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1. METHODS

A. Neural network architecture
The encoder network E contains two modules. Each module consists of one fully connected
layer, one batch normalization, and one layer normalization layer. The decoder network Dω

also contains two modules, each of which consists of the same layers as that in the encoder
network E. In order to make inferred cell type proportion sparse, we take Sparsemax layer[1]
as the output layer of Dω . We assume the input of Sparsemax layer is P = [p1, ..., pT ]. The
Sparsemax layer firstly sorts elements of P as p(1) ≥ ... ≥ p(T). Then it finds t(p) satisfying
t(p) = max{t ∈ [T] | 1 + tp(t) > ∑j≤t p(j)}. Finally, the Sparsemax layer outputs inferred cell
type proportion Y = [y1, ..., yT ] with

yt =

{
pt − τ(p), pt ≥ τ(p);
0, otherwise.

(S1)

where τ(p) =
(∑j≤k p(j))−1

t(p) .

B. Constructing the pseudo-spatial transcriptomic dataset
Due to the limited size of the small spatial transcriptomic dataset, stVAE may not have enough
data to be properly trained. Therefore, we construct a pseudo-spatial transcriptomic dataset by
aggregating a few cells from the reference scRNA-seq dataset to provide sufficient data for training.
The pseudo-spatial spots and the small real ST data together form the training data for stVAE.
The following are the details for constructing the pseudo-spatial transcriptomic dataset. Let Xsc

denote the set of cells in the reference scRNA-seq data: Xsc = {Xsc
it , i ∈ [1, .., N(t)], t ∈ [1, .., T]},

where T is the total number of cell types and N(t) is the number of cells that belong to cell type t.
To construct a pseudo-spatial spot Xpsd, we first randomly sample K cell types {ct(1), .., ct(K)}
from the T cell types. Then for each cell type k, we randomly sample M(k) cells from {Xsc

ik , i ∈
[1, .., N(k)]} and we obtain a small set of cells Xsc

K = {Xsc
jk , j ∈ [1, .., M(k)], k ∈ [ct(1), .., ct(K)]}.

Finally, we take the average of Xsc
K as one pseudo-spatial spot:

Xpsd =
∑

ct(K)
k=ct(1) ∑

M(k)
j=1 Xsc

jk

∑K
k=1 M(k)

, (S2)

with cell type proportion Ypsd = {ypsd
k , k ∈ [1, .., T]} calculated as

ypsd
k =

{ M(k)
∑K

k=1 M(k)
, k ∈ [ct(1), .., ct(K)],

0, otherwise.
(S3)

In the cellular resolution spatial transcriptomics dataset, each spot contains a few cells, e.g., 1–3
cells, so we set K ≤ 2 and M(k) ≤ 2, k ∈ [ct(1), .., ct(K)]. Therefore, Ypsd is a very sparse vector.

The ground-truth cell-type proportions are known for the pseudo-spatial spots. So the objective
function for pseudo-spatial spot (Xpsd

i , Ypsd
i ) should be adjusted from Equation 9 to

Lpsd(θ, ϕ; Xpsd
i , Ypsd

i ) = DKL(qϕ(Zi | Xpsd
i ) | pθ(Zi))

− Eqϕ

[
log pθ(Xpsd

i | Zi)
]
+ || Yi − Ypsd

i || .
(S4)

where Yi is the output of decoder network Dω as shown in Equation 2. It is the inferred cell type
proportion for Xpsd

i , and it is encouraged to be close to the ground truth Ypsd
i .

C. Training method
In order to save time and memory usage, for mouse brain (Stereo-seq)[2], E12.5 mouse embryo
(Stereo-seq)[2], MOB (Stereo-seq)[2], and MOB (Pixel-seq)[3], we only feed real spatial transcrip-
tomic data X into stVAE. For each epoch, we subsample a batch of data from X and choose
Equation 8 as the loss function. While for mouse brain (Slide-seqV2)[4], which has only 34,199
spots, we generate 200,000 pseudo spots. Then we feed pseudo spatial transcriptomic data
(Xpsd, Ypsd) and real spatial transcriptomic data X into our model together at the same time. For
each epoch, we subsample one batch from X and one batch from (Xpsd, Ypsd). When the batch
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is from X, we choose Equation 8 as the loss function, otherwise, we choose Equation S4 as the
loss function. The batch size is 120. We apply the stochastic gradient descent optimizer with a
learning rate of 0.01 to minimize the loss function. Its momentum factor is set as 0.9. stVAE is
trained on one Tesla V100 GPU.

D. Constructing simulation datasets
We construct spatial spots by combining multiple cells sampled from a published MOB scRNA-
seq dataset[5] which contains 51,426 single cells annotated to 40 cell types. Since the spatial
transcriptomic data is at cellular resolution, we consider two scenarios: Scenario 1 and Scenario
2, in which the number of cell types contained in one simulated spot is no larger than 2 and 3
respectively. For each cell type, we randomly select 1∼2 cells from the MOB scRNA-seq dataset.
Besides, in cellular resolution spatial transcriptomic data, the mean UMI counts per spot are very
lower than that of the scRNA-seq reference, so we generate simulated data with different total
UMI counts. We treat the MOB scRNA-seq dataset as a reference and create three settings A, B,
and C. For each spot, in setting A, we take the mean of UMI count vectors of cells sampled from
the reference dataset as its count vector. In setting B and C, for each spot, we perform resampling
on the UMI count vectors of the sampled cells and then take the mean of the resampled UMI
count vectors as its count vector. In setting B and C, the mean UMI counts per spot are about
20% and 10% of the mean UMI counts per cell in the scRNA-seq reference data, respectively. For
each setting in each scenario, we construct 50,000 spots. We run and compare the performance of
stVAE, RCTD, Stereoscope, DestVI, and Spotlight on these simulated spots.

E. Selection and processing of marker genes
Since the scRNA-seq reference datasets are published, we could find cell-type specific marker
genes from related research articles. For mouse brain (Stereo-seq) and mouse brain (Slide-seqV2)
datasets, since the number of marker genes provided in [6] is too small (889 marker genes for 224
cell types), we utilize the function rank_genes_groups in Scanpy to find extra 968 and 952 marker
genes and finally collect 1,857 and 1,841 marker genes in total, respectively. To analyze E12.5
mouse embryo (Stereo-seq) dataset, for each of 443 reference cell types of the mouse embryo, we
select its top 16 differentially expressed genes (sorted by p-values) and collect 2,426 marker genes
in total from [7]. To analyze MOB dataset, for each of the 40 reference cell types of MOB, we select
the top 100 differentially expressed genes and collect 1,472 and 1,460 marker genes in total from
[5] for MOB (Stereo-seq) and MOB (Pixel-seq) respectively. Then, we utilize scvi-tools package to
estimate the mean expression level and other parameters of these marker genes from scRNA-seq
reference.

F. Evaluation metrics
We utilized Spearman’s rank correlation and Jensen-Shannon distance to measure the similarity
between the inferred cell type proportion and marker gene expression across all spots. To calculate
the Spearman’s rank correlation, let Yt = {yit, i ∈ [1, .., N]} represent the inferred proportion
vector of cell type t across N spots and Xg = {xig, i ∈ [1, .., N]} represent the spatial expression of
gene g across N spots. Next rank Yt and Xg separately in descending order, and assign a rank
to each data point based on their values to obtain rank variables R(Yt) and R(Xg). Finally, the
Spearman’s rank correlation rs is computed as

rs =
cov(R(Yt), R(Xg))

σR(Yt)σR(Xg)
, (S5)

where cov(R(Yt), R(Xg)) are the covariance of Yt and Xg, σR(Yt) and σR(Xg) are the standard devi-
ations of Yt and Xg respectively. To calculate the Jensen-Shannon distance, firstly, we normalized
Yt and Xg to unit vectors Ŷt = {ŷit, i ∈ [1, .., N]} and X̂g = {x̂ig, i ∈ [1, .., N]}. Here, ŷit =

yit

∑N
n=1 ynt

and x̂ig =
xig

∑N
n=1 xng

. Next, the Jensen-Shannon distance JSD is computed as,

JSD =

√
D(Ŷt||X̂g) + D(X̂g||Ŷt)

2
, (S6)

where D(Ŷt||X̂g) = ∑N
i=1 ŷit log 2ŷit

ŷit+x̂ig
and D(X̂g||Ŷt) = ∑N

i=1 x̂ig log 2x̂ig
ŷit+x̂ig

.

3



To evaluate the spatial autocorrelation of the inferred cell type proportion, we computed global
Moran’s I score[8, 9],

I =
N

∑N
i=1 ∑N

j=1 wij

∑N
i=1 ∑N

j=1 wij(yit − ȳt)(yjt − ȳt)

∑N
i=1(yit − ȳt)2

, (S7)

where N is the number of spots, ȳt is the mean of {yit, i ∈ [1, .., N]}, and wij is the connectivity
spatial weight between spot i and j. If i is the neighbor of j, wij = 1, otherwise wij = 0.

2. RESULTS

A. Validating stVAE using simulation data
To validate the performance of stVAE in resolving cell types in cellular resolution spatial transcrip-
tomic data, we constructed a simulation study (see Methods section for details on the settings
of simulation). The number of cell types per spot is not larger than 2 in scenario 1, and it is not
larger than 3 in scenario 2. Compared with the other methods (RCTD, Spotlight, and Stereoscope),
stVAE achieves the lowest mean absolute error (MAE) for the inferred cell type proportions
(Supplementary Fig. S1a). When the total UMI counts per cell decrease, all methods tend to
have higher MAEs, and stVAE is still the best (Supplementary Fig. S1a). We also evaluated the
simulation result through marker gene expression: the presence of a cell type within a spot should
be correlated with the expression of the marker genes for that cell type. Therefore, for each cell
type, we selected its top two ranking marker genes and calculated Spearman’s rank correlations
between the inferred proportion of the cell type and the expression of its marker genes over all
the spots. The correlation computed with the ground truth proportion of the cell types is also
shown in Supplementary Fig. S1b. Spearman’s rank correlation for stVAE is the highest among
all the methods and it is closest to that computed with the ground truth cell type proportions.

The number of cell types in most spots is usually small (e.g., 1∼3)[10] in cellular resolution
spatial transcriptomic data. So the inferred cell-type composition matrix should be sparse: only
a small subset of the cell types have non-zero entries within each spot. We first compared the
proportion of zeros between the inferred cell-type composition matrices for all the methods.
Because stVAE incorporates a Sparsemax layer, it is better suited for cellular resolution spatial
transcriptomic data, and it outputs a sparse cell-type composition matrix, where the proportion
of zeros is closest to that in the ground-truth cell-type composition matrix (Supplementary Fig.
S1c). The inferred cell-type composition matrices for the other methods tend to have lower
sparsity level with a higher proportion of non-zero entries compared to the ground truth. We also
compared the distribution of the entries (larger than 0.01) in the inferred cell-type composition
matrices (Supplementary Fig. S1d). While the distribution for stVAE is closest to that for the
ground truth, the other methods tend to give smaller entries in the inferred cell-type composition
matrices. This suggests that they may not distinguish similar cell types and tend to assign weights
to a larger number of cell types.

In summary of the simulation results, stVAE not only achieves the highest accuracy in identi-
fying the cell types but also gives a more reasonable estimate for the cell-type compositions in
cellular resolution spatial transcriptomic data.

B. Comparison of computational time and memory usage
We next benchmarked the computational time and memory usage of stVAE on five spatial
transcriptomic datasets with different scales. The five datasets consist of the mouse brain Stereo-
seq[2] and Slide-seqV2[4] datasets, the E12.5 mouse embryo Stereo-seq[2] dataset, and the mouse
olfactory bulb (MOB) Stereo-seq[2] and Pixel-seq[3] datasets. The number of spots in these
datasets ranges from approximately 30,000 to 300,000 (Supplementary Table S1). We compared
the computational time and memory usage between stVAE, RCTD, Stereoscope, Spotlight, and
DestVI. The Memory (GB) row displays the maximum memory usage of each method during
the processing of the spatial transcriptomic dataset. Only stVAE and Stereoscope are memory
efficient and can be successfully implemented on all datasets. Both RCTD and Spotlight cannot be
implemented on the mouse brain Stereo-seq dataset (251,760 spots), and the E12.5 mouse embryo
Stereo-seq dataset (318,364 spots), due to the high memory usage. In addition, RCTD cannot
be implemented on the MOB Pixel-seq dataset (115,590 spots). Except for the MOB Stereo-seq
dataset, stVAE is the fastest among all the methods. Although stVAE has higher memory usage
than Stereoscope on the mouse brain Stereo-seq (251,760 spots), the mouse brain Slide-seq V2
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(34,199 spots), and the mouse embryo Stereo-seq (318,364 spots) datasets, its memory usage is
still below the total memory of a typical server (16/32 GB or above). The computational time for
stVAE is significantly faster compared to that for Stereoscope on these datasets.

C. Comparison of the sparsity of cell type composition per spot inferred by stVAE and other
methods

We compared the median of cell type number per spot inferred by stVAE and other methods
across the five cellular resolution spatial transcriptomics datasets in Supplementary Table S3.
The cell type proportions inferred by stVAE exhibit high level of sparsity, which is due to the
introduction of Sparsemax layer in our model. The sparsity in the inferred cell type proportions
is consistent with what is expected for cellular resolution spatial transcriptomic data. On the
contrary, other methods tend to assign non-zero proportions to all cell types in the reference
scRNA-seq data for the spots in spatial data.

D. Analysis of the pseudo-spatial transcriptomic dataset and the low-quality reference scRNA-
seq data

We constructed a pseudo-spatial transcriptomic dataset to guide the training of stVAE on the
small spatial transcriptomic dataset, like the mouse brain (Slide-seqV2) dataset. To illustrate the
contribution of the pseudo dataset to the result, we applied stVAE on the mouse brain (Slide-
seqV2) dataset without the pseudo dataset. The comparison result is shown in the Supplementary
Fig. S5a., which demonstrates that the pseudo dataset helps to improve the performance of stVAE
on the small spatial transcriptomic dataset. To explore how different ways to construct the pseudo
dataset will affect the results, we construct 6 pseudo datasets with different maximum numbers
of cell types and maximum numbers of cells for each cell type at every spot. Comparison results
are shown in Supplementary Fig. S5b. The larger maximum number of cells for each cell type
would slightly decrease the performance of stVAE.

To explore the effect of the low-quality reference scRNA-seq data, we perform resampling on the
UMI count vectors of cells in the reference scRNA-seq dataset of olfactory bulb to construct a low-
quality reference scRNA-seq dataset with lower total UMI count. The mean UMI counts per cell
in the low-quality scRNA-seq reference data are 10% of that in the original scRNA-seq reference
data. The comparison result is shown in Supplementary Fig. S6. The low-quality reference
scRNA-seq dataset would decrease the performance of stVAE. In summary, the performance of
stVAE is robust to pseudo datasets constructed from low-quality reference data.

E. Application of stVAE on the Slide-seqV2 dataset of Mouse brain
To assess the performance of stVAE across different cellular resolution spatial transcriptomic
technologies, we also applied stVAE to a Slide-seqV2 dataset generated from the tissue region
of the mouse hippocampus and parts of cortical layers. The spatial resolution is 10 µm. The
dataset comprises 34,199 spots with a mean of approximately 506 total UMI counts per spot. We
visualized and compared the proportions of five TEGLU subtypes inferred by stVAE and the
other methods (Supplementary Fig. S4). The proportions of TEGLU subtypes inferred by stVAE
on the mouse brain Stereo-seq and Slide-seqV2 datasets exhibit notable consistency: for example,
TEGLU10 is localized to the cortical pyramidal layer 5[6] in both Fig. 2a and Supplementary Fig.
S4. Moreover, compared to the other methods, stVAE identified the distinct spatial pattern of
TEGLU17, which is supported by the expression of its marker gene Slc30a3.

F. stVAE identifies complex spatial patterns of cell types in a large-scale cellular resolution
spatial transcriptomic data of E12.5 mouse embryo

We first compared the performance of stVAE and Stereoscope in identifying the spatial patterns for
subtypes of stromal cells and Schwann cell precursors, respectively. In the comparison, we focused
on the more abundant subtypes, where we filtered out subtypes for which the proportion inferred
by both methods in 95% of all spots is less than 0.01. Compared to stVAE, Stereoscope tends to
incorrectly assign some neuronal cell types to the liver region. For example, Stereoscope assigned
some subtypes of neural progenitor cells, Schwann cell precursor, and cholinergic neurons to the
liver region of the mouse embryo (Supplementary Fig. S7), which contradicts current research
findings[11][12][13]. The liver region predominantly comprises hepatocytes[14] and erythroid
lineage cells[15]. In contrast, stVAE accurately assigned subtypes of neural progenitor cells to
spots in the brain[11] (Supplementary Fig. S7b). stVAE also accurately assigned subtypes of
Schwann cell precursor to spots in the cranium (mandible), trunk (rib), and tooth regions[13]
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(Supplementary Fig. S7d). Other than the neuronal cell types, stVAE accurately identified more
distinct spatial patterns of stromal cells in the axial skeleton[16] and jawbone[17] than that of
Stereoscope as demonstrated by the higher Moran’s I score of stVAE (Supplementary Fig. S7a).

G. stVAE accurately localized cell types in MOB (Pixel-seq) dataset
We assessed the overall performance of stVAE on MOB (Pixel-seq) dataset. We did not include
RCTD in the comparison, because it failed to output results. The cell type proportions inferred by
stVAE are more consistent with the expression of marker genes (Supplementary Fig. S8a and b),
and have a stronger spatial pattern (Supplementary Fig. S8c). Then we benchmarked stVAE and
the other methods for deciphering the neuronal subtypes in GCL and MCL. Compared to other
methods, stVAE inferred the enrichment of granule cells (n12-GC-6) in GCL (Supplementary Fig.
S8d), which is consistent with that on the MOB (Stereo-seq) dataset. These results suggest that
stVAE accurately captures the spatial distributions of the cellular subtypes in MOB and is broadly
applicable to different spatial transcriptomic technologies with cellular resolution.

3. DATA AVAILABILITY

The mouse olfactory bulb scRNA-seq data is available at https://www.ncbi.nlm.nih.gov/geo/query/
acc.cgi?acc=GSE121891. The single-cell data of adult mouse brain is available at http://mousebrain.
org/adolescent/. The mouse embryo scRNA-seq data is available at http://atlas.gs.washington.
edu/mouse-rna. The processed datasets of Stereo-seq datasets of mouse olfactory bulb, adult
mouse brain, and E12.5 mouse embryo are available at https://db.cngb.org/stomics/mosta/. The
processed dataset of Pixel-seq data of mouse olfactory bulb is accessible on https://github.com/
GuLABatUW/Pixel-seq. The Slide-seqV2 data of mouse olfactory bulb is available at https://
portals.broadinstitute.org/single_cell/study/slide-seq-study. All processed data could be accessed at
https://drive.google.com/drive/folders/11djR7vxr6Y1VTpz2EVJKH3MvJNGm9VoR?usp=share_link

4. SUPPLEMENTARY FIGURES
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Fig. S1. Simulation result comparing stVAE with RCTD, Stereoscope, and Spotlight. a, Com-
parison of mean absolute error (MAE) between the true cell type proportions with the inferred
cell type proportions. b, Comparison of Spearman’s rank correlations between the inferred cell
type proportions and the expression of top-ranked marker genes over all the simulated spots.
c, Comparison of the proportion of zero entries in the inferred cell-type composition matrices
and the ground truth.d, Comparison of the distribution of the entries (larger than 0.01) in the
inferred cell-type composition matrices.
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DGGRC2 Ahcyl2
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Histology image

DEGLU1 DGGRC2 TEGLU24

Prkcd Ddc Ahcyl2 Spink8

stVAE

Marker gene
expression

MBDOP2 MOL1

Mal

cell type

Fig. S2. stVAE accurately resolves cell types in the mouse brain Stereo-seq dataset. a, Top, the
proportions of five representative cell types inferred by stVAE are displayed for all the spots.
Bottom, expression levels of the five corresponding top-ranked marker genes are displayed. b,
the dentate gyrus region is zoomed in. The proportion of dentate gyrus granule neuron (DG-
GRC2) inferred by stVAE and the expression of its marker gene Ahcyl2 are displayed alongside
the histology image of the region.
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Fig. S3. DestVI failed to infer the proportions of most telencephalon projecting excitatory neu-
rons (TEGLU) subtypes in the mouse brain Stereo-seq dataset.
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Fig. S4. Application of stVAE on the mouse brain obtained from Slide-seqV2. Top five rows,
the proportions of five telencephalon projecting excitatory neurons (TEGLU) subtypes inferred
by stVAE and alternative methods are displayed on each spot; The sixth row, expression levels
of the five corresponding top-ranked marker genes are displayed; Bottom row, the Spearman’s
rank correlations between the inferred cell type proportions and the expression levels of the top
two marker genes for the five TEGLU subtypes.
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marker genes and the cell type proportions inferred by stVAE with and without pseudo spots
over all spots for 224 cell types in the mouse brain (Slide-seqV2) dataset. stVAE_2_2 denotes
that each pseudo spot in the dataset contains at most 2 cell types, with each cell type consisting
of at most 2 cells. b, Comparison of Spearman’s rank correlation between the expression of top-
ranked marker genes and the cell type proportions inferred by stVAE across 6 pseudo datasets.
The maximum number of cell types per pseudo spot of these pseudo datasets ranges from 2 to
4. The maximum number of cells for each cell type per pseudo spot ranges from 2 to 3.
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Fig. S6. Comparison of Spearman’s rank correlation between the expression of top-ranked
marker genes and the cell type proportions inferred by stVAE on the mouse olfactory bulb
(Stereo-seq) dataset and the mouse olfactory bulb (Pixel-seq) dataset using original scRNA-seq
reference and the low-quality scRNA-seq reference of olfactory bulb. The mean UMI counts
per cell in the low-quality scRNA-seq reference data are 10% of that in the original scRNA-seq
reference data.
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Fig. S7. Application of stVAE on E12.5 mouse embryo obtained from Stereo-seq. Comparison
of spatially clustered subtypes of stromal cells, neural progenitor cells, cholinergic neurons,
and Schwann cell precursor inferred by stVAE and Stereoscope. The region of the liver is anno-
tated by the black curve.
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Fig. S8. Application of stVAE on the mouse olfactory bulb Pixel-seq dataset. a and b, compar-
ison of Spearman’s rank correlation coefficient and JS distance between stVAE and the other
methods, where the top ranked marker gene expression and the inferred cell type proportions
are used in the computation. c, comparison of Moran’s I score between stVAE and the other
methods, where the score is computed from the inferred cell type proportions over all the spots.
d, top four rows, the proportions of the five neuronal subtypes inferred by stVAE and the other
methods are displayed on each spot; The fifth row, expression levels of the five corresponding
top-ranked marker genes are displayed; Bottom row, the Spearman’s rank correlations between
the inferred cell type proportions and the expression levels of the top two marker genes for the
five neuronal subtypes are shown.
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Fig. S10. a, Comparison of Spearman’s rank correlation between the expression of top-
ranked marker genes and the cell type proportions inferred by stVAE, stVAE_Poisson, and
stVAE_ZINB over all spots for 224 cell types in the mouse brain Stereo-seq dataset. b and c,
Comparisons of Spearman’s rank correlation between the expression of top-ranked marker
genes and the cell type proportions inferred by stVAE, stVAE_Poisson, and stVAE_ZINB over
all spots for 40 cell types in the mouse olfactory bulb Stereo-seq and Pixel-seq datasets.
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Fig. S11. a, Comparison of Spearman’s rank correlation between the expression of top-ranked
marker genes and the cell type proportions inferred by stVAE and the deep neural network
(DNN) over all spots for 224 cell types in the mouse brain Stereo-seq dataset. b and c, Com-
parisons of Spearman’s rank correlation between the expression of top-ranked marker genes
and the cell type proportions inferred by stVAE and DNN over all spots for 40 cell types in the
mouse olfactory bulb Stereo-seq and Pixel-seq datasets.
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5. SUPPLEMENTARY TABLE
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Table S1. Comparison of time and memory usage on five cellular resolution spatial transcrip-
tomic datasets.

Reference Dataset Method
Number of
cell types Name

Number of
spots stVAE RCTD Stereoscope Spotlight DestVI

224

Mouse brain
(Stereo-seq) 251,760

Memory (GB) 8.2 44.7 5.0 47.8 21.6

Time 5h49m - 9h5m - 31h27m

Status ✓ × ✓ × ✓

Mouse brain
(Slide-seqV2) 34,199

Memory (GB) 11.9 3.3 4.2 19.5 5.3

Time 3h58m 5h39m 6h14m 69h12m 4h8m

Status ✓ ✓ ✓ ✓ ✓

443 E12.5 mouse embryo
(Stereo-seq) 318,364

Memory (GB) 13.8 52.4 5.5 36.4 30.4

Time 4h47m - 20h54m - 83h47m

Status ✓ × ✓ × ✓

40

MOB
(Stereo-seq) 107,416

Memory (GB) 4.3 24.3 4.2 17.1 18

Time 3h36m 4h 3h24m 1h52m 6h49m

Status ✓ ✓ ✓ ✓ ✓

MOB
(Pixel-seq) 115,590

Memory (GB) 5.5 38.0 3.4 12.5 16.6

Time 3h14m - 3h41m 3h52m 6h5m

Status ✓ × ✓ ✓ ✓

Note: The ✓ symbol in the Status row indicates that the corresponding method could be implemented on the spatial
transcriptomic dataset successfully and produce the result of the cell-type composition of spots. The × symbol indicates that
the corresponding method is interrupted by errors such as "memory exhausted" or "problem too large", and fails to output
results.

Table S2. Comparison of mean total UMI counts per spot of five cellular resolution spatial
transcriptomics datasets and mean total UMI counts per cell in corresponding scRNA-seq
reference datasets.

Number of spots Mean total UMI
counts per spot

Mean total UMI counts
per cell in reference dataset

Mouse brain (Stereo-seq) 251,760 354 3,334

Mouse brain (Slide-seqV2) 34,199 506 3,334

E12.5 mouse embryo (Stereo-seq) 318,364 1,096 795

MOB (Stereo-seq) 107,416 394 1,694

MOB (Pixel-seq) 115,590 757 1,694
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Table S3. Comparison of the median of cell type number per spot inferred by stVAE and other
methods on five cellular resolution spatial transcriptomics datasets.

stVAE Stereoscope DestVI RCTD Spotlight

Mouse brain (Stereo-seq) 8/224 224/224 224/224 - -

Mouse brain (Slide-seqV2) 6/224 224/224 224/224 224/224 224/224

E12.5 mouse embryo (Stereo-seq) 10/443 443/443 443/443 - -

MOB (Stereo-seq) 7/40 40/40 40/40 40/40 19/40

MOB (Pixel-seq) 5/40 40/40 40/40 - 16/40
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