upper panel: Cattle-Only. Bottom: all Bovidae livestock.
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Supplementary Fig. 7: Optimal number of multivariate clusters of all selected components
associated with potentially new emerging SARS-like coronavirus (Scenario 4). This version uses
all Bovidae livestock instead of cattle-only.
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Supplementary Fig. 8: Distribution of clusters of risk factors associated with potentially new

emerging SARS-like coronaviruses. The values include all potential mammalian hosts, land use

change and human exposure density distributions (Scenario 4). Areas located in the red zone

represent hotspots, yellow zones are intermediate areas and coldspots in blue, at a 95% alpha error

level.

20



Supplementary Fig. 9: Risk associated with transmission scenarios according to time to reach
healthcare (lower and higher quantiles for healthcare access). Boundaries in black represent the
19 clusters. Upper panel shows areas that are close from healthcare, with high hotspot overlap, in
yellow. Bottom panel shows areas that are far from healthcare, with high hotspot overlap, in red. The
number below every title corresponds to the grid count for the colour value. Landscape, human
population and known bat hosts are included in all models, and are the sole indicators in Scenario 1,
representing direct transmission. To incorporate indirect transmission through secondary hosts,
mammalian livestock are included in Scenario 2, wild mammals in Scenario 3, and both mammalian
livestock and wild mammals in Scenario 4.
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Supplementary Fig. 10: Human population variation according to motorized travel time.
Colours represent quantiles from the bivariate map of inferred risk from Scenario 4 as a function of
time to reach healthcare.
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Supplementary Fig. 11: Product-moment correlation values (r) of selected variables. Known bat

hosts were combined in a single layer after averaging their values. Results with the cattle-only version

are displayed in the main text, and all Bovidae livestock in the supplements.
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