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I. CURRENT RESPONSE TO A UNIFORM ELECTRIC FIELD

We give an overview of the calculation of the steady-state current in a uniform static electric field. We start from
the semiclassical equations of motion and the Boltzmann transport equation in the band-projected theory. We then
proceed to evaluate this expression by expanding the band dispersion and the Berry curvature in coordination shells.

A. Semiclassical electron dynamics

The semiclassical equations of motion for an electron in a two-dimensional (2D) crystal, occupying an energy band
with dispersion εnk subjected to a uniform and static electric field E are given by [1, 2]

ℏṙnk = ∇kεnk − ℏk̇ ×Ωnk, (1)

ℏk̇ = −eE, (2)
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with n the band index and Ωnk = Ωnkẑ the Berry curvature, defined as

Ωnk = i

(〈
∂unk
∂kx

∣∣∣∣∂unk∂ky

〉
cell

−
〈
∂unk
∂ky

∣∣∣∣∂unk∂kx

〉
cell

)
, (3)

where unk(r) are cell-periodic Bloch functions in periodic gauge, un,k+G(r) = e−iG·runk(r) with G a reciprocal
lattice vector, and ⟨unk|umk⟩cell = δnm. Here we have assumed that terms originating from interband transitions such
as the field correction to the Berry curvature [3] can be neglected. In the following, we omit the band index n since
we consider a single band.

The current density is given by

J = −e
∫

BZ

d2k

(2π)
2 fkṙk ≡ JBloch + Jgeom, (4)

with e > 0 the elementary charge and [4]

JBloch = − e
ℏ

∫
BZ

d2k

(2π)
2 fk∇kεk, (5)

Jgeom = (ẑ ×E)
e2

ℏ

∫
BZ

d2k

(2π)
2 fkΩk, (6)

where fk is the out-of-equilibrium distribution function, obtained from the Boltzmann equation. Note that unlike
in the main text, we do not add the factor of 2 for spin in the Supplementary Information. In the relaxation-time
approximation, the Boltzmann equation is given by

∂f

∂t
+ k̇ · ∂f

∂k
+ ṙ · ∂f

∂r
= −f − f0

τ
, (7)

where τ is the momentum-relaxation time and f0k = f0(εk) is the Fermi function,

f0(ε) =
1

e(ε−µ)/kBT + 1
, (8)

with µ the chemical potential and T the temperature. We are interested in the steady-state response of a uniform
electric field, such that the first and third term on the left-hand side of Eq. (7) vanish. Hence, we obtain

fk − eτ

ℏ
E · ∂fk

∂k
= f0k, (9)

which is formally solved by

fk = f0k +
eτ

ℏ
Ei
∂f0k
∂ki

+
(eτ
ℏ

)2
EiEj

∂2f0k
∂kikj

+ · · · . (10)

For a translational-invariant system, f0k can be expanded as a Fourier series,

f0k =
∑
R

f0R e
ik·R, f0R =

Vc

(2π)
2

∫
BZ
d2k f0k e

−ik·R, (11)

where R are lattice vectors and Vc the area of the unit cell. This yields

fk =
∑
R

f0R e
ik·R

1− ieτE ·R/ℏ
. (12)

Plugging this result for the distribution function back into the expression for the currents, we obtain

JBloch(E) = − e
ℏ
∑
R,R′

iR′f0RεR′

1− ieτE ·R/ℏ

∫
BZ

d2k

(2π)
2 e

ik·(R+R′), (13)

=
e

Vcℏ
∑
R

iRf0Rε−R

1− ieτE ·R/ℏ
, (14)

Jgeom(E) = (ẑ ×E)
e2

Vcℏ
∑
R

f0RΩ−R

1− ieτE ·R/ℏ
. (15)
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B. Symmetry properties of the current

We now discuss the constraints put on the currents by symmetry. We start with time-reversal (T ) symmetry. In the
presence of T , the band dispersion εk is an even function of momentum, while the Berry curvature Ωk is odd. Hence
in real space, we have εR = ε−R and f0R = f0−R, while ΩR = −Ω−R. We thus see that in a time-reversal-invariant
system, εR and f0R are real while ΩR is imaginary. This then implies

JBloch(E)
T
= −JBloch(−E), (16)

Jgeom(E)
T
= Jgeom(−E). (17)

Hence, when T is preserved, the geometric (Bloch) current gives that part of the current that is even (odd) in the
electric field.

If the system conserves a crystalline symmetry S, the current obeys

J(SE)
S
= SJ(E). (18)

For example, we see that when C2z [(x, y) 7→ (−x,−y)] is conserved, the total current is odd in the electric field. In
combination with time-reversal symmetry, this implies that the geometric current vanishes, consistent with the fact
that the Berry curvature vanishes in that case. Likewise, under a mirror symmetry Mx (x 7→ −x),

Jx(Ex, Ey) = −Jx(−Ex, Ey), (19)
Jy(Ex, Ey) = +Jy(−Ex, Ey), (20)

such that Jx vanishes for Ex = 0. Hence a transverse response is forbidden whenever the electric field lies along a
mirror axis. In general, the longitudinal and transverse components of the current transform as

J∥(E) ≡ Ê · J(E) = SÊ · J(SE) = J∥(SE) (21)

J⊥(E) ≡ (Ê × ẑ) · J(E) = det(S)J⊥(SE), (22)

where E = EÊ and J = J∥Ê + J⊥Ê × ẑ. Here we used Eq. (18). Hence, the longitudinal component transforms as a
scalar field, while the transverse component transforms as a pseudoscalar field. Note that out-of-plane rotations, such
as C2x, act as improper rotations when restricted to the xy plane with detS = −1.

C. Weak-field expansion

Here we obtain a series expansion in powers of the electric field for the longitudinal and transverse components
from symmetry considerations. To this end, we first define the even and odd currents,

J (±)(E) =
J(E)± J(−E)

2
. (23)

In the presence of a rotation symmetry about the principal axis Cnz (n = 2, 3, 4, 6) of the 2D crystal, we see that the
even component is present only for n = 3.

In order to implement the symmetry, we need and object that transforms properly under the symmetry. For the
rotation symmetry, we consider the object Jx + iJy = Jeiθ with Ê = (cos θ, sin θ). Hence this object transforms as an
Lz = 1 object under Cnz. We first consider the odd component and focus on C3z symmetry. Up to fifth order in the
electric field as, we can write

J (−)
x + iJ (−)

y = a(E2) (Ex + iEy) + b (Ex − iEy)
5
+O(E7), (24)

where both sides transform as an Lz = 1 object. Here we used that Lz is only conserved mod 3 for a system with C3z
symmetry. Incidentally, for a system with C6z, there are no extra terms and we obtain the same expression for the
odd current. Here we defined the functions

a = a0 + a1E
2 + a2E

4, b = b0, (25)
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TABLE S1. Expansions of the currents that are even (J(+)) and odd (J(−)) in the electric field, up to leading order in the
anisotropy, in the presence of Cnz symmetry (n = 2, 3, 4, 6). There are additional constraints on the functions a(E2) and b if T
or other crystalline symmetries are conserved.

J
(+)
x + iJ

(+)
y J

(−)
x + iJ

(−)
y

C2z only 0 a (Ex + iEy) + b (Ex − iEy)

C3z a(E2) (Ex − iEy)
2 + b (Ex + iEy)

4 a(E2) (Ex + iEy) + b (Ex − iEy)
5

C4z 0 a(E2) (Ex + iEy) + b (Ex − iEy)
3

C6z 0 a(E2) (Ex + iEy) + b (Ex − iEy)
5

Mx or C2y ia, ib ∈ R a, b ∈ R

My or C2x a, b ∈ R a, b ∈ R

T a = −b∗E2 a ∈ R

with a0, a1, a2, and b0 c-numbers. We note that a0 = σL + iσH where σL (σH) is the linear longitudinal (Hall)
conductivity. For a system with T symmetry, a is real because of Onsager reciprocity. Moreover, a mirror or in-
plane rotation axis in the y direction, imply that the functions a and b are real. Projecting in the directions parallel
Ê = (cos θ, sin θ) and perpendicular ẑ × Ê = (− sin θ, cos θ) the electric field, yields

J
(−)
∥ − iJ

(−)
⊥ ≃ aE + bE5e−i6θ, (26)

which, without taking into account any symmetry other than C3z, gives

J
(−)
∥ ≃ Re(a0)E + Re(a1)E3 + [Re(a2) + |b0| cos(6θ − arg b0)]E

5, (27)

−J (−)
⊥ ≃ Im(a0)E + Im(a1)E

3 + [Im(a2)− |b0| sin(6θ − arg b0)]E
5. (28)

Note that the projected even (odd) current is actually odd (even) in the electric field. We thus find that the anisotropy
in the odd current only emerges at fifth order in the electric field. When the system has a mirror axis (Mx : x 7→ −x)
or a rotation symmetry (C2y) about the y axis, this reduces to

J
(−)
∥ ≃ a0E + a1E

3 + [a2 + b0 cos(6θ)]E
5, (29)

J
(−)
⊥ ≃ b0E

5 sin(6θ), (30)

where all coefficients are real. One can perform the same analysis for a system with C2z or C4z symmetry. For the
former, we find

J
(−)
∥ − iJ

(−)
⊥ = aE + bEe−i2θ +O(E3), (31)

and for the latter,

J
(−)
∥ − iJ

(−)
⊥ = aE + bE3e−i4θ +O(E5). (32)

Here we expanded up to the lowest order that shows anisotropy.
Similarly, we expand the even part of current up to fourth order in the electric field. Since the even part of the

current vanishes in the presence of C2z symmetry, we only need to consider C3z symmetry:

J (+)
x + iJ (+)

y = a(E2) (Ex − iEy)
2
+ b (Ex + iEy)

4
+O(E6), (33)

with a = a0 + a1E
2 and b = b0. The longitudinal and transverse components become

J
(+)
∥ − iJ

(+)
⊥ ≃ aE2e−i3θ + b0E

4ei3θ. (34)

In the semiclassical theory, the presence of T symmetry requires that J (+)
∥ vanishes since the geometric current is

purely transversal. This implies that a0 = 0 and a1 = −b∗0. Moreover, a mirror axis along the y direction further
constrains a and b to be purely imaginary. Hence a1 = b0 = −ic such that

J
(+)
⊥ ≃ 2cE4 cos(3θ). (35)

An overview of the weak-field expansions of the even and odd current is given in Table S1.
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II. EXPANSION IN COORDINATION SHELLS

In this section, we calculate the current with the semiclassical theory for a single isolated Chern trivial band. This
band is part of a larger band manifold but is well-separated from other bands. We further assume that time-reversal
(T ) symmetry, C3z rotation symmetry, and Mx (x 7→ −x) mirror symmetry are preserved, but that C2z or spatial
inversion symmetry is broken. Hence, a finite Berry curvature is allowed even though the Chern number vanishes.

We write the dispersion εk and the Berry curvature Ωk in terms of an expansion in the coordination shells of the
triangular lattice:

εk = ε0 + ε1

3∑
n=1

cos(k ·L(1)
n ) + ε2

3∑
n=1

cos(k ·L(2)
n ) + · · · , (36)

Ωk = Ω1

3∑
n=1

sin(k ·L(1)
n ) + Ω3

3∑
n=1

sin(k ·L(3)
n ) + · · · , (37)

where we set ε0 = 0 from now on. The first coordination shell is given by a regular hexagon whose vertices lie at a
distance L from the origin, where L is the lattice constant. Here we choose

L
(1)
1 = L1, (38)

L
(1)
2 = L2, (39)

L
(1)
3 = − (L1 +L2) , (40)

where L1 = L
(
1/2,

√
3/2
)

and L2 = L (−1, 0) are primitive lattice vectors. Here we define the lattice vectors such
that C3z, i.e., L(j)

n+1 = C3zL(j)
n for j = 1, 2, 3, . . .. The second shell is given by a regular hexagon that is rotated by π/6

with respect to the first shell and scaled by a factor of
√
3, as shown in Fig. 2(a) of the main text. The third shell is

given by the first shell scaled by a factor of 2. The corresponding lattice vectors can be chosen as

L
(2)
1 = L1 −L2, (41)

L
(2)
2 = L1 + 2L2, (42)

L
(2)
3 = − (2L1 +L2) , (43)

L
(3)
1 = 2L1, (44)

L
(3)
2 = 2L2, (45)

L
(3)
3 = −2 (L1 +L2) . (46)

The fourth and fifth shells are degenerate, i.e., they both lie at a distance
√
7L from the origin. These shells are given

by two regular hexagons that are rotated by an angle π/6± arctan
(√

3/5
)

with respect to the first shell, respectively.

A. Symmetry constraints

Time-reversal symmetry requires an even band dispersion εk = ε−k, while the Berry curvature is required to be
odd, Ωk = −Ω−k. Under a crystalline symmetry S, the band dispersion transforms as a scalar, while the Berry
curvature transforms as a pseudoscalar:

εk = εSk, Ωk = det(S)ΩSk. (47)

Hence, the Berry curvature acquires a sign under Mx symmetry. This constrains the coefficients εj and Ωj in the
expansion in coordination shells, given in Eq. (37). For instance, the second shell in Ωk does not transform properly
under Mx, instead it transforms properly under My. Hence we set Ω2 = 0 in Eq. (37). This can be understood
from the shell structure shown in Fig. 2(a) of the main text. For the 2nd shell, there are two lattice vectors that
are related by both C3z and Mx symmetry, such that the corresponding term of the Berry curvature will be even
under Mx. The 3rd shell, however, is merely a rescaled version of the 1st shell and Ω3 can be therefore be finite.
Similarly, only antisymmetric superpositions of the fourth and fifth shells are allowed, i.e., Ω4 = −Ω5. Conversely, the
band dispersion requires a symmetric superposition of the 4th and 5th shells to conserve Mx symmetry, i.e., ε4 = ε5.
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FIG. S1. Energy bands with C3z and T symmetry. (a) First-shell approximation, i.e., only ε1 is finite such that Mx is conserved.
(b) Including higher shells that explicitly break Mx symmetry, ε4/ε1 = −ε5/ε1 = 0.2.

Hence, we need to expand up to the 4th and 5th shells to break Mx in the band dispersion, while we only need to
expand up to the 2nd shell to break Mx in the Berry curvature. Similar relations hold for higher-order shells.

We show the energy band in the first-shell approximation in Fig. S1(a) and including the 4th and 5th shell with
opposite coefficients such that Mx is broken in Fig. S1(b). The Berry curvature for the first shell and up to the
second shell are shown in Fig. S2(a) and (b), respectively.

B. First-shell approximation

We start by calculating the currents for the first shell, i.e., we set εj = ε1δj,1 and Ωj = Ω1δj,1. In this case, the
Bloch current can be written as

JBloch =
e

Vcℏ
ε1f

0
1

2

3∑
n=1

(
iL

(1)
n

1− ieτE ·L(1)
n /ℏ

− iL
(1)
n

1 + ieτE ·L(1)
n /ℏ

)
= −eε1f

0
1

Vcℏ

3∑
n=1

L
(1)
n (eτE ·L(1)

n /ℏ)
1 + (eτE ·L(1)

n /ℏ)2
, (48)

where f01 is the Fourier component of the Fermi function for R = ±L
(1)
n (n = 1, 2, 3) which are all real and equal due

to T and C3z, respectively. Next, we introduce the dimensionless quantity

ωBτ = eτEL/ℏ, (49)

with ωB the Bloch frequency and where E = |E|. If we parameterize the electric field by an angle θ such that
E = E (cos θ, sin θ), the component parallel to the field becomes

J
∥
Bloch ≡ Ê · JBloch = −eLε1f

0
1

Vcℏ

3∑
n=1

ωBτ(Ê ·L(1)
n /L)2

1 + (ωBτ)2(Ê ·L(1)
n /L)2

(50)

= −eLε1f
0
1

Vcℏ

3∑
n=1

ωBτ cos
2 θn

1 + (ωBτ)2 cos2 θn
, (51)

where we defined the angles θn through

Ê ·L(1)
n = L cos θn, (52)

with θ1 = θ − π/3, θ2 = θ + π, and θ3 = θ + π/3. This yields

J
∥
Bloch(E) = −3eLε1f

0
1

Vcℏ
F

∥
Bloch(ωBτ, θ), F

∥
Bloch(ζ, θ) = ζ

8 + 6ζ2 + ζ4 cos2(3θ)

16 + 24ζ2 + 9ζ4 + ζ6 cos2(3θ)
. (53)

Note that the filling of the band, as well as the effect of temperature, only enters via the overall factor f01 , which is
plotted in Fig. S3. The function F ∥

Bloch for fixed field strength as a function of θ is called a rose curve. It is shown in
Fig. 2(b) of the main text. Because F ∥

Bloch(ζ, θ) has no zeroes for finite ζ, the rose only has a single petal. We further
find that maxF ∥

Bloch ≈ 0.3 where the critical field is determined by a fifth-order polynomial in ζ2. For θ = mπ/3
(m ∈ Z) its real roots are ζ2 = 2 while for θ = π/6 +mπ/3 we find ζ2 = 4/3. This is shown in Fig. S4(a). If we
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FIG. S2. Berry curvature for C3z and T symmetry, but broken C2z or inversion symmetry. (a) First-shell approximation. Only
Ω1 contributes and Mx is conserved. (b) Including the second shell breaks Mx symmetry, Ω2/Ω1 = 0.2.

FIG. S3. Fourier components of the Fermi function for εj = ε1δj,1 and kBT/ε1 = 0.01 as a function of the filling ν.

define the direction perpendicular to the electric field as Ê× ẑ = (sin θ,− cos θ), we find (Ê× ẑ) ·L(1)
n = L sin θn such

that

J⊥
Bloch(E) ≡ (Ê × ẑ) · JBloch = −eLε1f

0
1

Vcℏ

3∑
n=1

ωBτ sin θn cos θn
1 + (ωBτ)2 cos2 θn

= −3eLε1f
0
1

Vcℏ
F⊥

Bloch(ωBτ, θ), (54)

with

F⊥
Bloch(ζ, θ) =

ζ5 sin(3θ) cos(3θ)

16 + 24ζ2 + 9ζ4 + ζ6 cos2(3θ)
. (55)

A polar plot of |F⊥
Bloch(ζ, θ)| is shown in Fig. 2(c) of the main text for different values of ζ. The transverse Bloch rose

has twelve petals, since F⊥
Bloch vanishes for θ = mπ/6 (m ∈ Z). Three of these angles correspond to the three mirror

axes where the transverse response vanishes. The other three angles are a consequence of T in combination with
mirror symmetry. Consider, for example, the case Ey = 0 (other axes are obtained by C3z). In this case, time-reversal
symmetry dictates that the Bloch current is odd in Ex while mirror symmetry requires that the transverse component
is even in Ex, and therefore J⊥

Bloch vanishes for Ey = 0. Summarized, we see that in the presence of time-reversal
symmetry, the transverse Bloch current vanishes when the electric field is either parallel or perpendicular to a mirror
axis. The extremal angles (tips of the petals) of F⊥

Bloch(ζ, θ) are shown as a function of ζ in Fig. S4(b).
For the geometric current, we have Ê · Jgeom = 0 and in the first-shell approximation,

Jgeom(E) ≡ (Ê × ẑ) · Jgeom = −e
2E

Vcℏ
Ω1f

0
1

2

3∑
n=1

(
i

1− ieτE ·L(1)
n /ℏ

− i

1 + ieτE ·L(1)
n /ℏ

)
(56)

=
e2E

Vcℏ
Ω1f

0
1

2

3∑
n=1

2eτE ·L(1)
n /ℏ

1 + (eτE ·L(1)
n /ℏ)2

(57)

=
eL

Vcτ

Ω1f
0
1

L2

3∑
n=1

(ωBτ)
2 cos θn

1 + (ωBτ)2 cos2 θn
=

3eL

Vcτ

Ω1f
0
1

L2
Fgeom(ωBτ, θ), (58)
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FIG. S4. (a) Critical field where F
∥
Bloch(ζ, θ) attains a maximum as a function of the field direction. (b) Critical angles where

the absolute value of the transverse roses F⊥
Bloch(ζ, θ) and Fgeom(ζ, θ) reaches a maximum as a function of the field strength.

Notice that the maxima both converge to θ = π/6 for ζ ≫ 1, for which the transverse roses vanish by Mx or C2y symmetry.

with

Fgeom(ζ, θ) =
ζ4
(
4 + ζ2

)
cos(3θ)

16 + 24ζ2 + 9ζ4 + ζ6 cos2(3θ)
, (59)

whose absolute value is shown in Fig. 2(d) of the main text. The geometric rose has six petals, since mirror symmetry
precludes a transverse response when the electric field lies along a mirror axis. We find that minima of |Fgeom(ζ, θ)|
always occur at θ = mπ/3 and extrema occur for

sin(6θ) = 0, cos2(3θ) =

(
4 + 3ζ2

ζ3

)2

, (60)

such that the right-hand side has to be smaller or equal to one which yields ζ ≥ 3.355 approximately. For ζ ≫ 1,
the maxima converge to θ = π/6 +mπ/3. However, exactly at these angles, which correspond to mirror axes, the
geometric current vanishes. The extremal angles of Fgeom(ζ, θ) are shown in Fig. S4(b) as a function of ζ.

a. Weak-field limit The weak-field (ζ ≪ 1) expansions are given by

F
∥
Bloch(ζ, θ) ≃

ζ

2
− 3ζ3

8
+

10 + cos(6θ)

32
ζ5, (61)

F⊥
Bloch(ζ, θ) ≃

sin(3θ) cos(3θ)

16
ζ5, (62)

Fgeom(ζ, θ) ≃ cos(3θ)

4
ζ4, (63)

consistent with the symmetry analysis. The transverse Bloch current only appears at fifth order because the linear
and cubic terms are forbidden by C3z. Indeed, for any in-plane vector R, the longitudinal and transverse components
of the Bloch current contain the sums

3∑
n=1

(Ê · Cn
3zR)2 =

3

2
|R|2, (64)

3∑
n=1

[(Ê × ẑ) · Cn
3zR](Ê · Cn

3zR) = 0, (65)

such that the linear term in the transverse Bloch current is forbidden. Otherwise it would result in a symmetric part
of the transverse linear conductivity. Similarly, for the cubic terms

3∑
n=1

(Ê · Cn
3zR)4 =

9

8
|R|4, (66)

3∑
n=1

[(Ê × ẑ) · Cn
3zR](Ê · Cn

3zR)3 = 0, (67)
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TABLE S2. Angles and scaling factors of the coordination shells of the triangular lattice, which are regular hexagons with
radius Lj rotated by an angle θj relative to the first shell, shown here up to the seventh shell.

Shell 1 2 3 4 5 6 7

Lj/L 1
√
3 2

√
7

√
7 3 2

√
3

θj 0 π/6 0 π/6 + arctan
(√

3/5
)

π/6− arctan
(√

3/5
)

0 π/6

while all high-order terms are generally nonzero and depend on Ê. We also note that the lowest-order geometric
current is quartic in the field. The quadratic term, correspodning to the Berry curvature dipole, which is allowed by
time-reversal symmetry, is proportional to

Ê ·
∑
R

Rf0RΩ−R, (68)

where ∑
R

Rf0RΩ−R =
∑
R

Rf0C3zRΩ−C3zR = C−1
3z

∑
R

Rf0RΩ−R, (69)

such that the vector sum vanishes. The cubic term involving the Berry curvature quadrupole, is forbidden by time-
reversal symmetry. This is true for all odd powers:

(ẑ ×E)
∑
R

(E ·R)
2n
f0RΩ−R ∝

∑
R

(−E ·R)
2n
f0−RΩR

T
= −

∑
R

(E ·R)
2n
f0RΩ−R. (70)

b. Strong-field limit The strong-field (ζ ≫ 1) expansions are given by

F
∥
Bloch(ζ, θ) ≃

1

ζ
, (71)

F⊥
Bloch(ζ, θ) ≃

tan(3θ)

ζ
, (72)

Fgeom(ζ, θ) ≃ 1

cos(3θ)
, (73)

where the last two lines hold only for θ ̸= π/6 + mπ/3. Precisely at these angles, the transverse currents vanish
because of mirror symmetry, which is conserved if we only include the first shell.

C. General case including all shells

To obtain the general expression including contributions from all shells, we first note that all higher-order shells are
obtained from the first shell by a rotation and a scaling. Hence, the results obtained for the first shell can be used to
find the contribution of any shell. For example, the result for the second shell is obtained by sending

L 7→
√
3L, (74)

ζ 7→
√
3 ζ, (75)

θ 7→ θ +
π

6
, (76)

in the first-shell expressions for JBloch and Jgeom. In this way, we find

J
∥
Bloch(E) = −3eL

Vcℏ
∑
j

εjf
0
j Lj

L
F

∥
Bloch (ωBτLj/L, θ + θj) , (77)

J⊥
Bloch(E) = −3eL

Vcℏ
∑
j

εjf
0
j Lj

L
F⊥

Bloch (ωBτLj/L, θ + θj) , (78)

Jgeom(E) =
3eL

Vcτ

∑
j

Ωjf
0
j

L2

L

Lj
Fgeom (ωBτLj/L, θ + θj) , (79)
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FIG. S5. Differential conductance roses for the first shell.

with ωB = eEL/ℏ and where the sums run over shells. Here εj and Ωj are the coefficients in the shell expansion of
the band dispersion and the Berry curvature, respectively, and f0j are the corresponding Fourier components of the
Fermi function. An overview of the angles and the scaling factors up to the seventh shell is shown in Table S2.

D. Differential conductance

We define the differential conductances as

dJ
∥
Bloch
dE

= − e2τ

Vcℏ2
∑
R

(Ê ·R)2f0Rε−R

(1− ieτE ·R/ℏ)2
, (80)

dJ⊥
Bloch
dE

= − e2τ

Vcℏ2
∑
R

[(Ê × ẑ) ·R](Ê ·R)f0Rε−R

(1− ieτE ·R/ℏ)2
, (81)

dJgeom

dE
= − e2

Vcℏ
∑
R

f0RΩ−R

(1− ieτE ·R/ℏ)2
, (82)

and thus

dJ
∥
Bloch
dE

(E) = −3e2τL2

Vcℏ2
∑
j

εjf
0
j Lj

L

dF
∥
Bloch (ζLj/L, θ + θj)

dζ

∣∣∣∣∣
ζ=ωBτ

, (83)

dJ⊥
Bloch
dE

(E) = −3e2τL2

Vcℏ2
∑
j

εjf
0
j Lj

L

dF⊥
Bloch (ζLj/L, θ + θj)

dζ

∣∣∣∣
ζ=ωBτ

, (84)

dJgeom

dE
(E) =

3e2L2

Vcℏ
∑
j

Ωjf
0
j

L2

L

Lj

dFgeom (ζLj/L, θ + θj)

dζ

∣∣∣∣
ζ=ωBτ

. (85)

We show the differential conductance roses for the first shell in Fig. S5.

E. Summing contributions from two valleys

Finally, we consider two decoupled energy bands that are isolated from other bands with band dispersion ενk and
Berry curvature Ων

k, and that are related by time-reversal symmetry. Here, ν = ±1 is the valley index. Time-reversal
symmetry implies a relation between the energy bands and the Berry curvature of the two valleys:

ενk = ε−ν
−k, Ων

k = −Ω−ν
−k. (86)
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Similarly in real space,

ενR = ε−ν
−R =

(
ε−ν
R

)∗
, (87)

Ων
R = −Ω−ν

−R = −
(
Ω−ν

R

)∗
. (88)

Let us consider the specific case where the symmetries of a single valley are given by the magnetic point group
3m′ = ⟨C3z,MxT ⟩. As before, we expand the energy bands in terms of the coordination shells:

ενk = ε0 + ε1

3∑
n=1

cos(k ·L(1)
n + νϕ) + · · · , (89)

Ων
k = νΩ0 +Ω1

3∑
n=1

sin(k ·L(1)
n + νξ) + · · · . (90)

where ϕ and ξ are phases that are allowed because T is broken within a single valley. Using the relations between the
real-space Fourier components of different valleys, the total current can be written solely in terms of quantities at a
single valley,

JBloch =
2e

Vcℏ
∑
R

iRRe
(
f0+R ε+−R

)
1− ieτE ·R/ℏ

, (91)

Jgeom = (ẑ ×E)
2e2

Vcℏ
∑
R

iIm
(
f0+R Ω+

−R

)
1− ieτE ·R/ℏ

. (92)

In the first-shell approximation, we find

JBloch(E) = −6eLε1|f01 | cos(χ− ϕ)

Vcℏ

[
ÊF

∥
Bloch(ωBτ, θ) + (Ê × ẑ)F⊥

Bloch(ωBτ, θ)
]
, (93)

Jgeom(E) = (Ê × ẑ)
6eL

Vcτ

Ω1|f01 | cos(χ− ξ)

L2
Fgeom(ωBτ, θ), (94)

where f0ν±R = |f01 |e±iνχ for R = L
(1)
n (n = 1, 2, 3).

III. PERIODICALLY-BUCKLED GRAPHENE

A. Strain profile from height modulation

Given a height modulation of the monolayer graphene, induced by a buckling transition, we want to obtain the
corresponding strain tensor. The strain tensor uij (i, j = x, y) is defined [5] by considering the change in length between
two points with initial (infinitesimal and in-plane) separation dri after a deformation:

[
(dri + dui)

2 + dh2
]
− dr2i ≡

2uijdridrj . Up to lowest order in the displacements, the strain tensor is given by

uij(r) =
1

2
[∂iuj + ∂jui + (∂ih) (∂jh)] , (95)

with ∂i = ∂/∂ri and where ui(r) and h(r) are the in-plane and out-of-plane displacements, respectively.
If the displacements are periodic, we can write them as a Fourier series:

ui(r) =
∑
G
uiG e

iG·r, (96)

h(r) =
∑
G
hG e

iG·r, (97)

where G is a reciprocal lattice vector of the periodic modulation (not of the monolayer graphene) and ui0 = h0 = 0.
For later convenience, we also define

fij(r) ≡ [∂ih(r)] [∂jh(r)] =
∑
G
fijG e

iG·r, (98)
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where

fijG = −
∑
G′

hG′hG−G′G′
i

(
Gj − G′

j

)
. (99)

The strain tensor becomes

uij(r) =
1

2

∑
G

[i (GiujG + GjuiG) + fijG ] e
iG·r. (100)

A fixed height profile h(r) will give rise to in-plane displacements as the graphene lattice relaxes. The in-plane
displacements can be found by minimizing the elastic energy density [6, 7]:

Eelas =
1

V

∫
d2r

[
λ

2
(uxx + uyy)

2
+ µ

(
u2xx + u2yy + 2u2xy

)]
(101)

=
1

V

∫
d2r

[(
λ

2
+ µ

)(
u2xx + u2yy

)
+ λuxxuyy + 2µu2xy

]
, (102)

where λ and µ are the Lamé parameters for graphene. Plugging in the Fourier expansions, we obtain

1

V

∫
d2r u2ii =

1

V

∑
G,G′

∫
d2r

(
iGiuiG +

fiiG
2

)(
iG′

iuiG′ +
fiiG′

2

)
ei(G+G′)·r (103)

=
∑
G

∣∣∣∣iGiuiG +
fiiG
2

∣∣∣∣2 , (104)

1

V

∫
d2r uxxuyy =

∑
G

(
iGxuxG +

fxxG
2

)(
−iGyu

∗
yG +

f∗yyG
2

)
(105)

=
1

2

∑
G

[(
iGxuxG +

fxxG
2

)(
−iGyu

∗
yG +

f∗yyG
2

)
+ c.c.

]
, (106)

1

V

∫
d2r u2xy =

1

4

∑
G

(iGxuyG + iGyuxG + fxyG)
(
−iGxu

∗
yG − iGyu

∗
xG + f∗xyG

)
. (107)

Hence, the elastic energy density becomes

Eelas =

(
λ

2
+ µ

)∑
G

(
iGxuxG +

fxxG
2

)(
−iGxu

∗
xG +

f∗xxG
2

)
(108)

+

(
λ

2
+ µ

)∑
G

(
iGyuyG +

fyyG
2

)(
−iGyu

∗
yG +

f∗yyG
2

)
(109)

+
λ

2

∑
G

[(
iGxuxG +

fxxG
2

)(
−iGyu

∗
yG +

f∗yyG
2

)
+ c.c.

]
(110)

+
µ

2

∑
G

(iGxuyG + iGyuxG + fxyG)
(
−iGxu

∗
yG − iGyu

∗
xG + f∗xyG

)
. (111)

By extremizing the elastic energy with respect to u∗iG we obtain equations for the Fourier components uiG in terms
of fijG (and thus hiG). We find

∂E
∂u∗xG

= −iGx

[(
λ

2
+ µ

)(
iGxuxG +

fxxG
2

)
+
λ

2

(
iGyuyG +

fyyG
2

)]
− iGy

µ

2
(iGxuyG + iGyuxG + fxyG) , (112)

∂E
∂u∗yG

= −iGy

[(
λ

2
+ µ

)(
iGyuyG +

fyyG
2

)
+
λ

2

(
iGxuxG +

fxxG
2

)]
− iGx

µ

2
(iGxuyG + iGyuxG + fxyG) . (113)

Setting the above two equations equal to zero, yields solutions

uxG =
i

2 (λ+ 2µ) |G|4
{
fGxxGx

[
G2
x (λ+ 2µ) + G2

y (3λ+ 4µ)
]
+
(
fGyyGx − 2fGxyGy

) [
G2
xλ− G2

y (λ+ 2µ)
]}
, (114)

uyG =
i

2 (λ+ 2µ) |G|4
{
fGyyGy

[
G2
y (λ+ 2µ) + G2

x (3λ+ 4µ)
]
+
(
fGxxGy − 2fGxyGx

) [
G2
yλ− G2

x (λ+ 2µ)
]}
. (115)
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1. Pseudomagnetic field

Shear strain breaks the microscopic C3z symmetry and couples to the low-energy Dirac electrons of graphene through
a pseudo vector potential νA(r) with ν = ±1 the valley index and [8–12]

A = −
√
3ℏβ
2ea

(
uxx − uyy
−2uxy

)
, (116)

where e > 0 is the elementary charge, a ≈ 0.246 nm is the lattice constant of graphene, and β ∼ 1 is the electron
Grüneisen parameter for graphene. By using the results given above, we find that

uGxx − uGyy =
(λ+ µ)

(
G2
y − G2

x

) (
G2
xf

G
yy − 2GxGyf

G
xy + G2

yf
G
xx

)
(λ+ 2µ) |G|4 , (117)

−2uGxy =
2 (λ+ µ)GxGy

(
G2
xf

G
yy − 2GxGyf

G
xy + G2

yf
G
xx

)
(λ+ 2µ) |G|4 , (118)

such that

A(r) =

√
3ℏβ
2ea

λ+ µ

λ+ 2µ

∑
G

G2
xf

G
yy − 2GxGyf

G
xy + G2

yf
G
xx

|G|4

(
G2
x − G2

y

−2GxGy

)
eiG·r. (119)

Likewise, the pseudomagnetic field B(r) = B(r)ẑ becomes

B(r) = ∂xAy − ∂yAx =

√
3ℏβ
2ea

λ+ µ

λ+ 2µ

∑
G

iGy

(
G2
y − 3G2

x

) (
G2
xf

G
yy − 2GxGyf

G
xy + G2

yf
G
xx

)
|G|4 eiG·r. (120)

Notice that G = 0 does not contribute (i.e., there is no net flux) since the nominator scales as |G|5.

2. Triangular height profile

We now consider a height profile that conserves C3z symmetry in the first-star approximation,

h(r) = h0

3∑
n=1

cos
(
Gn · r +

π

4
+ ϕ

)
, (121)

where ϕ is a parameter that controls the shape of the height profile. Note that while ϕ cannot be absorbed in
a coordinate shift, Eq. (121) is invariant under ϕ 7→ ϕ + 2π/3 up to an overall translation. The finite Fourier
components are h±Gn

= h0e
±i(ϕ+π/4)/2 (n = 1, 2, 3) and where

G1 =
4π√
3L

(
0
1

)
, G2/3 =

4π√
3L

(
∓
√
3/2

−1/2

)
, (122)

with G3 = −G1 − G2 and L the lattice constant of the height modulation. These are the three shortest nonzero
reciprocal lattice vectors that are related by C3z symmetry. We calculate all the Fourier components of fij(r) with
Mathematica. We then find that

iGy

(
G2
y − 3G2

x

) (
G2
xf

G
yy − 2GxGyf

G
xy + G2

yf
G
xx

)
|G|4

=
3G3h20

8

[
e−2iϕ (δG,G1

+ δG,G2
+ δG,G3

) + e2iϕ (δG,−G1
+ δG,−G2

+ δG,−G3
)
]
,

(123)

with G = 4π/
√
3L and therefore

B(r) = B0

3∑
n=1

cos (Gn · r − 2ϕ) , B0 =
ℏβ
ea

λ+ µ

λ+ 2µ

8π3h20
L3

. (124)

We find that the pseudomagnetic field is invariant under ϕ 7→ ϕ + π/3 up to an overall translation, which changes
the sign of the height profile. Hence we can restrict ourselves to ϕ ∈ (−π/6, π/6]. The pseudomagnetic field has C6z
symmetry for the special case ϕ = π/12.
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3. Rectangular height profile

Let us also consider a height profile that conserves C4z symmetry in the first-star approximation,

h(r) = h0

2∑
n=1

cos (Gn · r) . (125)

In this case, a phase factor can always be absorbed in a coordinate shift since there are only two reciprocal lattice
vectors. The finite Fourier components are now given by h±Gn

= h0/2 (n = 1, 2) where

G1 =
2π

L

(
1
0

)
, G2 =

2π

L

(
0
1

)
. (126)

We calculate all the Fourier components of fij(r) with Mathematica and find

iGy

(
G2
y − 3G2

x

) (
G2
xf

G
yy − 2GxGyf

G
xy + G2

yf
G
xx

)
|G|4

=
G3h20
4i

[(δG,G2+G1
+ δG,G2−G1

)− (δG,−G2−G1
+ δG,−G2+G1

)] ,

(127)

with G = 2π/L and

B(r) = B0 (sin [(G2 + G1) · r] + sin [(G2 − G1) · r]) , B0 =
ℏβ
ea

λ+ µ

λ+ 2µ

2
√
3π3h20
L3

. (128)

Under C2z, the pseudomagnetic field picks up an extra sign because the valleys are interchanged. Hence the pseu-
domagnetic field for a height profile with C4z symmetry always has C2z symmetry, as expected. In this case, band
crossings between backfolded bands are protected locally in momentum space by C2zT symmetry.

B. Continuum model

When the height profile varies slowly compared to the graphene lattice constant, i.e., L ≫ a, we can use the
valley-projected continuum theory [7, 13],

Ĥν =

∫
d2r ψ̂†

ν(r)
{
ℏv
[
−i∇+

νe

ℏ
A(r)

]
· (νσx, σy) + V(r)σ0

}
ψ̂ν(r), (129)

where σx and σy are Pauli matrices, σ0 is the 2 × 2 identity matrix, ψ̂ν = (ψ̂νA, ψ̂νB)
t are field operators satisfying

{ψ̂†
ν(r), ψ̂ν′(r′)} = δνν′δ(2)(r − r′), and we take ℏv ≈ 575.2 meVnm [14]. The pseudo vector potential and scalar

potential are given in terms of their Fourier series,

A(r) =
∑
G

AG e
iG·r, V(r) = V0

h(r)

h0
=
∑
G

VG e
iG·r. (130)

The Hamiltonian can be diagonalized by Fourier transformation,

ψ̂ν(r) =
1√
V

∑
k

∑
G
ei(k−G)·r ĉν,k−G , (131)

where the sum over k is restricted to the first superlattice Brillouin zone (SBZ) and {ĉν,k−G , ĉν,k′−G′} = δk,k′δG,G′ .
Note that every wave vector has a unique decomposition as k − G. The Hamiltonian becomes

Ĥν =
1

V

∑
k,k′

∑
G,G′

∫
d2r ĉ†ν,k′−G′e

−i(k′−G′)·r
{
ℏv
[
k − G +

νe

ℏ
A(r)

]
· (νσx, σy) + V(r)

}
ei(k−G)·r ĉν,k−G . (132)
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Next, we note that
1

V

∫
d2r e−i(k′−G′)·r ei(k−G)·r = δkk′δGG′ , (133)

1

V

∫
d2r e−i(k′−G′)·r A(r) ei(k−G)·r = δkk′AG−G′ , (134)

1

V

∫
d2r e−i(k′−G′)·r V(r) ei(k−G)·r = δkk′VG−G′ . (135)

For example, for the triangular height profile, we have

AG =
1

2

3∑
n=1

An

(
ie−2iϕδG,Gn

− ie2iϕδG,−Gn

)
+AG , (136)

VG =
V0

2

3∑
n=1

(
ei(ϕ+π/4)δG,Gn

+ e−i(ϕ+π/4)δG,−Gn

)
, (137)

where AG corresponds to higher harmonics that can be gauged away (i.e., they do not contribute to the curl of the
pseudo vector potential) and

A1 =
B0

G

(
1
0

)
, A2/3 =

B0

G

(
−1/2

±
√
3/2

)
, V0 = −eEzh0, (138)

with G = 4π/
√
3L and Ez the electric field perpendicular to the nominal graphene plane. For computational conve-

nience, it can be preferable to use the gauge

A(r) = −x̂B0

3∑
n=1

sin (Gn − 2ϕ)

Gny
, (139)

which preserves the symmetries of the system up to a gradient term. The Hamiltonian becomes

Ĥν =
∑
k

∑
G,G′

ĉ†ν,k−G′

{
ℏv
[
(k − G) δGG′ +

νe

ℏ
AG−G′

]
· (νσx, σy) + VG−G′

}
ĉν,k−G , (140)

which can be diagonalized numerically by taking a finite number of G vectors. The number of reciprocal lattice vectors
is then increased until the results are converged. The output of this calculation yields the energy bands ενnk with
eigenvectors Cν

n,k−G where n is the band index. Leaving out the valley index, the Bloch wave function becomes

Ψnk(r) = eik·runk(r), unk(r) =
1√
Vc

∑
G
Cn,k−G e

−iG·r, (141)

where unk are the cell-periodic functions, obeying the periodic gauge condition: un,k+G(r) = e−iG·runk(r) and
normalization ⟨unk|umk⟩cell = δnm. For the calculation of the Berry curvature, we need to evaluate overlaps between
the cell-periodic functions at neighboring k points,

⟨unk|unk′⟩cell =
1

Vc

∑
G,G′

(Cn,k−G)
∗
Cn′,k′−G′

∫
cell

d2r ei(G−G′)·r (142)

=
∑
G

(Cn,k−G)
∗
Cn′,k′−G . (143)

If we measure momentum and energy in units of k0 = 4π/3L and ℏvk0, respectively, the continuum model can be
written in terms of two dimensionless parameters,

L

l0
,

V0

ℏvk0
, (144)

where l0 =
√

ℏ/eB0 ∝ h0 is an effective magnetic length. In the following, we take the experimental values of Ref. [15]
(L = 14 nm and B0 = 120 T) which gives L/l0 ≈ 6 and ℏvk0 ≈ 172 meV, and regard V0 and ϕ as tunable parameters.
Because this model has a chiral symmetry under simultaneous reversal of the scalar potential, σzHν [V]σz = −Hν [−V],
we only need to consider the valence bands. This model symmetry implies

ενnk[−V] = −εν−n,k[V], Ων
nk[−V] = Ων

−n,k[V], (145)

with n a nonzero integer such that n > 0 (n < 0) corresponds to conduction (valence) bands.
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C. Berry curvature and valley Chern number

We numerically calculate the Berry curvature and valley Chern numbers. To this end, we first consider a square
plaquette of area δ2 centered at k with corners: k1 = k + δ

2 (−1,−1), k2 = k + δ
2 (−1, 1), k3 = k + δ

2 (1, 1), and
k4 = k + δ

2 (1,−1). For a given band, we then consider the gauge-invariant product

⟨uk1
|uk2

⟩⟨uk2
|uk3

⟩⟨uk3
|uk4

⟩⟨uk4
|uk1

⟩ =
4∏

m=1

⟨ukm
|ukm+1

⟩, (146)

where k5 = k1. One can show that

Ωk = lim
δ→0

δ−2 arg

4∏
m=1

⟨ukm
|ukm+1

⟩, Tr gk = − lim
δ→0

δ−2 ln

∣∣∣∣∣
4∏

m=1

⟨ukm
|ukm+1

⟩

∣∣∣∣∣ , (147)

where

gijk = Re (⟨∂iuk|∂juk⟩) + ⟨uk|∂iuk⟩⟨uk|∂juk⟩, (148)

is the Fubiny-Study quantum metric. For convenience, we use a Bravais grid (k1, k2) with k = k1G1 + k2G2 where

Ωk =
Vc

(2π)2
F12, F12 = i (⟨∂1uk|∂2uk⟩ − ⟨∂2uk|∂1uk⟩) , C =

1

2π

∑
k1,k2

F12. (149)

D. Phase diagrams

We focus on the highest valence band, taking into account both valleys. We numerically calculated the phase
diagram in the (V0, ϕ) plane for the smallest energy gap to the two neighboring bands εgap. We also calculated the
bandwidth εwidth, as well as the ratios εgap/εwidth and ε2gap/εwidth. These diagrams are shown in Fig. S6. Notice that
these diagrams are invariant under (V0, ϕ) 7→ (−V0, ϕ+π/3). On the phase diagram showing the energy gap, we have
indicated the valley Chern numbers of the highest valence band and the lowest conduction band. The energy bands
along high-symmetry lines of the SBZ for the parameters corresponding to the circle, disk, and cross in the phase
diagrams, are shown in Fig. S7. In the main text, we were mainly interested in showing that the ratio ε2gap/εwidth
can be made large enough such that electric breakdown is absent even in the strong-field limit, i.e., the regime

0.66 ps
τ

10 nm
L

≪ E

kV/cm
≪

ε2gap
εwidthmeV

10 nm
L

. (150)
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FIG. S6. (a) Phase diagram of PBG in the (V0, ϕ) plane. The density plot gives the smallest energy gap εgap of the highest
valence band to other bands and the valley Chern numbers of the highest valence and lowest conduction band for valley K+

is shown as (Cn=−1, Cn=+1). (b) Bandwidth εwidth of the highest valence band. (c) Ratio εgap/εwidth for the highest valence
band. (d) Ratio ε2gap/εwidth for the highest valence band.
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FIG. S7. Energy bands of PBG for L/l0 = 6 and ℏvk0 ≈ 172 meV along high-symmetry lines of the SBZ as indicated in (a).
The light/dark bands correspond to valley K+/K− and the red band is the highest valence band. (a) V0/ℏvk0 = 0.095 and
3ϕ/π = −0.06. (b) V0/ℏvk0 = 0.52 and 3ϕ/π = 0.075. (c) V0/ℏvk0 = 0.17 and 3ϕ/π = −0.25.
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FIG. S8. Different stacking configurations of Bernal bilayer graphene and the first BZ of graphene with the two valleys
K± = (±4π/3a, 0) and the rotated zone corners of the two bilayers K1

± and K2
±. On the left, we indicate the intralayer

nearest-neighbor hopping −t0, and the skew interlayer hoppings t3 (intersublattice) and t4 (intrasublattice) with dashed lines.

IV. TWISTED DOUBLE BILAYER GRAPHENE

We give an overview of the continuum model for twisted double bilayer graphene, following Ref. [16]. Before we
proceed, we give a short review of the continuum theory of Bernal bilayer graphene.

A. Bernal bilayer graphene

We consider a Bernal-stacked bilayer graphene. The sublattices on the first layer are denoted as A1 and B1,
and those on the second layer as A2 and B2. We define AB-stacked (BA-stacked) bilayer graphene as the stacking
configuration where the atoms of A1 (B1) and B2 (A1) eclipse one another. This is illustrated in Fig. S8.

Following [17], we use a lattice model for Bernal bilayer graphene that takes into account intralayer nearest-neighbor
hopping with amplitude −t0, interlayer hopping between eclipsing atoms t1, as well as skew interlayer hopping t3
(intersublattice) and t4 (intrasublattice), and a sublattice staggering potential δ. The latter is due to the different
environment of the eclipsing atoms. The point group of Bernal bilayer graphene is D3d = ⟨C3z, C2y, I⟩ where I is
spatial inversion [(r, z) 7→ (−r,−z)]. Applying an interlayer bias potential breaks inversion symmetry and reduces
the point group to D3 = ⟨C3z, C2y⟩.

The corresponding Bloch Hamiltonian of AB Bernal bilayer graphene is given by

hAB(k) =

 U1 + δ −t0f(k)∗ t4f(k) t1
−t0f(k) U1 t3f(k)

∗ t4f(k)
t4f(k)

∗ t3f(k) U2 −t0f(k)∗
t1 t4f(k)

∗ −t0f(k) U2 + δ

 ≡
(
h0(k) + U1 g†(k)

g(k) h′0(k) + U2

)
, (151)

and thus

hBA(k) =

(
h′0(k) + U1 g(k)
g†(k) h0(k) + U2

)
, (152)

where

f(k) = 1 + eik·a1 + eik·a2 , (153)

and a1/2 = a(±1/2,
√
3/2) with a ≈ 0.246 nm, see Fig. S8. The sign difference between the intralayer and interlayer

hoppings comes from the relative sign of the overlap of pz orbitals within and between the layers. We take the following
values for the hopping constants t0 = 2.7 eV (below we use an effective t0), t1 = 0.4 eV, t3 = 0.32 eV, t4 = 0.044 eV,
and δ = 0.05 eV [16]. Defining the two valleys as K± = (±4π/3a, 0), we find

f(k +K±) ≃ −
√
3

2
a (±kx + iky) , (154)

up to first order in |k|. Hence, if we place the origin of the momentum at K±,

h0ν(k) ≃
[

δ ℏv (νkx − iky)
ℏv (νkx + iky) 0

]
, h′0ν(k) ≃

[
0 ℏv (νkx − iky)

ℏv (νkx + iky) δ

]
, (155)
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where ν = ±1 corresponds to valley K±, respectively, and ℏv =
√
3t0a/2. In our TDBG calculations, we follow Refs.

[18] and [16] and take a smaller value of ℏv ≈ 525.308 meV nm, corresponding to an effective t0 of 2.1354 eV, due to
longer-range intersublattice hopping within a single graphene layer in their model. We also have

gν(k) ≃
[
−ℏv4 (νkx − iky) −ℏv3 (νkx + iky)

t1 −ℏv4 (νkx − iky)

]
, (156)

with ℏv3 =
√
3t3a/2 and ℏv4 =

√
3t4a/2.

B. Twisted double bilayer graphene

We now consider twisted double bilayer graphene (TDBG). Notice that in the absence (presence) of an interlayer
bias, the point group of Bernal TDBG is given by D3 (C3) [16]. Rotating the Bernal bilayer graphene by an angle ϑ
is equivalent to sending

f(k) 7→ 1 + eik·R(ϑ)a1 + eik·R(ϑ)a2 = f(R(−ϑ)k), (157)

in the lattice model, with R(ϑ) the 2×2 rotation matrix. Hence the rotated Dirac points are located at R(ϑ)K±. We
construct TDBG by first stacking two Bernal bilayers directly on top of each other, and then rotating the first bilayer
by +ϑ/2 and the second bilayer by −ϑ/2. Only the second and third graphene layers are coupled by the interlayer
moiré potential

Tν(r) = Tν0 + Tν1e
iνG1·r + Tν2e

iνG2·r, (158)

where G1/2 = (4π/
√
3L)(±1/2,

√
3/2) are moiré reciprocal lattice vectors, and

Tνn = w0σ0 + w1

[
cos

(
2πn

3

)
σx + ν sin

(
2πn

3

)
σy

]
, (159)

with w0 = 79.7 meV and w1 = 97.5 meV the AA and AB interlayer moiré amplitudes [16, 19].
For AB–AB stacked TDBG, we have

ĤAB–AB
ν =

∫
d2r ψ̂†

ν(r)HAB–AB
ν (−i∇) ψ̂ν(r), (160)

with ψ̂ν = (ψ̂ν,A1, ψ̂ν,B1, ψ̂ν,A2, ψ̂ν,B2, ψ̂ν,A3, ψ̂ν,B3, ψ̂ν,A4, ψ̂ν,B4)
t and

HAB–AB
ν (−i∇) =


h0ν(k1) + U1 g†ν(k1) 0 0

gν(k1) h′0ν(k1) + U2 T †
ν (r) 0

0 Tν(r) h0ν(k2) + U3 g†ν(k2)
0 0 gν(k2) h′0ν(k2) + U4

 , (161)

where k1/2 = R(∓ϑ/2)
(
−i∇− νq1/2

)
with q1/2 = kϑ(

√
3/2,±1/2) and kϑ = 4π/3L with L = a/2 sin(ϑ/2) the moiré

lattice constant. Here we have placed the origin of momentum in the center of the moiré Brillouin zone (MBZ). We
further take U1 = U/2, U2 = U/6, U3 = −U/6, and U4 = −U/2, such that U is the bias between the topmost and
bottommost layer. Similarly, we have for AB–BA stacked TDBG,

ĤAB–BA
ν =

∫
d2r ψ̂†

ν(r)HAB–BA
ν (−i∇) ψ̂ν(r), (162)

with

HAB–BA
ν (−i∇) =


h0ν(k1) + U1 g†ν(k1) 0 0

gν(k1) h′0ν(k1) + U2 T †
ν (r) 0

0 Tν(r) h′0ν(k2) + U3 gν(k2)
0 0 g†ν(k2) h0ν(k2) + U4

 . (163)

The Hamiltonian is diagonalized by Fourier transform,

ψ̂ν(r) =
1√
V

∑
k

∑
G
ei(k−G)·r ĉν,k−G , (164)
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where the sum over k only runs over the MBZ and G is a reciprocal lattice vector of the moiré. Note that every wave
vector has a unique decomposition as k − G. We have

1

V

∫
d2r e−i(k′−G′)·r ei(k−G)·r = δkk′δGG′ , (165)

1

V

∫
d2r e−i(k′−G′)·r Tν(r) e

i(k−G)·r = δkk′Tν,G−G′ , (166)

with

Tν,G = Tν0δG,0 + Tν1δG,νG1
+ Tν2δG,νG2

. (167)

C. Phase diagrams

For TDBG we focus on the lowest conduction band. We find that the highest valence band lacks a global energy
gap to the remote bands for most of the parameter regime that we considered. We numerically calculated the phase
diagram in the (ϑ,U) plane for the smallest energy gap to the two neighboring bands εgap. We also calculated the
bandwidth εwidth, as well as the ratios εgap/εwidth and ε2gap/εwidth. These diagrams are shown in Fig. S9 for AB–AB
TDBG and in Fig. S11 for AB–BA TDBG, for the lowest conduction band. On the phase diagram showing the
energy gap, we have indicated the valley Chern number of the lowest conduction band. The energy bands along
high-symmetry lines of the SBZ for the parameters corresponding to the cross in the phase diagrams are shown in
Fig. S10 for AB–AB TDBG and in Fig. S12 for AB–BA TDBG.
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FIG. S9. (a) Phase diagram of AB–AB TDBG in the (U, ϑ) plane. The density plot gives the smallest energy gap εgap of
the lowest conduction band to other bands and the valley Chern number for valley K+. (b) Bandwidth εwidth of the lowest
conduction band. (c) Ratio εgap/εwidth for the lowest conduction band. (d) Ratio ε2gap/εwidth for the lowest conduction band.
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FIG. S10. Energy bands of AB–AB TDBG for ϑ = 1.44◦ and U = 56.5 meV, i.e., the cross in Fig. S9 along high-symmetry
lines of the SBZ as indicated. Light/dark bands correspond to valley K+/K− and the red band is the lowest conduction band.
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FIG. S11. (a) Phase diagram of AB–BA TDBG in the (U, ϑ) plane. The density plot gives the smallest energy gap εgap of
the lowest conduction band to other bands and the valley Chern number for valley K+. (b) Bandwidth εwidth of the lowest
conduction band. (c) Ratio εgap/εwidth for the lowest conduction band. (d) Ratio ε2gap/εwidth for the lowest conduction band.
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FIG. S12. Energy bands of AB–BA TDBG for ϑ = 1.64◦ and U = 92.5 meV, i.e., the cross in Fig. S11, along high-symmetry
lines of the SBZ as indicated. Light/dark bands correspond to valley K+/K− and the red band is the lowest conduction band.
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