
Supplementary Materials 

Materials and Methods  

Appendix S1: Statistics of PET Reports 

Among 37,370 retrospective PET reports in our internal dataset, 92.7% (34,655/37,370) pertained to 
PET/CT whole-body (including skull base to thigh and skull vertex to feet) scans, 1.7% (649/37,370) 
to PET/MRI whole-body (including skull base to thigh and skull vertex to feet) scans, 5.5% 
(2,066/37,370) to PET limited area (including brain, cardiac and myocardial) scans. The findings 
section in a PET report had 346 [249, 472] (median [25th percentile, 75th percentile]) words, and the 
impression section had 86 [53, 130] words.  

 

Appendix S2: “Description” and “Radiologist” Fields 

In the input template, “Description” denotes the categories of PET scans, with their counts provided in 
Figure E1 (a). “Radiologist” accommodates a single token that encodes the reading physician’s identity. 
The list of these tokens as well as their counts are given in Figure E1 (b). Notably, only physicians who 
dictated more than 100 PET reports are included. 
 

 
Figure E1: (a) shows the descriptions of examination categories in our internal dataset. (b) lists the reading 
physicians’ unique identifier tokens. 

 

Appendix S3: Models for PET Report Summarization 

1. PGN (1) It is an encoder-decoder model built on the bidirectional long short-term memory (LSTM) 
architecture. The decoder can choose between copying a word directly from the input or generating a 
new one from the vocabulary. The model was modified to accommodate both background information 
and findings, as suggested in (1). We adapted the original implementation (available at 
github.com/yuhaozhang/summarize-radiology-findings) to fit our task and made the model weights 
accessible on GitHub: github.com/xtie97/PET-PGN. 

2. BERT2BERT (2): It is an encoder-decoder model built on the transformer architecture. We utilized 
Clinical-Longformer (3) as the encoder and RoBERTa (4)as the decoder. The weights of the cross-
attention layers were randomly initialized. Pretrained Clinical-Longformer is available on Hugging 
Face: huggingface.co/yikuan8/Clinical-Longformer and pretrained RoBERTa is available at 
huggingface.co/roberta-base.  
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3. BART (5): It is an encoder-decoder model built on the transformer architecture. BART introduced a 
denoising auto-encoder for pretraining, involving reconstructing the original texts from the corrupted 
samples. Pretrained BART is available at huggingface.co/facebook/bart-large.  

4. BioBART (6): The model shares the same architecture with BART (5) but underwent further training 
on the PubMed dataset. Pretrained BioBART is available at huggingface.co/GanjinZero/biobart-large.  

5. PEGASUS (7): It is an encoder-decoder model built on the transformer architecture. PEGASUS 
introduced a novel pretraining objective (gap sentence prediction), involving masking important 
sentences from documents and forcing the model to recover them based on the remaining sentences. 
Pretrained PEGASUS is available at huggingface.co/google/pegasus-large.  

6. T5 (8): It is an encoder-decoder model built on the transformer architecture. T5 established a unified 
framework that treats almost all natural language tasks as a text-to-text problem. Instead of the original 
T5, we used T5v1.1 that had multiple modifications of the architecture and was solely pretrained on 
unsupervised tasks. The model weights are available at huggingface.co/google/t5-v1_1-large.  

7. Clinical-T5 (9): It is tailored to handle the language structures, terminologies in medical documents 
by further pretraining T5 on the MIMIC-III dataset (10). The model weights are available at 
huggingface.co/luqh/ClinicalT5-large.  

8. FLAN-T5 (11): It is a variant of T5 that underwent instruction finetuning in a mixture of tasks. This 
enabled FLAN-T5 to achieve enhanced performance compared to the original T5 in various 
downstream applications. The model weights are available at huggingface.co/google/flan-t5-large.  

9. GPT2 (12): It is a decoder-only model built on the transformer architecture. Unlike the encoder-
decoder models, GPT2 is pretrained on a massive corpus of text to predict the next word in a sequence. 
The model weights are available at huggingface.co/gpt2-xl.  

10. OPT (13): It is a series of open-sourced, decoder-only transformers with varying sizes from 125M 
to 175B. The pretrained weights are available at huggingface.co/facebook/opt-1.3b.  

11. LLaMA-LoRA: LLaMA (14) is a collection of decoder-only transformers, ranging from 7B to 65B. 
LLaMA-13B showed superior performance compared to GPT3 on most benchmarks. In this study, we 
chose LLaMA-7B and used LoRA (15) to accelerate training and reduce memory usage. The 
hyperparameters of the LoRA module are listed as follows: the rank of the low-rank factorization is 8, 
the scaling factor for the rank is 16, the dropout rate is 0.05, the target modules for LoRA are projection 
layers in query (q_proj) and value (v_proj). The model weights for LLaMA are available upon request.  

12. Alpaca-LoRA: Alpaca (16) is the instruction tuned LLaMA-7B model that behaves qualitatively 
similarly to some closed-source large language models (LLMs), including OpenAI’s text-davinci-003. 
When we finetuned Alpaca, we retained the same hyperparameters as used in LLaMA-LoRA. The 
weight difference between LLaMA and Alpaca is available at huggingface.co/tatsu-lab/alpaca-7b-wdiff.  

All twelve language models were trained using the standard teacher-forcing algorithm. The training 
objective can be written as a maximum likelihood problem: 

𝜃𝜃∗ = argmax
𝜃𝜃

�� log𝑝𝑝𝐺𝐺(𝜃𝜃) �𝑟𝑟𝑡𝑡
(𝑖𝑖)�𝑆𝑆(𝑖𝑖),𝑅𝑅<𝑡𝑡

(𝑖𝑖);𝜃𝜃�
𝑖𝑖𝑡𝑡

 

Where 𝜃𝜃 denotes the parameters of model 𝐺𝐺, 𝑝𝑝𝐺𝐺(𝜃𝜃) estimates the probability of the next word 𝑟𝑟𝑡𝑡 given 
the previous sequence 𝑅𝑅<𝑡𝑡 in the reference text and the source text 𝑆𝑆. Superscript 𝑡𝑡 denotes the word 
position in the reference text and 𝑖𝑖 denotes a single sample. The AdamW optimizer (17) was employed 
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to optimize this log-likelihood loss. The learning rates for the transformer-based LLMs were selected 
from {5e-5, 1e-4, 2e-4, 4e-4} based on the Recall-Oriented Understudy for Gisting Evaluation-L 
(ROUGE-L) (18) in the validation set. We adopted the beam search decoding algorithm to generate 
impressions, setting the number of beams to 4. Additionally, we blocked the repeated trigram in the 
generated text and applied a length penalty of 2. For PGN, we followed the training and inference 
parameters specified in the original paper (1). Table E1 summarizes the settings for each model in this 
study.  

The learning environment requires at least 2 NVIDIA A100 GPUs and the following Python (3.8.8) 
libraries: PyTorch (1.13.1), transformer (4.30.0), fastAI (2.7.11), deepspeed (0.9.2). Except for 
LLaMA-LoRA and Alpaca-LoRA, all models were trained on a single NVIDIA A100 GPU, with each 
epoch taking 50-120 minutes. LLaMA-LoRA and Alpaca-LoRA, however, required two NVIDIA A100 
GPUs and took 4.5 hours per epoch. 

 

Table E1: Training and inference settings of language models investigated in this study.  

Note that “*” denotes the hyperparameters directly taken from the original paper. Total batch size = training batch size 
per device × number of GPU devices × gradient accumulation steps.  

 

Appendix S4: Benchmarking Evaluation Metrics 

Both nuclear medicine (NM) physicians scored the quality of model-generated impressions on a 5-point 
Likert scale. The definition of each level are given in Table E2. 
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Table E2: Definition of the 5-point Likert scale for evaluating the quality of model-generated impressions.  

 

 

We investigated a broad spectrum of evaluation metrics, comprising 17 different methods.  

1. ROUGE (18): It measures the number of overlapping textual units between generated and reference 
texts. ROUGE-N (N=1,2,3) measures the overlap of N-grams, and ROUGE-L measures the overlap of 
longest common subsequence. ROUGE-LSUM extends ROUGE-L by computing the ROUGE-L for 
each sentence, and then summing them up.  

2. BLEU (19): It computes the precision of n-gram overlap (n ranges from 1 to 4) between generated 
and reference texts with a brevity penalty.  

3. CHRF (20): It computes the character-based n-gram overlap between the output sequence and the 
reference sequence. In this study, we set the n-gram length to 10.  

4. METEOR (21): It computes an alignment of the generated text and the reference text based on 
synonymy, stemming, and exact word matching.  

5. CIDEr (22): It computes the term frequency-inverse document frequency (TF-IDF) vectors for both 
human and machine-generated texts based on the n-gram (n ranges from 1 to 4) co-occurrence, and then 
measures the cosine similarity of the two vectors.  

6. ROUGE-WE (23): It is an extension of the ROUGE metric, designed to assess the semantic 
similarity between generated and reference texts using pretrained word embeddings. 

7. BERTScore (24): It evaluates the cosine similarity of contextual embeddings from BERT for each 
token in the output and reference sequences.  

8. MoverScore (25): Similar to BERTScore, it leverages the power of BERT’s contextual embeddings 
to measure the semantic similarity between generated and reference texts. Instead of token-level cosine 
similarity, MoverScore calculates the Earth Mover’s Distance between the embeddings of the two texts. 

9. RadGraph (26): It is a specialized evaluation metric tailored for radiology report summarization. 
RadGraph works by initially extracting clinical entities and their relations from the model-generated 
impression and the original clinical impression. Leveraging this data, it constructs knowledge graphs to 
compare the content coverage and structural coherence between the two impressions.  

10. BARTScore (27): It leverages a pretrained BART model to compute the log probability of 
generating one text conditioned on another text. In this study, BARTScore is the BART model finetuned 
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on the CNN Daily Mail dataset. BARTScore+PET is the BART model finetuned on our internal PET 
report dataset. PEGASUSScore+PET is the PEGASUS model finetuned on our internal dataset. 
T5Score+PET is the FLAN-T5 model finetuned on our internal dataset. The training settings are the 
same as those in Table E1, except for different training/validation splits and random seeds.  

11. PRISM (28): It is an evaluation metric used in multilingual machine translation. PRISM employs 
a sequence-to-sequence model to score the machine-generated output conditioned on the human 
reference.  

12. S3 (29): It uses previously proposed evaluation metrics, including ROUGE and ROUGE-WE, as 
input features for a regression model to estimate the quality score of the generate text. S3-resp is based 
on a model trained with human annotations following the responsiveness scheme, while S3-pyr follows 
the pyramid scheme.  

13. UniEval (30): It first constructs pseudo summaries by perturbing reference summaries, then defines 
evaluation dimensions using different prompt templates. The model is trained to differentiate pseudo 
data from reference data in a Boolean question-answering framework. While UniEval evaluates 
coherence, consistency, fluency, and relevance, we only present the overall score which is the average 
of these 4 dimensions.  

14. SummaQA (31)It creates questions from the source document by masking entities. The generated 
text is then evaluated by a question-answering BERT model, with results reported in terms of the F1 
overlap score.  

15. BLANC (32): It measures how well a generated summary can help improve the performance of a 
pretrained BERT model in understanding each sentence from the source document with masked tokens.  

16. SUPERT (33): It creates pseudo-reference summaries by extracting important sentences from the 
source document and then measures the semantic similarity between the generated text and this pseudo 
reference.  

17. Stats (Data Statistics) (34): Stats-compression refers to the word ratio of the source document to 
its summary. Stats-coverage measures the proportion of words in the generated text that also appear in 
the source document. Stats-density is the average length of the fragment (e.g., sentence in the source 
document) from which each summary word is extracted. Stats-novel trigram is the percentage of 
trigrams present in the summary but absent in the source document.  

For the metrics that have precision, recall and F1, we only present the F1 score, which is the harmonic 
mean of precision and recall. The evaluation codes are partially adapted from (35) and made available 
on GitHub: github.com/xtie97/PET-Report-Summarization/tree/main/evaluation_metrics.   

 

Appendix S5: Implementation Details of Additional Analysis 

1. Deauville score (DS) extraction: Whole-body PET reports that contained physician assigned DSs 
in the impression sections were identified by searching for the term “Deauville” and its common 
misspellings. N-gram analysis was then performed to extract the score for each case. Among 405 cases 
with DSs in the impression section, 34 cases also had DSs in the findings section. To avoid leakage, we 
removed the scores in these findings. If multiple DSs were present in the impression, the highest value 
was used to represent the exam-level DS (36). It is likely that model-generated impressions did not 
contain DSs in some cases, but their original clinical impressions had DSs or vice versa. Considering 
that we did not force the model to generate DSs in the impressions, we excluded these cases when 
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calculating 5-class accuracy and Cohen’s 𝜅𝜅 index. Except for PGN, all language models had at least 
250 cases available for evaluating the performance of DS prediction.  

2. Controlling reporting styles in output impressions: To alter the style, we directly change the 
reading physician’s identifier token to any option in Figure E1 (b). In this study, "Physician 1" 
corresponds to "Robert," "Physician 2" to "William," and "Physician 3" to "James". To illustrate, if we 
aim to generate the impression for a whole-body PET/CT report in the style of Physician 1, we need to 
replace the original reading physician’s token with the token associated with Physician 1 (i.e., “Robert”). 
For encoder-decoder models, the input should start with “Description: PET CT WHOLE BODY 
Radiologist: Robert”. For decoder-only models, the instruction should be “Instruction: Derive the 
impression from the given PET CT WHOLE BODY report for Robert”.  

 

Results  

Appendix S6: Correlation of Evaluation Metrics with the Second Physician’s Scores 

Figure E2 presents the Spearman’s ρ correlation between evaluation metrics and quality scores assigned 
by the second physician (S.Y.C.). BARTScore+PET and PEGASUSScore+PET showed the highest 
correlation values. Both physicians agreed upon the top-5 metrics most correlated with physician 
preferences, namely BARTScore+PET, PEGASUSScore+PET, T5Score+PET, UniEval and 
BARTScore. 

 
Figure E2: Spearman’s ρ correlations between different evaluation metrics and quality scores assigned by the 
second physician. 

 

Appendix S7: Model Performance  

Figure E3 presents the performance evaluation of 12 language models across all 30 metrics (17 different 
methods) considered in this study. All numbers in this figure are actual metric values. In the first column, 
we sort the metrics in descending order of correlation with the first physician’s (M.S.) preference.  
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Note that data are shown as mean [2.5th percentile, 97.5th percentile]. “*” denotes the highest value for each metric, and “†” 
denotes the values that do not have statistically significant difference (P>0.05) with the highest value. 
 

Figure E3: Assessment of 12 language models using all evaluation metrics included in this study. Displayed 
numbers are actual metric values, and the 95% confidence intervals were determined via bootstrap resampling.  
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Appendix S8: Findings and Background Information for the Examples in Expert Evaluation 

Figures E4, E5, E6 and E7 show the findings and background sections associated with Cases 1, 2, 3, 4, 
in Figure 5 (in the main body).  

 

Figure E4: The findings section and relevant background information for Case 1 in Figure 5 (in the main body). 

 

Figure E5: The findings section and relevant background information for Case 2 in Figure 5 (in the main body). 
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Figure E6: The findings section and relevant background information for Case 3 in Figure 5 (in the main body). 

 

Figure E7: The findings section and relevant background information for Case 4 in Figure 5 (in the main body). 

21



Appendix S9: Findings and Background Information for the Examples in Encoding Physician-
specific Styles 

Figures E8 and E9 show the findings and background sections associated with Cases 1 and 2 in Figure 
6 (in the main body). 

 

Figure E8: The findings section and relevant background information for Case 1 in Figure 6 (in the main body). 

 

Figure E9: The findings section and relevant background information for Case 2 in Figure 6 (in the main body). 
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Appendix S10: External Testing  

Table E3 presents the performance of PEGASUS in the external test set, assessed using automatic 
evaluation metrics. The first row shows the results of internal testing, while the following three rows 
display the external test results given impressions generated in the styles of Physician 1, 2, and 3, 
respectively. Figure E10 provides 4 sample cases with original clinical impressions dictated by different 
physicians in the external set.  
 

 

Table E3: Performance of PEGASUS in the external test set.  

Note that a higher value indicates better performance for all these metrics. We picked BARTScore+PET and 
PEGASUSScore+PET, as they are most correlated with physician preferences. We also included the results of ROUGE, 
BLEU and BERTScore because they are commonly used metrics in radiology report summarization. Data are shown as 
mean [2.5th percentile, 97.5th percentile].  

 

Figure E10: Examples of PEGASUS-generated impressions for the external whole-body PET/CT reports. The 
first column shows the reference clinical impressions. Subsequent columns present impressions generated in the 
styles of Physician 1, 2, and 3 from our internal dataset.  

  

23



References

1. Zhang Y, Ding DY, Qian T, Manning CD, Langlotz CP. Learning to Summarize Radiology Findings. Proc Ninth
Int Workshop Health Text Min Inf Anal. Brussels, Belgium: Association for Computational Linguistics; 2018. p.
204–213. doi: http://doi.org/10.18653/v1/W18-5623.

2. Chen C, Yin Y, Shang L, et al. bert2BERT: Towards Reusable Pretrained Language Models. Proc 60th Annu Meet
Assoc Comput Linguist Vol 1 Long Pap. Dublin, Ireland: Association for Computational Linguistics; 2022. p.
2134–2148. doi: http://doi.org/10.18653/v1/2022.acl-long.151.

3. Li Y, Wehbe RM, Ahmad FS, Wang H, Luo Y. Clinical-Longformer and Clinical-BigBird: Transformers for long
clinical sequences. arXiv; 2022. http://arxiv.org/abs/2201.11838. Accessed August 16, 2023.

4. Liu Y, Ott M, Goyal N, et al. RoBERTa: A Robustly Optimized BERT Pretraining Approach. arXiv; 2019.
http://arxiv.org/abs/1907.11692. Accessed August 16, 2023.

5. Lewis M, Liu Y, Goyal N, et al. BART: Denoising Sequence-to-Sequence Pre-training for Natural Language
Generation, Translation, and Comprehension. arXiv; 2019. http://arxiv.org/abs/1910.13461. Accessed
March 7, 2023.

6. Yuan H, Yuan Z, Gan R, Zhang J, Xie Y, Yu S. BioBART: Pretraining and Evaluation of A Biomedical Generative
Language Model. arXiv; 2022. http://arxiv.org/abs/2204.03905. Accessed August 15, 2023.

7. Zhang J, Zhao Y, Saleh M, Liu PJ. PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summa-
rization. arXiv; 2020. http://arxiv.org/abs/1912.08777. Accessed March 7, 2023.

8. Raffel C, Shazeer N, Roberts A, et al. Exploring the Limits of Transfer Learning with a Unified Text-to-Text
Transformer. arXiv; 2020. http://arxiv.org/abs/1910.10683. Accessed August 14, 2023.

9. Lu Q, Dou D, Nguyen TH. ClinicalT5: A Generative Language Model for Clinical Text. Findings of the Association
for Computational Linguistics: EMNLP 2022, pages 5436–5443, Abu Dhabi, United Arab Emirates. Association for
Computational Linguistics. doi: http://doi.org/10.18653/v1/2022.findings-emnlp.398.

10. Johnson AEW, Pollard TJ, Berkowitz SJ, et al. MIMIC-CXR, a de-identified publicly available database of chest ra-
diographs with free-text reports. Sci Data. 2019;6(1):317. doi: http://doi.org/10.1038/s41597-019-0322-0.

11. Wei J, Bosma M, Zhao VY, et al. Finetuned Language Models Are Zero-Shot Learners. arXiv; 2022. http:
//arxiv.org/abs/2109.01652. Accessed August 15, 2023.

12. Ziegler DM, Stiennon N, Wu J, et al. Fine-Tuning Language Models from Human Preferences. arXiv; 2020.
http://arxiv.org/abs/1909.08593. Accessed August 14, 2023.

13. Zhang S, Roller S, Goyal N, et al. OPT: Open Pre-trained Transformer Language Models. arXiv; 2022. http:
//arxiv.org/abs/2205.01068. Accessed February 22, 2023.

14. Touvron H, Lavril T, Izacard G, et al. LLaMA: Open and Efficient Foundation Language Models. arXiv; 2023.
http://arxiv.org/abs/2302.13971. Accessed August 14, 2023.

15. Hu EJ, Shen Y, Wallis P, et al. LoRA: Low-Rank Adaptation of Large Language Models. arXiv; 2021. http:
//arxiv.org/abs/2106.09685. Accessed August 15, 2023.

16. Taori R, Gulrajani I, Zhang T, et al. Stanford Alpaca: An Instruction-following LLaMA model. GitHub; 2023.
https://github.com/tatsu-lab/stanford_alpaca. Accessed June 20, 2023.

17. Loshchilov I, Hutter F. Decoupled Weight Decay Regularization. arXiv; 2019. http://arxiv.org/abs/1711.
05101. Accessed August 31, 2023.

18. Lin CY. ROUGE: A package for automatic evaluation of summaries. In Text Summarization Branches Out, Barcelona,
Spain, July 2004. Association for Computational Linguistics, 2004; 74–81. https://aclanthology.org/
W04-1013/.

19. Papineni K, Roukos S, Ward T, Zhu W-J. BLEU: a method for automatic evaluation of machine translation. Proc
40th Annu Meet Assoc Comput Linguist - ACL 02. Philadelphia, Pennsylvania: Association for Computational
Linguistics; 2001. p. 311. doi: http://doi.org/10.3115/1073083.1073135.
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