Supplementary Materials

Dual Eigen-modules of Cis-element Regulation Profiles and Selection of Cognition-language Eigendirection along Evolution in Hominidae Liang Li, Sheng Zhang, Lei M. Li

Content

Top eigen-components of cis-element frequency matrices						
The probabilistic model for quantification of cis-trans binding strength2						
SVD and dual eigen-analysis2						
Comparisons of motif eigenvectors among hominidae						
Dual eigen-analysis on cis-element frequency profiles in the proximal regulatory regions of						
orthologous genes						
Stability analysis of the top singular values by random sampling						
Comparisons of the distance between the fourth and fifth levels among species by sampling	and					
tests	,					
Enrichment analysis by the Wilcoxon rank sum scoring method						
Details of the enrichment analysis of top gene eigenvectors						
The human/chimpanzee first gene eigenvector	10					
The human/chimpanzee second gene eigenvector	11					
The human/chimpanzee third gene eigenvector	13					
The human fourth gene eigenvector	14					
The chimpanzee fourth gene eigenvector						
The human fifth gene eigenvector						
The chimpanzee fifth gene eigenvector						
The human/chimpanzee sixth gene eigenvector						
Human cognition-language gene eigenvector with respect to the chimpanzee's fourth	and fifth					
eigenvectors						
Regulators unveiled by the dual motif eigenvectors						
Embryogenesis regulators near one pole of the human first motif eigenvector						
Cell cycle regulators near one pole of the human third motif eigenvector.						
Cis-trans regulation of the human cognitive eigenvector	29					
Comparative dual eigen-analysis between human and orangutan 31						
Human specific Alu insertions in the proximal regulatory regions 32						
LICSC browser snapshots of the human specific Alu insertions around ADAM10, DRD3 and	ΡΔΧ2					
	17772					
Dual eigen-analysis with the option of the APPRIS principal transcripts 37						
40						

Top eigen-components of cis-element frequency matrices

SVD is a powerful dimension-reduction method that enables us to extract useful information from fairly large matrices. The top eigenvalue and eigenvector of each species-specific SVD are essentially the adjusted averages, and these baselines provide little interesting biological explanations to the binding profiles. Hence we exclude the baseline component when we refer to the first and second eigenvalues or eigenvectors throughout the article. For all three species, the top six eigen-components contribute about 42 percent of the information to the cis-element regulation profiles. Table S1 shows the top six singular values of the three cis-element frequency matrices and the percentages of their cumulative contributions. The distance between two adjacent singular values is measured by the ratio of their difference over the larger one.

Table S1. The top six singular values of the cis-element frequency matrices of human,	chimpanzee and
orangutan, and their percentages.	

	Human		Chimpanzee		Orangutan		n		
	Value	Distance	Cumulativa	Value	Distance	Cumulative	Value	Distance	Cumulative
	(u1002)	Distance		value	Distance	percentage	(u1002)	Distance	percentage
	(X10^3)	(%)	percentage(%)	(X10^3)	(%)	(%)	(x10^3)	(%)	(%)
ρ1	77.92		24.77	69.92		25.19	69.59		25.30
ρ2	19.43	75.058	30.95	16.89	75.85	31.28	16.37	76.47	31.26
ρ3	12.35	36.461	34.88	10.77	36.25	35.15	10.59	35.30	35.11
ρ4	8.11	34.335	37.46	7.07	34.31	37.70	7.03	33.63	37.67
ρ5	7.86	3.041	39.96	6.79	4.00	40.15	6.45	8.23	40.02
ρ6	5.92	24.662	41.84	5.11	24.70	41.99	5.13	20.53	41.88

The probabilistic model for quantification of cis-trans binding strength

A key problem in the study of global cis-regulation is how to quantitatively measure the genome-wide binding strength or probability. Our study design is partially motivated by the probabilistic model proposed by (Feng, et al. 2019). The model shows that motif frequency is a fair measure of binding strength. Specifically, given a factor T and its motif position weight matrix, all potential binding sites in the proximal regulatory sequence S of a gene can be identified by searching the high-scoring matches to its motif. Suppose N binding sites are found in S. The model assumes that the binding events of T with these Nsites independent, and identical distributed Bernoulli trials with a binding probability p_0 . Then the probability that T binds to at least one site is given by $1 - (1 - p_0)^N$. If p_0 is sufficiently small, it can be approximated by

$$1-(1-p_0)^N\approx Np_0.$$

The motif occurrences in the promoter of a certain gene are positively related to the binding strength of its trans-acting factor.

SVD and dual eigen-analysis

Crucial to the understanding of the impact of regulatory sequences on the phenotypic changes from apes to humans is a good mathematical representation of the cis-element frequency profile \tilde{C} . The dual eigenanalysis (Li, et al. 2017) that we originally proposed for the analysis of high-dimensional expression profiles is

turned out to be ideal for unravelling the structure of the regulatory profile. The initial computation of the dual eigen-analysis is a robust version of the singular value decomposition (SVD) (Golub and Loan 1996; Lin, et al. 2010; Cand, et al. 2011).

$$\begin{split} \min_{C,S} & \|C\|_* + \lambda \|S\|_1 \quad subject \ to \ \tilde{C} = C + S, \\ & C = \sum\nolimits_{k=1}^m \rho_k u_k v_k^T \end{split}$$

Importantly, this eigen-representation stratifies the cis-element frequencies into dual eigen-spaces at levels from high to low. Instead of aligning protein sequences, the learning of regulatory evolution is achieved by aligning the dual eigen-spaces of cis-element frequencies across species. We note that dual eigen-analysis, though based on SVD, is different from the classical multivariate analysis tools such as PCA or factor analysis, which are based on covariance structures of joint normal distributions.

Dual eigen-analysis is used to interpret the eigenvectors from SVD of relatively large matrices. It has several elements. First, u_k pairs up with v_k as SVD indicates. Second, sort the loadings of u_k in the descending order, and denote the resulting polarized gene eigenvector by \tilde{u}_k . Similarly, we have the polarized motif eigenvector denoted by \tilde{v}_k . The two ends of \tilde{u}_k respectively correspond to the two ends of \tilde{v}_k . Third, each pair (u_k, v_k) represent an association structure of the row attributes and the column attributes. The structure is identified by associating \tilde{u}_k with the row attributes, and by associating \tilde{v}_k with the column attributes. For example, in the Type 2 diabetes project (Li, et al. 2017), we consider the mouse expression profiles whose rows corresponded to samples and columns corresponded to genes. For each principal eigencomponent, \tilde{u}_k was translated into experimental factors such as diet or age while \tilde{v}_k reflected the underlying molecular mechanisms that can be identified by gene set enrichment analysis. Consequently, the relationship between the macro-factors of samples and micro-biology of genes was revealed by the dual-eigen-analysis.

In the current situation of a cis-element frequency matrix C, the rows represent genes and the columns represent the binding elements of regulators. Each eigen-triplet, $\langle \rho_k | \tilde{u}_k | \tilde{v}_k \rangle$, forms a dual eigen-module of cis-regulatory element frequency (CREF) C_k , in which ρ_k indicates its frequency level. The two ends of the polarized regulatory eigenvector \tilde{v}_k correspond to the two ends of the polarized gene eigenvector \tilde{u}_k , whose biological meanings can be inferred by the Wilcoxon scoring method. We note the SVD is not unique in the sense that we can swap the signs of u_k and v_k simultaneously without changing the product $u_k v_k^T$. In our analysis, once the sign of the ape motif eigenvector v_k is set to be positively correlated with that of the human's, the sign of the ape gene eigenvector u_k is determined accordingly.

Comparisons of motif eigenvectors among hominidae

In Fig. 2A, we show the scatter plots of human's and chimpanzee's motif eigenvectors. Here, we further show their scatter plots with respect to orangutan's motif eigenvectors. In the case of humans versus orangutans, a similar pattern is observed as in the case of humans versus chimpanzees (Fig. S1A). The top three pairs and the sixth pair are highly consistent whereas the fourth and fifth pairs are less correlated. In the case of chimpanzees versus orangutans, which serves a good reference for the comparison of human versus apes, all top six pairs are highly correlated (Fig. S1B).

Fig. S1. **(A)** The scatter plots of human's top six motif eigenvector loadings versus orangutan's. Like the case of human's versus chimpanzee's, the top three pairs and the sixth pair are highly correlated (Pearson correlation > 0.99). The fourth and fifth pairs are less correlated. **(B)** The scatter plots of chimpanzee's top six motif eigenvector loadings versus orangutan's. All the top six pairs are highly correlated (Pearson correlation > 0.99).

Dual eigen-analysis on cis-element frequency profiles in the proximal

regulatory regions of orthologous genes

To remove the effects of gene annotation variations, we focus exclusively on motif occurrences in the proximal regulatory regions of orthologous genes across the three species. A set of 11454 1:1:1 orthologous genes among human, chimpanzee and orangutan are selected directly from Ensembl database. We perform the dual eigen-analysis based on the matrices containing motif frequencies in their proximal regulatory regions. The scatter plots of motif eigenvectors between two species are shown in Fig. S2. As expected, the top three and the sixth human-apes motif eigenvectors are highly conserved (Pearson correlation > 0.99) whereas the human fourth and fifth motif eigenvectors rotate from those of apes'.

Fig. S2. The scatter plots of motif eigenvectors based on motif frequencies in the orthologous promoters. The results support that the conservation and reorganization of the CREF modules is robust with respect to the effects of gene repertoire variations (the second last paragraph in Discussion). (A) Human's top six motif eigenvector loadings versus chimpanzee's. (B) Human's top six motif eigenvector loadings versus orangutan's. (C) Chimpanzee's top six motif eigenvector loadings versus orangutan's.

Stability analysis of the top singular values by random sampling

The perturbation theory demonstrates that the stability of CREF eigen-modules hinges on the pairwise distances between adjacent singular values. We need to evaluate the reliability of the distances. To address this issue, we introduce random perturbations by re-sampling the motifs, and examine the sampling distribution. We note that the bootstrap method, a sampling with replacement, generate a fairly large portion of duplicate motifs. Instead, we adopt subsampling without replacement. The re-sampling process consists of three steps: (i) randomly select 80% motifs from 1403 motifs without replacement; the corresponding columns of those motifs within *C* are extracted to form a perturbed matrix denoted by \hat{C}^i ; (ii) calculate the SVD of \hat{C}^i and collect its singular values $\hat{\rho}^i_k$; (iii) repeat the first two steps 100 times. The

sampling distribution of each singular value was obtained based on $\{\hat{
ho}_k^i\}_{i=1}^{100}$. Similarly, the sampling

distribution of the distance between the fourth and fifth levels was obtained based on $\{(\hat{\rho}_4^i - \hat{\rho}_5^i)/\hat{\rho}_4^i\}_{i=1}^{100}$.

The sampling distributions of chimpanzee's top six singular values are more similar to those of human's than to those of orangutan's (Fig. S3A-B and Fig. 2C). That is, in the case of chimpanzees, the sampling distributions of the top three and the sixth singular values are well separated from adjacent ones while the fourth and fifth overlap by a portion. With a close look at the distributions of orangutans, we find a subtle difference from those of the other two species, see Fig. S3B. That is, the 95 percent confidence interval of the 5-th singular value does not overlap with that of the 4-th value. This is in consistency with the larger distance between ρ_4 and ρ_5 of orangutan's cis-regulation profile, 8.2%, compared with those of humans and chimpanzees, which are 3.0 % and 4.0 % respectively (Table S1).

Fig. S3. **The sampling distributions of chimpanzee's and orangutan's top six singular values.** Their densities are shown from right to left. The 2.5% and 97.5% sample quantiles are labelled along the x-axis. Particularly, the sample quantiles of the fourth and fifth singular values are marked by red and green color respectively. (**A**) In the case of chimpanzees, the sampling distributions of the top three and the sixth singular values are well separated from adjacent ones while the fourth and fifth overlap by a large portion. (**B**) In the case of orangutans, the 95 percent confidence intervals of the fourth and fifth singular values do not overlap.

Comparisons of the distance between the fourth and fifth levels among

species by sampling and tests

We would test if the distance between the fourth and fifth levels increases as the divergence time increases. First, based on the SVD results of each resampled sub-matrix as described in the above section, the matched distance of each species is obtained. In total, we have 100 subsamples. Second, a paired two-sample t-test (one-side) is used to compare the sampling distributions of two species, e.g., human versus chimpanzee. The sample distributions and statistical significance are shown in Fig. S4A. We find that human's distance is significantly smaller than chimpanzee's (p-value = 3.96e-7), and, that chimpanzee's is significantly smaller than orangutan's (p-value = 1.23e-78). These results confirm that as the divergence time between species increases, the distance between the 4-th and 5-th levels increases as well.

We further compare the distance between level 4 and 5 of each species in reference to that generated at its fusion point, when the fourth and fifth levels are equal. First, we need to generate the distribution of the distance at the fusion point. We generate a new cis-element frequency matrix, denoted by C^* , by forcing the fourth and fifth levels equal in each species to mimic the fusion state,

$$C^{*} = \sum_{k=1}^{m} \rho_{k}^{*} u_{k} v_{k}^{T},$$

where $\rho_{k}^{*} = \begin{cases} \rho_{k}, & k \neq 4, 5\\ (\rho_{4} + \rho_{5})/2, & k = 4, 5 \end{cases}$

Second, The re-sampling method described above was then carried out for C^* to obtain the perturbed distances.

Third, we compared them against the distances generated from the original matrices by matching the motif subsamples. Among the 100 random simulations, the former distances are smaller than the latter in 77, 85 and 97 cases respectively in human, chimpanzee and orangutan. We further applied a two-sample paired t-test (one-side) to test the significance of deviance. The two kinds of distributions and their statistical significance for comparison are shown in Fig. S4B for each species. The discrepancy increases in the order of human (p-value = 7.17e-12), chimpanzee (p-value = 1.73e-17) and orangutan (p-value = 3.83e-44). It confirms that human is the closest to the fusion point.

Fig. S4 (A) The sampling distributions of the distance between level 4 and 5. Comparison of the distributions from two species is performed using a paired two-sample t-test (one-side). The statistical significances are labelled on the top of each box. **(B) The sampling distributions at the fusion point versus those in (A)**. For each species, the two distributions are compared using a paired two-sample t-test (one-side).

Enrichment analysis by the Wilcoxon rank sum scoring method

In the dual eigen-analysis, one key step of analyzing CREF modules is to infer biological activities around the poles of the polarized gene eigenvectors using enrichment analysis, which requires the definition of relevant gene subsets. In this report, we consider the following gene subsets: KEGG pathways (Kanehisa and Goto 2000; Kanehisa, et al. 2016; Kanehisa, et al. 2017), Gene Ontology gene sets (Ashburner, et al. 2000; Carbon, et al. 2017), which are classified into biological processes, molecular functions, and cellular components, and the REACTOMEs database (Fabregat, et al. 2018). In the dual eigen-analysis, the enrichment analysis is based on the gene loadings. To address the robustness with respect to the scale, we take the rank-based Wilcoxon scoring method as the tool for enrichment analysis. The method was proposed in Cheng et al (Cheng, et al. 2007). For each polarized gene vector, we identify what subsets are significantly enriched at the two ends. Suppose we have *n* gene subsets $S_1, S_2, ..., S_n$. Denote the union of these gene subsets by $G = \bigcup_{i=1}^n S_i$. The strategy consists of two steps. In the first step, for each subset S_i , we compare their loadings against those in the complement of S_i in *G* denoted by $G - S_i$. This is a typical two-sample problem in statistics. We use the Wilcoxon rank test to calculate p-value (one-sided) for each comparison. In the second step, we rank these subsets according to their significances.

To characterize the biological relevance of each eigen-module simply and clearly, we organized the significant subsets according to the three rules: 1. we prioritized gene categories that were most significant at each level; 2. if a gene subset was enriched at multiple levels, only the highest level was marked unless it was extremely significant at the lower level; 3. among candidate pathways at a certain level, we emphasized those gene subsets whose biological relevance matched the importance.

	GO biological process	KEGG
Level 1	0.85	0.84
Level 2	0.85	0.82

Table 52 The portions of significant gene subsets shared by both human and chimpanzee at each leve	Table S2 The portions of significant	gene subsets shared by bot	h human and chimpa	anzee at each level.
---	--------------------------------------	----------------------------	--------------------	----------------------

Level 3	0.70	0.83
Level 4	0.39	0.46
Level 5	0.81	0.90
Level 6	0.78	0.75

Details of the enrichment analysis of top gene eigenvectors

The human/chimpanzee first gene eigenvector

Positive end: reproduction

The positive end of the human first gene eigenvector is marked by reproduction (Table S3). Two related biological processes, gametogenesis and fertilization, are enriched around the pole. Gene categories associated with gametogenesis include meiosis and oogenesis. Gene categories associated with fertilization include sperm preparation and sperm getting through the zona pellucida. In addition, two other groups, immune defense and rRNA silencing, appear with reproduction around this pole.

Negative end: embryogenesis

The negative end of this vector is marked by a series of biological events during embryogenesis, including embryonic placenta development, mesoderm and endoderm formation, neural tube development, heart and lung morphogenesis (Table S4). They are known to occur at different stages of human early embryonic development. At the stage of gastrulation, the three germ layer, ectoderm, mesoderm and endoderm, are differentiated from the epiblast. They will finally give rise to all the structures and organs of the body. The neural tube develops from the ectoderm cells at the stage of neurulation, and ultimately transforms into the nervous system. The hearts derive from the layer of mesoderm, and is the first functional organ to develop during embryogenesis. The lungs arise from the layer of endoderm and will develop to maturity until early adulthood.

	Description	Source	P-value
	single fertilization	GO BP	6.79E-03
	binding of sperm to zona pellucida	GO BP	7.21E-03
	plasminogen activation	GO BP	8.72E-04
	regulation of acrosome reaction	GO BP	1.99E-04
Reproduction	oogenesis	GO BP	9.75E-03
	cell wall macromolecule catabolic process	GO BP	3.37E-04
	homologous recombination	KEGG	2.47E-02
	meiotic recombination	REACTOME	1.03E-05
	separation of sister chromatids	REACTOME	3.64E-02
	meiosis	REACTOME	2.06E-03
	SIRT1 negatively regulates rRNA Expression	REACTOME	1.15E-05
rRNA silencing	DNA methylation	REACTOME	3.42E-04
	nucleosome assembly	REACTOME	3.01E-03

Table S3. In the sorted loadings of the human first gene eigenvector u_1 , gene subsets enriched at the positive end.

	PRC2 methylates histones and DNA	REACTOME	2.22E-03
	chromosome maintenance	REACTOME	1.61E-02
	T cell activation involved in immune response	GO BP	1.23E-10
	natural killer cell activation involved in immune response	GO BP	4.82E-10
	B cell proliferation	GO BP	1.20E-08
Immune defense	humoral immune response	GO BP	8.90E-06
	positive regulation of innate immune response	GO BP	1.54E-04
	monocyte chemotaxis	GO BP	2.60E-04
	regulation of type I interferon-mediated signaling pathway	GO BP	1.40E-05
	negative regulation of interferon-gamma production	GO BP	5.34E-05
	cellular response to interferon-gamma	GO BP	2.48E-04
	complement receptor mediated signaling pathway	GO BP	1.10E-03
	cellular defense response	GO BP	9.38E-04
	toll-like receptor signaling pathway	GO BP	2.55E-03

Table S4. In the sorted loadings of the human first gene eigenvector u_1 , gene subsets enriched at the negative end.

	Description	Source	P-value
Implantation	embryonic placenta development	GO BP	7.80E-03
Controlation	mesoderm formation	GO BP	2.32E-05
Gastrulation	endoderm formation	GO BP	1.77E-03
Neumletien	neural crest cell migration	GO BP	2.50E-02
Neurulation	planar cell polarity pathway involved in neural tube closure	GO BP	2.10E-02
	lung morphogenesis	GO BP	2.13E-02
	heart morphogenesis	GO BP	1.67E-02
Orrespondencia	endocardial cushion morphogenesis	GO BP	3.59E-05
Organogenesis	embryonic digit morphogenesis	GO BP	2.18E-03
	axon extension	GO BP	3.62E-02
	branching involved in ureteric bud morphogenesis	GO BP	4.70E-03
	Wnt signaling pathway	KEGG	1.26E-08
	Hedgehog signaling pathway	KEGG	1.24E-05
Signaling pathway	Signaling by FGFR	REACTOME	1.37E-06
	positive regulation of Notch signaling pathway	GO BP	5.41E-04
	developmental biology	REACTOME	6.87E-15
Others	vasculogenesis	GO BP	2.03E-02
	cell fate commitment	GO BP	2.20E-03

The human/chimpanzee second gene eigenvector

Positive end: fetal maturation

The positive end of the second gene eigenvector is marked by fetal maturation, characterized by a series of organ and tissue development (Table S5). This process follows early embryogenesis, which lies at one end of the first gene eigenvector. Around this pole, we observe the signals of development of heart, pancreas, thymus, cartilage, muscle, eye, digestive tract, and forebrain.

Negative end: immune response

The negative pole is marked by immune system (Table S6). Related significant categories include immune cell chemotaxis, complement system, humoral response, innate immune response, GPCR signaling. Although several immune pathways such as immune cell activation, are enriched at one end of the first eigenvector too, we observe stronger signals of cell chemotaxis at this eigenvector, such as monocyte chemotaxis, lymphocyte chemotaxis, macrophage chemotaxis, neutrophil chemotaxis and leukocyte chemotaxis. Signal pathways involved in immune cell chemotaxis are enriched too, such as

the KEGG pathway of cytokine-cytokine receptor interaction and the REACTOME pathway of chemokine receptors bind chemokines.

	Description	Source	P-value
	embryonic organ development	GO BP	1.39E-03
	digestive tract development	GO BP	4.69E-03
	cartilage development	GO BP	3.97E-02
	cardiac muscle tissue development	GO BP	1.78E-03
Over and time.	forebrain development	GO BP	7.33E-03
Organ and tissue	pancreas development	GO BP	6.68E-04
aevelopment	thymus development	GO BP	5.34E-03
	eye development	GO BP	1.93E-02
	proximal/distal pattern formation	GO BP	4.49E-03
	embryo development	GO BP	5.46E-03
	lung alveolus development	GO BP	1.30E-02
Newslands	neuron development	GO BP	1.29E-02
Neurai system	neuronal stem cell population maintenance	GO BP	7.59E-05
Others	cell fate specification	GO BP	2.02E-03
Others	cell fate commitment	GO BP	3.07E-02

Table S5. In the sorted loadings of the human second gene eigenvector u_2 , gene subsets enriched at the positive end.

Table S6. In the sorted loadings of the human second gene eigenvector u_2 , gene subsets enriched at the negative end.

	Description	Source	P-value
	monocyte chemotaxis	GO BP	1.19E-07
	lymphocyte chemotaxis	GO BP	4.56E-08
	macrophage chemotaxis	GO BP	4.86E-04
Chemotaxis	positive regulation of neutrophil chemotaxis	GO BP	6.74E-03
	leukocyte chemotaxis	GO BP	3.92E-03
	cytokine-cytokine receptor interaction	KEGG	1.08E-05
	chemokine receptors bind chemokines	REACTOME	5.44E-07
Innate immune	antimicrobial humoral response	GO BP	1.30E-11
	cellular response to interferon-gamma	GO BP	6.11E-10
	innate immune response in mucosa	GO BP	7.00E-08

	antibacterial humoral response	GO BP	3.78E-06
	acute-phase response	GO BP	1.17E-04
	complement and coagulation cascades	KEGG	2.59E-05
	initial triggering of complement	REACTOME	3.68E-07
Complement system	creation of C4 and C2 activators	REACTOME	3.29E-06
	lectin pathway of complement activation	REACTOME	9.63E-05
	complement cascade	REACTOME	4.24E-03
Homeostasis	retina homeostasis	GO BP	2.71E-05
	triglyceride homeostasis	GO BP	2.33E-04
"	GPCR ligand binding	REACTOME	3.91E-09
GPCK signaling	G alpha (i) signalling events	REACTOME	4.14E-03

The human/chimpanzee third gene eigenvector

Positive end: stress response

The positive pole of the third gene eigenvector reflects cellular responses to various stimuli including metal ion, hormone and other activities that result in changes in the state of a cell (Table S7). Cell responses include cell-cell adhesion, substance secretion (regulated exocytosis), ATP and protein metabolism, cytolysis, cellular homeostasis, etc.

Negative end: mitosis

The negative pole of the third gene eigenvector is marked by cell-division cycle (Table S8). Almost all cell cycle phases and important cellular events during mitosis cluster around this end, such as G1/S transition, DNA replication at S phase, G2/M DNA replication checkpoint, condensation of prophase chromosomes and separation of sister chromatids at M phase, and M/G1 transition.

Table S7. In the sorted loadings of the human th	ird gene eigenvector	u_3 , gene subsets	enriched at the
positive end.			

	Description	Source	P-value
	detection of chemical stimulus involved in sensory perception of bitter taste	GO BP	1.85E-06
	response to peptide	GO BP	1.11E-03
	response to activity	GO BP	2.86E-02
	cellular response to copper ion	GO BP	2.56E-02
	regulation of MAPK cascade	GO BP	6.60E-03
	cellular response to hormone stimulus	GO BP	4.24E-02
Stress response	stimuli-sensing channels	REACTOME	1.88E-03
	Signal regulatory protein (SIRP) family interactions	REACTOME	9.98E-03
	regulation of vesicle fusion	GO BP	1.43E-04
	cell-cell junction assembly	GO BP	3.60E-02
	positive regulation of cell adhesion	GO BP	2.16E-02
	cilium movement involved in cell motility	GO BP	3.51E-03
	cilium movement	GO BP	5.01E-03
	activation of JUN kinase activity	GO BP	8.47E-03

actin filament-based movement	GO BP	9.25E-03
ATP metabolic process	GO BP	1.05E-02
sensory perception	GO BP	2.97E-02
positive regulation of proteolysis	GO BP	2.34E-03
ion channel transport	REACTOME	1.90E-02

Table S8. In the sorted lo	padings of the hun	nan third gene	eigenvector u	ι_3 , gene subsets	enriched at the
negative end.					

	Description	Source	P-value
	positive regulation of mitotic cell cycle	GO BP	5.11E-05
	cell growth	GO BP	5.38E-03
	gene expression	REACTOME	3.61E-12
	transcription	REACTOME	7.62E-04
	translation	REACTOME	2.47E-02
	spliceosome	KEGG	9.72E-04
Cell growth and	synthesis of DNA	REACTOME	4.41E-03
preparation	DNA replication	REACTOME	2.10E-03
	assembly of the pre-replicative complex	REACTOME	3.57E-04
	regulation of mitotic cell cycle	REACTOME	2.22E-03
	APC/C-mediated degradation of cell cycle proteins	REACTOME	2.22E-03
	activation of the pre-replicative complex	REACTOME	5.40E-03
	FOXO signaling pathway	KEGG	2.89E-04
	cell cycle, mitotic	REACTOME	1.37E-06
	cell cycle	REACTOME	3.11E-07
	mitotic G1-G1/S phases	REACTOME	1.99E-06
	M phase	REACTOME	2.94E-05
	Hedgehog 'on' state	REACTOME	4.65E-05
	G1/S transition	REACTOME	2.32E-05
	mitotic metaphase and anaphase	REACTOME	5.36E-05
	mitotic anaphase	REACTOME	3.56E-05
Cell cycle phase	separation of sister chromatids	REACTOME	6.15E-05
	M/G1 transition	REACTOME	1.99E-04
	mitotic prometaphase	REACTOME	1.55E-03
	condensation of prophase chromosomes	REACTOME	3.55E-03
	cell cycle checkpoints	REACTOME	1.98E-04
	S phase	REACTOME	3.42E-03
	cell cycle checkpoints	REACTOME	1.98E-04
	cell cycle	KEGG	2.54E-06

The human fourth gene eigenvector

Positive end: neurotransmission, long-term memory, behavior and language development

The positive pole of the human fourth gene eigenvector provides the richest physiological elements and developmental processes involved in the formation of high-level intelligence and cognition (Table S9). They

can be divided into five groups: 1. neurochemical processes and signaling pathways involved in long-term memory formation; 2. neuron-neuron interaction by cell adhesion molecules (CAM); 3. neurotransmission; 4. language and complex behavior; 5. brain and central nervous system development.

Negative end: Golgi, mitochondrion, lysosome and phospholipid metabolism

The negative pole of the human fourth gene eigenvector is marked by the activities of three important membrane-bound organelles: Golgi, mitochondrion and lysosome, and by the metabolism of lipid (Table S10). Gene subsets associated with mitochondrial organization and functions include cristae formation, regulation of calcium transport, ATP production through respiration, etc. Golgi-related enriched pathways include integral component of Golgi membrane and protein targeting to Golgi. The Golgi plays important roles in the vesicular transport and post-translational modification of protein, as well as lipid transport and lysosome formation. Furthermore, the metabolic pathways of various lipids such as phospholipid, sphingolipid, fatty acid, triglyceride and steroid are enriched near this pole.

	Description	Source	P-value
	regulation of synaptic plasticity	GO BP	6.58E-04
	long-term memory	GO BP	2.00E-02
	voltage-gated calcium channel complex	GO CC	1.76E-03
	guanylate cyclase complex, soluble	GO CC	3.28E-02
	guanylate cyclase activity	GO MF	2.16E-02
Long-term memory	adenylate cyclase activity	GO MF	2.56E-02
	guanylate kinase activity	GO MF	2.38E-02
	neurexin family protein binding	GO MF	3.65E-02
	cGMP-PKG signaling pathway	KEGG	4.64E-03
	cAMP signaling pathway	KEGG	4.31E-02
	long-term memory	GO BP	2.00E-02
	neuron cell-cell adhesion	GO BP	5.53E-03
	neuromuscular process	GO BP	3.19E-02
Nouron nouron	calcium-dependent cell-cell adhesion via plasma membrane	CO PD	E 91E 02
Neuron-neuron interaction	cell adhesion molecules	GO BP	5.812-05
	cell adhesion molecules (CAMs)	KEGG	1.96E-02
	NCAM1 interactions	REACTOME	1.90E-03
	L1CAM interactions	REACTOME	1.76E-02
	positive regulation of synaptic transmission, glutamatergic	GO BP	5.92E-03
	presynaptic membrane assembly	GO BP	7.35E-04
	dendrite development	GO BP	1.40E-02
Nourotronomission	synapse organization	GO BP	1.78E-02
	synaptic transmission, glutamatergic	GO BP	4.10E-02
	GABA-A receptor complex	GO CC	5.07E-04
	excitatory synapse	GO CC	2.83E-02
	inhibitory synapse	GO CC	1.03E-02

Table S9. In the sorted loadings of the human fourth gene eigenvector u_4 , gene subsets enriched at the positive end.

	GABA-A receptor activity	GO MF	1.45E-04
	ionotropic glutamate receptor binding	GO MF	3.82E-03
	GABAergic synapse	KEGG	2.58E-04
	glutamatergic synapse	KEGG	7.07E-04
	axon guidance	REACTOME	9.57E-05
	GABA receptor activation	REACTOME	4.40E-04
	transmission across chemical synapses	REACTOME	2.44E-04
	GABA A receptor activation	REACTOME	3.47E-04
	neurotransmitter receptor binding and downstream		2 225 02
	transmission in the postsynaptic cell	REACTOME	2.33E-03
	vocalization behavior	GO BP	8.09E-04
	adult behavior	GO BP	6.10E-03
	social behavior	GO BP	1.49E-03
Language and	visual learning	GO BP	9.23E-03
complex behavior	lens development in camera-type eye	GO BP	5.10E-03
	eyelid development in camera-type eye	GO BP	4.65E-03
	cochlea morphogenesis	GO BP	4.29E-04
	middle ear morphogenesis	GO BP	3.86E-03
	dentate gyrus development	GO BP	1.50E-03
	hippocampus development	GO BP	7.77E-03
Brain and CNS	spinal cord development	GO BP	4.37E-02
development	midbrain development	GO BP	4.65E-03
	sympathetic nervous system development	GO BP	1.70E-02
	cell proliferation in forebrain	GO BP	7.31E-03

Table S10. In the	sorted loadings of the hu	uman fourth gene eigenvector	u_4 , gene subsets	enriched at the
negative end.				

	Description	Source	P-value
	regulation of calcium ion transport	GO BP	3.51E-04
Ca2+ transport	organic cation transport	REACTOME	1.01E-02
Ductoin no chose	protein targeting to Golgi	GO BP	1.32E-04
Protein package	regulation of vesicle fusion	GO BP	9.08E-05
and processing in Golgi	integral component of Golgi membrane	GO CC	1.20E-02
	mitochondrial transport	GO BP	9.43E-03
	regulation of mitochondrion organization	GO BP	3.81E-03
	positive regulation of mitochondrial fission	GO BP	4.72E-02
	mitochondrial respiratory chain complex III	GO CC	3.60E-02
Wittochondrion	integral component of mitochondrial outer membrane	GO CC	1.76E-02
	cristae formation	GO BP	4.08E-02
	acyl-CoA metabolic process	GO BP	8.04E-03
	cytoplasmic microtubule organization	GO BP	3.73E-02
Lysosome	membrane fusion	GO BP	1.40E-02

	lysosome localization	GO BP	1.91E-02
	lysosome	KEGG	1.22E-02
	phosphatidic acid biosynthetic process	GO BP	3.48E-02
	glycosphingolipid metabolic process	GO BP	1.43E-02
	phosphatidylethanolamine acyl-chain remodeling	GO BP	1.05E-02
	phosphatidylcholine acyl-chain remodeling	GO BP	1.53E-02
	glycerophospholipid metabolism	KEGG	2.19E-02
	glycerophospholipid biosynthesis	REACTOME	2.97E-04
Lipid metabolism	phospholipid metabolism	REACTOME	2.96E-04
	hydrolysis of LPC	REACTOME	5.89E-03
	synthesis of PG	REACTOME	1.95E-02
	Acyl chain remodelling of PI	REACTOME	3.78E-02
	Acyl chain remodelling of PG	REACTOME	2.19E-02
	Acyl chain remodelling of PC	REACTOME	1.01E-02
	arachidonic acid metabolic process	GO BP	2.67E-03
	fatty acid metabolic process	GO BP	4.65E-02
	fatty acid biosynthesis	KEGG	4.02E-04
	linoleic acid metabolism	KEGG	2.26E-02
	triglyceride biosynthesis	REACTOME	3.71E-02
Other livid weater baliers	steroid metabolic process	GO BP	4.02E-02
Other lipid metabolism	steroid hormone biosynthesis	KEGG	4.37E-03
	sphingolipid metabolic process	GO BP	2.49E-02
	sphingolipid metabolism	REACTOME	1.90E-02
	lipid particle organization	GO BP	2.95E-02
	fat digestion and absorption	KEGG	4.12E-02
	metabolism of lipids and lipoproteins	REACTOME	6.92E-05

The chimpanzee fourth gene eigenvector

Positive end: epigenetic regulation of gene expression, RNA processing and transport

The gene subsets enriched at this pole of the chimpanzee fourth gene eigenvector are totally different from human's (Table S11). A prominent example is epigenetic regulation of gene expression, accompanied by gene pathways involved in histone modification and chromatin modelling. Other enriched groups include gene transcription, RNA (especially mRNA) processing and transport, and protein translation.

Negative end: lipid metabolism, ion transport, synaptic activity and secretion

Compared with humans, the negative pole of the chimpanzee fourth gene eigenvector provides quite different groups of enriched gene subsets (Table S12). Lipid metabolism is the only common group between humans and chimpanzees. Several synaptic activities, which appear at the positive end of the human fourth eigenvector, are enriched at the opposite end in chimpanzees. Despite this, the pathways such as long-term memory, social behavior and visual learning, do not appear here. It's worth noting that grooming behavior is uniquely enriched in chimpanzees. Grooming is a major social activity widely observed in many animals, including human. Primates provide perhaps the richest examples of such behavior. One of the most critical functions of social grooming is to bond and reinforce social relationships among animals who live in close

proximity. Grooming in non-human primates is characterized by louse removal or scratching, and is a timeconsuming activity to establish and maintain alliances through dominance hierarchies or pre-existing coalitions. However, in human society, language has taken over the social functions of grooming to manage more complex and extensive social networks.

	Description	Source	P-value
	positive regulation of gene expression, epigenetic	GO BP	8.86E-07
	epigenetic regulation of gene expression	REACTOME	1.07E-08
	histone acetyltransferase binding	GO MF	2.53E-03
	methyltransferase activity	GO MF	9.22E-03
	DNA helicase activity	GO MF	2.99E-03
	telomeric DNA binding	GO MF	1.45E-02
	histone deacetylation	GO BP	6.75E-03
Epigenetic regulation	histone H3-K4 demethylation	GO BP	8.73E-03
	histone H4 acetylation	GO BP	1.09E-02
	telomere maintenance	GO BP	1.13E-02
	chromatin silencing at rDNA	GO BP	1.80E-03
	rRNA methylation	GO BP	1.43E-03
	negative epigenetic regulation of rRNA expression	REACTOME	8.98E-09
	NoRC negatively regulates rRNA expression	REACTOME	1.96E-08
	snRNA processing	GO BP	6.53E-05
	RNA metabolic process	GO BP	1.18E-03
	RNA transport	KEGG	6.21E-06
	RNA degradation	KEGG	5.92E-03
	post-elongation processing of the transcript	REACTOME	8.02E-06
	regulation of alternative mRNA splicing, via spliceosome	GO BP	3.06E-04
DNA processing and	RNA splicing, via transesterification reactions	GO BP	2.31E-03
transport	7-methylguanosine mRNA capping	GO BP	6.32E-03
transport	regulation of RNA splicing	GO BP	7.37E-03
	spliceosome	KEGG	9.91E-14
	t-circle formation	GO BP	1.98E-03
	maturation of SSU-rRNA	GO BP	3.14E-03
	mRNA surveillance pathway	KEGG	4.73E-05
	mRNA splicing - major pathway	REACTOME	8.79E-11
	mRNA Splicing	REACTOME	8.79E-11
	gene expression	REACTOME	7.48E-25
	transcription	REACTOME	2.80E-09
Transcription	RNA polymerase	KEGG	9.81E-04
nanscription	RNA polymerase II transcription	REACTOME	7.99E-06
	RNA polymerase II repressing transcription factor binding	GO MF	7.20E-04
	RNA polymerase I, RNA polymerase III, and mitochondrial	REACTOME	1.22E-05

Table S11. In the sorted loadings of the chimpanzee fourth gene eigenvector u_4 , gene subsets enriched at the positive end.

	transcription		
	regulation of transcription from RNA polymerase III promoter	GO BP	6.52E-05
	RNA polymerase I activity	GO MF	2.89E-04
	RNA polymerase I promoter escape	REACTOME	1.88E-05
	RNA polymerase I transcription initiation	REACTOME	2.98E-05
	RNA polymerase I chain elongation	REACTOME	3.39E-05
	RNA polymerase I promoter clearance	REACTOME	9.87E-05
	processing of capped intronless pre-mRNA	REACTOME	1.07E-04
	translation	REACTOME	1.81E-05
	ribosome	KEGG	3.02E-07
	ribosome biogenesis	GO BP	7.45E-03
Translation	ribosome biogenesis in eukaryotes	KEGG	7.56E-06
	eukaryotic translation initiation	REACTOME	4.24E-06
	cap-dependent translation initiation	REACTOME	4.24E-06
	eukaryotic translation termination	REACTOME	3.24E-05

Table S12. In the sorted loadings of the chimpanzee fourth gene eigenvector u_4 , gene subsets enriched at the negative end.

	Description	Source	P-value
	phosphatidic acid biosynthetic process	GO BP	1.48E-03
	phosphatidylglycerol acyl-chain remodeling	GO BP	4.11E-03
	phosphatidylinositol acyl-chain remodeling	GO BP	9.82E-03
	phospholipid biosynthetic process	GO BP	1.31E-02
	glycerophospholipid metabolism	KEGG	1.67E-03
	phospholipase D signaling pathway	KEGG	1.89E-03
Phospholipid	phospholipid metabolism	REACTOME	1.55E-03
metabolism	Acyl chain remodelling of PG	REACTOME	3.83E-03
	Acyl chain remodelling of PI	REACTOME	1.09E-02
	synthesis of PG	REACTOME	1.35E-02
	Acyl chain remodelling of PC	REACTOME	1.37E-02
	Acyl chain remodelling of PS	REACTOME	1.48E-02
	Acyl chain remodelling of PE	REACTOME	2.24E-02
	hydrolysis of LPC	REACTOME	3.65E-02
	high-density lipoprotein particle	GO CC	2.77E-02
Other lipid metabolism	fatty acid metabolic process	GO BP	6.82E-04
	linoleic acid metabolism	KEGG	5.29E-04
	arachidonic acid metabolism	KEGG	7.27E-04
	glycerolipid metabolism	KEGG	2.57E-02
	sphingolipid metabolism	REACTOME	1.57E-02
	metabolism of lipids and lipoproteins	REACTOME	3.90E-06
December 1	response to zinc ion	GO BP	3.38E-03
Response to ion	cation transmembrane transport	GO BP	6.22E-03

	response to iron ion	GO BP	7.16E-03
	regulation of sodium ion transport	GO BP	1.42E-02
	regulation of calcium ion transport	GO BP	1.83E-02
	response to lead ion	GO BP	2.32E-02
	positive regulation of calcium ion import	GO BP	2.59E-02
	regulation of short-term neuronal synaptic plasticity	GO BP	6.98E-03
	calcium-independent cell-cell adhesion via plasma	COPP	2 175 02
	membrane cell-adhesion molecules	GO BP	2.17E-02
Short-term synaptic neuromuscular synaptic transmission		GO BP	2.37E-02
plasticity and	regulation of neuronal synaptic plasticity	GO BP	2.69E-02
transmission	neuronal action potential	GO BP	3.02E-02
	neuromuscular junction	GO CC	4.39E-02
	calcium signaling pathway	KEGG	8.10E-04
	neuroactive ligand-receptor interaction	KEGG	2.25E-02
Dehavior	adult locomotory behavior	GO BP	2.66E-02
Benavior	grooming behavior	GO BP	3.09E-02
	regulation of protein secretion	GO BP	1.47E-02
	bile secretion	KEGG	1.34E-03
Connetion	insulin secretion	KEGG	1.57E-03
Secretion	pancreatic secretion	KEGG	3.76E-03
	endocrine resistance	KEGG	8.00E-03
	salivary secretion	KEGG	1.54E-02

The human fifth gene eigenvector

Positive end: muscle contraction, synaptic activity and lipid transport

Three groups of gene subsets are enriched at this pole: muscle contraction, synaptic activity and lipid transport (Table S13). All of them can be found at the same end of chimpanzee fifth gene eigenvector too (Table S15). We previously proposed that the human 4-th level provided most abundant physiological elements underlying cognitive functions and language development. Although many of them are shown at the human and chimpanzee 5-th levels too, several important pathways such as long-term memory, social behavior, vocalization behavior and visual learning are not enriched here. On the other hand, they do not appear at the chimpanzee 4-th level either.

Negative end: translation and RNA regulation

The negative end of the human fifth gene eigenvector is marked by protein synthesis, folding and transport, mRNA processing in gene expression and non-coding RNA regulation (Table S14).

Table S13. In the sorted loadings of the human fifth gene	eigenvector u_5 , gene subsets enriched at the
positive end.	

	Description	Source	P-value
	muscle filament sliding	GO BP	1.11E-07
Muscle contraction	skeletal muscle contraction	GO BP	4.16E-04
	cardiac muscle contraction	GO BP	2.41E-06

	sarcomere organization	GO BP	8.52E-06
	striated muscle contraction	GO BP	3.42E-04
	cardiac muscle contraction	KEGG	6.41E-05
	striated muscle contraction	REACTOME	2.39E-07
	muscle contraction	REACTOME	2.08E-05
	neuromuscular synaptic transmission	GO BP	1.90E-05
	membrane depolarization during action potential	GO BP	2.50E-05
	regulation of long-term neuronal synaptic plasticity	GO BP	7.56E-04
	regulation of neuronal synaptic plasticity	GO BP	5.72E-04
	neuronal action potential	GO BP	1.17E-04
	positive regulation of excitatory postsynaptic potential	GO BP	3.11E-03
	regulation of calcium ion-dependent exocytosis	GO BP	1.63E-03
	regulation of neurotransmitter secretion	GO BP	1.61E-03
	synaptic vesicle exocytosis	GO BP	2.60E-03
Neurotransmission	regulation of synaptic plasticity	GO BP	2.18E-03
and synaptic plasticity	neuroactive ligand-receptor interaction	KEGG	5.49E-07
	cholinergic synapse	KEGG	1.00E-03
	serotonergic synapse	KEGG	1.91E-03
	glutamatergic synapse	KEGG	9.33E-03
	calcium signaling pathway	KEGG	9.37E-03
	transmission across chemical synapses	REACTOME	2.32E-06
	neurotransmitter receptor binding and downstream	REACTOME	3.75E-05
	transmission in the postsynaptic cell		
	ion channel transport	REACTOME	2.01E-03
	NCAM signaling for neurite out-growth	REACTOME	
	high-density lipoprotein particle remodeling	GO BP	4.59E-05
	triglyceride catabolic process	GO BP	8.75E-05
Lipid transport	chylomicron remodeling	GO BP	9.86E-05
	reverse cholesterol transport	GO BP	1.58E-04
	lipoprotein transport	GO BP	5.09E-03
	cholesterol efflux	GO BP	2.61E-03
	low-density lipoprotein particle remodeling	GO BP	1.94E-03
	phospholipid efflux	GO BP	2.37E-04
	HDL-mediated lipid transport	REACTOME	1.68E-05

Table S14. In the sorted loadings of the human fifth gene eigenvector u_5 , gene subsets enriched at the negative end.

	Description	Source	P-value
	translation	REACTOME	4.12E-20
Translation	mitochondrial translation	GO BP	3.16E-07
	mitochondrial translation initiation	REACTOME	3.11E-09
	mitochondrial translation termination	REACTOME	1.50E-09
	mitochondrial translation elongation	REACTOME	7.05E-09
	cytoplasmic translation	GO BP	8.95E-05
	positive regulation of translational initiation	GO BP	1.17E-02

	cap-dependent translation initiation	REACTOME	1.14E-17
	eukaryotic translation elongation	REACTOME	2.46E-16
	eukaryotic translation termination	REACTOME	1.20E-16
	tRNA binding	GO MF	7.68E-06
	tRNA aminoacylation for protein translation	GO BP	3.22E-04
	peptide chain elongation	REACTOME	2.45E-16
	protein import into nucleus	GO BP	1.03E-05
	chaperone-mediated protein folding	GO BP	8.35E-03
	'de novo' protein folding	GO BP	2.13E-02
	retrograde protein transport, ER to cytosol	GO BP	8.50E-03
Protein fold and	protein targeting to mitochondrion	GO BP	3.51E-04
transport	protein localization to cilium	GO BP	2.50E-04
	protein import into mitochondrial matrix	GO BP	9.11E-03
	protein folding in endoplasmic reticulum	GO BP	1.97E-02
	protein methylation	GO BP	5.74E-03
	protein export	KEGG	5.14E-05
	RNA metabolic process	GO BP	4.00E-04
	RNA secondary structure unwinding	GO BP	5.35E-04
	mRNA polyadenylation	GO BP	1.17E-04
	tRNA methylation	GO BP	1.11E-02
RNA processing	production of siRNA involved in RNA interference	GO BP	3.62E-02
	RNA transport	KEGG	1.22E-11
	RNA degradation	KEGG	2.47E-05
	mRNA surveillance pathway	KEGG	3.66E-08
	regulation of gene silencing by miRNA	GO BP	3.30E-05
	chromatin silencing	GO BP	9.59E-05
	primary miRNA processing	GO BP	7.61E-03
RNA regulation	snoRNA binding	GO MF	1.56E-03
	regulatory RNA pathways	REACTOME	6.28E-15
	chromatin modifying enzymes	REACTOME	3.33E-10
	chromatin organization	REACTOME	3.33E-10

The chimpanzee fifth gene eigenvector

Positive end: muscle contraction, synaptic transmission, lipid transport and ECM organization Most enriched gene groups around the positive end in chimpanzee are found in human too, except for the group ECM organization (Table S15).

Negative end: translation and RNA regulation

The groups of enriched gene subsets near the negative end of the chimpanzee fifth eigenvector are almost like those at the same end of the human fifth eigenvector (Table S16).

Table S15. In the sorted loadings of the chimpanzee fifth gene eigenvector u_5 , gene subsets enriched at the positive end.

Description		Source	P-value
	muscle contraction	REACTOME	3.26E-07
	muscle filament sliding	GO BP	3.87E-07
Muscle contraction	skeletal muscle contraction	GO BP	1.36E-05
	cardiac muscle contraction	GO BP	5.15E-05
	striated muscle contraction	REACTOME	2.84E-07
	phospholipid efflux	GO BP	8.39E-06
	chloride transport	GO BP	2.21E-05
	chylomicron remodeling	GO BP	1.52E-04
	high-density lipoprotein particle remodeling	GO BP	3.20E-04
	lipoprotein metabolic process	GO BP	3.56E-04
	positive regulation of cholesterol efflux	GO BP	3.96E-04
Lipid transport	high-density lipoprotein particle assembly	GO BP	8.80E-04
	lipoprotein transport	GO BP	5.19E-03
	low-density lipoprotein particle remodeling	GO BP	6.16E-03
	lipid transporter activity	GO MF	5.76E-03
	lipid digestion, mobilization, and transport	REACTOME	4.86E-06
	HDL-mediated lipid transport	REACTOME	4.04E-05
	membrane depolarization during action potential	GO BP	1.59E-04
	neuromuscular synaptic transmission	GO BP	1.69E-04
	membrane depolarization	GO BP	1.12E-03
	calcium ion-regulated exocytosis of neurotransmitter	GO BP	2.22E-03
	regulation of synaptic plasticity	GO BP	2.47E-03
	regulation of neuronal synaptic plasticity	GO BP	4.09E-03
	synaptic transmission, cholinergic	GO BP	5.09E-03
	positive regulation of calcium ion-dependent exocytosis	GO BP	6.14E-03
	GABA-A receptor complex	GO CC	7.44E-03
	postsynapse	GO CC	7.47E-03
Synaptic transmission	dopaminergic synapse	KEGG	1.23E-04
and synapse	cholinergic synapse	KEGG	8.85E-04
formation	glutamatergic synapse	KEGG	6.74E-04
	neuroactive ligand-receptor interaction	KEGG	2.79E-03
	GABAergic synapse	KEGG	6.52E-03
	long-term potentiation	KEGG	8.65E-03
	long-term depression	KEGG	3.53E-02
	neurotransmitter receptor binding and downstream	REACTOME	2 47F-04
	transmission in the postsynaptic cell	nexeronie	2.172.01
	regulation of long-term neuronal synaptic plasticity	GO BP	1.83E-02
	synapse organization	GO BP	2.32E-03
	positive regulation of dendrite extension	GO BP	2.33E-03
	NCAM signaling for neurite out-growth	REACTOME	1.68E-05
Homeostasis	triglyceride homeostasis	GO BP	2.88E-04
1011003(8313	homeostasis	REACTOME	5.90E-07

ECM organization	ECM-receptor interaction	KEGG	4.94E-05
	extracellular matrix organization	REACTOME	2.00E-12
	degradation of the extracellular matrix	REACTOME	2.79E-08
	ECM proteoglycans	REACTOME	3.78E-07
	activation of matrix metalloproteinases	REACTOME	1.82E-05
	collagen degradation	REACTOME	2.01E-05

Table S16. In the sorted loadings of the chimpanzee fifth gene eigenvector u_5 , gene subsets enriched at the negative end.

	Description	Source	P-value	
	translation	REACTOME	4.66E-19	
	mitochondrial translation	GO BP	2.23E-06	
	mitochondrial translation	REACTOME	1.07E-11	
	mitochondrial translation elongation	REACTOME	3.06E-10	
	mitochondrial translation initiation	REACTOME	7.96E-10	
	cytoplasmic translation	GO BP	2.03E-04	
	eukaryotic translation initiation	REACTOME	1.02E-13	
	eukaryotic translation termination	REACTOME	1.51E-10	
Trevelation	translesion synthesis	GO BP	9.38E-05	
Iranslation	peptide chain elongation	REACTOME	6.24E-10	
	tRNA aminoacylation for protein translation	GO BP	6.50E-05	
	eukaryotic translation initiation factor 3 complex	GO CC	1.09E-05	
	tRNA binding	GO MF	1.42E-08	
	rRNA binding	GO MF	1.02E-06	
	ribosome binding	GO MF	2.65E-06	
	translation initiation factor binding	GO MF	4.69E-03	
	regulation of translational initiation	GO BP	9.25E-05	
	regulation of translation	GO BP	8.63E-03	
	RNA secondary structure unwinding	GO BP	5.47E-06	
	tRNA modification	GO BP	2.26E-05	
	histone mRNA metabolic process	GO BP	2.54E-05	
	tRNA export from nucleus	GO BP	2.98E-04	
	RNA catabolic process	GO BP	3.01E-04	
RNA processing, degradation and transport	rRNA methylation	GO BP	6.93E-04	
	mRNA cleavage	GO BP	6.92E-04	
	RNA metabolic process	GO BP	1.51E-03	
	mRNA polyadenylation	GO BP	1.84E-03	
	tRNA processing	GO BP	1.26E-02	
	tRNA methylation	GO BP	1.40E-02	
	RNA transport	KEGG	3.59E-12	
	mRNA surveillance pathway	KEGG	4.26E-04	
	RNA degradation	KEGG	6.93E-04	
Protein processing	protein import into nucleus	GO BP	2.03E-05	

and transport	'de novo' protein folding	GO BP	7.78E-05
	protein targeting to mitochondrion		2.06E-04
protein targeting to lysosome		GO BP	2.16E-04
	protein import into mitochondrial matrix	GO BP	4.55E-04
	chaperone-mediated protein folding	GO BP	1.05E-03
	GO BP	2.31E-03	
	protein methylation		3.77E-03
protein folding in endoplasmic reticulum		GO BP	6.63E-03
chaperone mediated protein folding requiring cofactor		GO BP	7.63E-03
	negative regulation of protein ubiquitination	GO BP	7.12E-03
	protein processing in endoplasmic reticulum	KEGG	6.32E-09
	protein export	KEGG	4.35E-07
	mitochondrial protein import	REACTOME	2.52E-07
	regulation of gene silencing by miRNA	GO BP	1.07E-04
	chromatin silencing	GO BP	8.28E-03
RNA regulation	gene silencing by RNA	GO BP	9.86E-03
	snoRNA binding	GOMF	2.80E-04
	Transcriptional regulation by small RNAs	REACTOME	1.49E-05
	chromosome maintenance	REACTOME	1.81E-10

The human/chimpanzee sixth gene eigenvector

Positive end: mesenchymal stem cell differentiation

At the positive pole of the human sixth eigenvector, we observe the differentiation of mesenchymal stem cells into several cell linages including osteoblasts, chondrocytes which give rise to cartilage, myocytes and adipocytes (Table S17).

Negative end: DNA repair

	Table S17. I	n the sorted loadings	of the human sixth	n gene eigenvector	u_6 , gene subsets	enriched at the positive end.
--	--------------	-----------------------	--------------------	--------------------	----------------------	-------------------------------

	Description	Source	P-value
	positive regulation of mesenchymal cell proliferation	GO BP	3.03E-03
Mesenchymal stem cell differentiation	skin development	GO BP	1.28E-03
	white fat cell differentiation	GO BP	3.98E-03
	chondrocyte differentiation	GO BP	1.23E-02
	positive regulation of cartilage development	GO BP	1.45E-02
	positive regulation of cell division	GO BP	4.69E-03
	myoblast differentiation	GO BP	3.64E-02
	osteoblast development	GO BP	2.89E-02
	chondrocyte proliferation	GO BP	2.05E-02
	bone remodeling	GO BP	1.29E-02
	myoblast fusion	GO BP	4.10E-02
	collagen trimer	GO CC	4.84E-05
	collagen formation	REACTOME	2.89E-01

Table S18. In the sorted loadings of the human sixth gene eigenvector u_6 , gene subsets enriched at the negative end.

	Description	Source	P-value
	interstrand cross-link repair	GO BP	3.37E-05
	nucleotide-excision repair, DNA incision	GO BP	1.78E-04
	nucleotide-excision repair	GO BP	1.08E-03
	global genome nucleotide-excision repair	GO BP	1.71E-04
	nucleotide-excision repair, DNA incision, 5'-to lesion	GO BP	6.97E-04
	nucleotide-excision repair, preincision complex stabilization	GO BP	6.37E-03
	nucleotide-excision repair, DNA incision, 3'-to lesion	GO BP	5.54E-03
	nucleotide-excision repair, DNA duplex unwinding	GO BP	2.92E-03
	nucleotide excision repair	KEGG	1.35E-02
	p53-Independent DNA damage response	REACTOME	9.42E-03
	DNA repair	REACTOME	1.01E-03
	base excision repair	REACTOME	4.75E-03

Human cognition-language gene eigenvector with respect to the chimpanzee's

fourth and fifth eigenvectors

The rotation of the human fourth and fifth motif eigenvectors leads to a gene eigenvector encoding humanspecific phenotypes. The uniqueness of this human module is supported by a group of gene subsets which are enriched near the positive pole of the human fourth eigenvector, but not or less significant along the ape fourth eigenvector. We find that those gene subsets are closely associated with high-order cognitive functions, language development and complex behavior, see Table S19 and Fig. 6B.

	Description	Source	Human 4	Chimp 4	Chimp 5
Synaptic activity and synapse development	transmission across chemical synapses	REACTOME	2.44E-04	6.62E-01	2.98E-05
	neurotransmitter receptor binding and downstream transmission in the postsynaptic cell	REACTOME	2.33E-03	6.12E-01	2.47E-04
	excitatory synapse	GO CC	2.83E-02	2.16E-01	1.71E-01
	presynaptic membrane assembly	GO BP	7.35E-04	4.56E-01	1.93E-01
	neurexin family protein binding	GO MF	3.65E-02	4.99E-01	4.00E-01
	neurofascin interactions	REACTOME	2.03E-03	2.68E-01	1.95E-03
	NCAM signaling for neurite out- growth	REACTOME	2.13E-02	6.31E-01	1.68E-05
	axon guidance	REACTOME	9.57E-05	2.53E-01	3.99E-07
	dendrite development	GO BP	1.40E-02	2.00E-01	3.23E-02
	neuron cell-cell adhesion	GO BP	5.53E-03	3.54E-01	3.96E-02
	neuromuscular process	GO BP	3.19E-02	8.15E-02	1.40E-01

Table S19. gene subsets that are significantly enriched near the pole of the human fourth polarized gene eigenvector, but are not or are less significantly enriched along the fourth ape polarized gene eigenvector.

	positive regulation of synaptic transmission, glutamatergic	GO BP	5.92E-03	7.84E-02	2.71E-01
	ionotropic glutamate receptor binding	GO MF	3.82E-03	1.09E-01	2.69E-01
extracellular-glutamate-gated ion channel activity		GO MF	4.80E-02	5.22E-01	1.20E-01
	glutamatergic synapse	KEGG	7.07E-04	2.57E-01	6.74E-04
	GABA receptor activation	REACTOME	4.40E-04	5.77E-02	3.09E-02
	dopaminergic synapse	KEGG	2.41E-02	1.34E-01	1.23E-04
	adult behavior	GO BP	6.10E-03	1.19E-01	6.00E-02
	social behavior	GO BP	1.49E-03	2.88E-01	3.22E-01
Language and complex behavior	visual learning	GO BP	9.23E-03	1.72E-01	1.16E-01
	vocalization behavior	GO BP	8.09E-04	6.60E-02	7.31E-03
	middle ear morphogenesis	GO BP	3.86E-03	2.33E-02	5.11E-01
	cochlea morphogenesis	GO BP	4.29E-04	5.33E-01	1.30E-02
	eyelid development in camera- type eye	GO BP	4.65E-03	1.27E-01	1.27E-01
	lens development in camera- type eye	GO BP	5.10E-03	8.70E-02	1.69E-02
	midbrain development	GO BP	4.65E-03	1.42E-01	1.42E-01
Organ and Neural development	sympathetic nervous system development	GO BP	1.70E-02	1.05E-01	5.14E-02
	cell proliferation in forebrain	GO BP	7.31E-03	3.34E-01	4.38E-02
	embryonic cranial skeleton morphogenesis	GO BP	2.09E-02	2.07E-01	7.74E-01
	spinal cord development	GO BP	4.37E-02	7.84E-02	5.59E-03
	neuronal system	REACTOME	7.62E-05	9.36E-01	8.01E-06
	long-term memory	GO BP	2.00E-02	5.50E-02	2.25E-01
	regulation of synaptic plasticity	GO BP	6.58E-04	2.59E-01	2.47E-03
	guanylate cyclase activity	GO MF	2.16E-02	9.12E-01	5.10E-01
	adenylate cyclase activity	GO MF	2.56E-02	9.21E-01	4.83E-01
Moreare	cGMP-PKG signaling pathway	KEGG	4.64E-03	9.23E-01	3.84E-02
wemory	cAMP signaling pathway	KEGG	4.31E-02	8.11E-01	8.87E-03
	guanylate cyclase complex, soluble	GO CC	3.28E-02	9.65E-01	4.09E-01
	dentate gyrus development	GO BP	1.50E-03	1.71E-02	1.23E-01
	hippocampus development	GO BP	7.77E-03	3.50E-02	9.86E-01

Regulators unveiled by the dual motif eigenvectors

Embryogenesis regulators near one pole of the human first motif eigenvector

The first motif eigenvector v_1 is coupled with the first gene eigenvector u_1 , whose key functions are

embryogenesis and reproduction at the two ends (Fig. 3A). In this vector, the cis-elements near the positive end correspond to the genes associated with reproduction whereas those near the negative end correspond to the genes involved in embryogenesis.

Embryogenesis starts with the germinal stage, when the early embryo successfully is implanted in the uterus, continues with the next stage of gastrulation, when the three germ layers of the embryo form in a process, and the processes of neurulation and organogenesis follow. We indeed find a group of motifs at the dual end whose binding factors have been reported to participate in these stages (Table S20). Other functional studies in murine models have proposed the important roles of ZIC family transcription factors in neuroectodermal development and neural crest cell induction, indicated by their temporal-spatial expression pattern (Houtmeyers, et al. 2013). ZIC2 is the earliest of the murine ZIC genes to be expressed at the stage of blastulation. The expression of ZIC2 and ZIC3 is maintained in the ectoderm, newly-formed mesoderm and pre-somitic populations during gastrulation. Later, during neurulation, their expression is limited to in most dorsal neuroectoderm where neural crest cell and dorsal neuron will produce. ZIC1 are first expressed at the somite stage of development in the neuroectoderm and somitic mesoderm. We also found other regulators at the somite stage including MRF4 and MEIS2. MRF4, cooperating with other myogenic factors, plays an abundant role in somitic myogenesis (Zhang, et al. 1995). Inactivation of MRF4 results in rib malformation. MEIS2, a member of TALE-family homeodomain proteins, serves as a cell marker in the dorso-ectodermal region and potentially induce myogenesis in the underlying paraxial mesoderm (Cecconi, et al. 1997; Machon, et al. 2015). Additionally, it is also highly expressed in the differentiating regions of forebrain. Another member of TALE-family, MEIS3, directs neural anteroposterior (AP) patterning as a direct target of canonical Wnt signaling (Elkouby, et al. 2010). HNF1B functions before gastrulation and specifies visceral endoderm (Barbacci, et al. 1999). CHCH functions as an important switch between gastrulation and neurulation via FGF signaling (Sheng, et al. 2003). Loss of NKX2-9, the murine homolog of NKX2-8, results in impaired floor plate, the important structure located on the ventral midline of neural tube mediating the proper left-right body axis by commissural axon guidance (Holz, et al. 2010). The heart is the first functional organ to develop in human embryo. TBX5 plays a critical role in heart morphogenesis, and its dysregulation leads to abnormal cardiac morphogenesis and congenital heart diseases (Horb and Thomsen 1999).

Motif symbol	Transcription factor	Rank	Function	Reference
ZIC3_05	ZIC3	3	ectoderm and mesoderm formation	
ZIC2_05	ZIC2	4	neuroectodermal development	23443491
ZIC1_01	ZIC1	7	somite formation	
MYF6_04	MRF4	11	myotome differentiation	7797078
LFA1_Q6	HNF1B	13	visceral endoderm specification	10518496
TBX5_Q5	TBX5	15	heart morphogenesis	10079235
CHCH_01	СНСН	26	regulation of gastrulation and neurulation	14651851
NKX29_01	NKX2-8	42	floor plate development	21068056
MRG2_01	MEIS3	47	neural plate organization	20356957
	MEISO	E1	forebrain differentiation	9337138
IVIEI32_01	IVIEISZ	51	somitic mesoderm differentiation	26545946

Table S20. Motifs of embryogenesis regulators at the negative end of the first motif eigenvector. The last column provides the PubMed ID for each reference.

|--|

Cell cycle regulators near one pole of the human third motif eigenvector

The third motif eigenvector v_3 is coupled with the third gene eigenvector u_3 . In this eigenvector, the ciselements near the negative end correspond to the genes near the mitosis end of the coupling gene eigenvector. In consistency with the natural regulatory correspondence between them, several cis-elements whose binding factors are known to participate in the cell cycle regulation such as E2F1/DP2 and FOXO1/3/4, are found to cluster at this end (Table S21).

Table S21. Motifs of cell cycle regulators near the negative end of the third motif eigenvector. The last column provides the PubMed IDs for the related references.

Motif symbol	Transcription factor	Rank	Consensus sequence	Phase	Reference
E2F_01	E2F1	106	GCGCCAAAA	G1-S,S-G2	11799067
FOXO3A_Q1	FOXO3A	33	TGTAAACAA	S-G2,G2-M	11964479
FOXO1_Q5	FOXO1	42	AAAACA	G1	10783894
FOXO4_02	FOXO4	55	KTTGTTTAC	G1	10783894
	E2E1.002	102	TTRECCC	61.5	7880534
EZFIDPZ_01	EZF1.DF2	102	11135666	01-5	7739537
NANOG_02	NANOG	34	AACAAAGG	core	10020452
OCT4_02	POU5F1	69	ATTGTNATGCTAAT	reprograming	18029452
SOX2_01	SOX2	71	CCTTTGTNNTGCAAA	factor	18035408

Cis-trans regulation of the human cognitive eigenvector

The human fourth motif eigenvector v_4 results from the rotation of the ape eigenvectors, and is coupled to the cognitive gene eigenvector (Table S19). Among the top motifs at the positive end, quite a few motifs, referred as new-comers in this paper, are boosted from the fifth eigenvector of chimpanzees. In other words, they rank high at the fifth level but rank quite low at the fourth level in chimpanzees, but are now prominent at the fourth eigenvector in humans. To classify the old-timers and newcomers clearly, a linear regression of the motif loadings at level 4 in human (y) on their loadings at the same level in chimpanzee (x) is performed. The regression residuals (e) reflect the influence of chimpanzee level 5 since the human fourth and fifth eigenvectors are totally linearly dependent on those of chimpanzee's (Fig.2B). For each motif, we take the ratio (e/y) of the regression residual to its current loading at human level 4 as the percentage of contribution by chimpanzee level 5. If the ratio is greater than 0.5, the motif is identified as a new-comer. We discover that nearly one quarter of the top motifs, 47 out 200, are new-comers. Several transcription factors, whose functions in long-term memory storage have been studied extensively, stand around the two ends. Two of them, EGR1 and CREB, are new-comers. Three of them, CREB, CEBP and AP1, are MPA (Table S22). The seven cis-elements in the SP1-centered network, which is composed by six new-comers and one old-timer (Fig.4C), are also included in Table S22.

Table S22. Regulators of human cognitive gene eigenvector. Two motifs sitting at the negative end are marked by negative ranks. The last column provides the PubMed IDs for the related references.

Motif symbol	Transcription factor	Human 4	Chimp 4	Chimp 5	Reference	
Non-MPA & new-comer motifs						

GKLF_Q4		32	220	11	0651308
GKLF_02	KLF4	84	416	14	9021398
MAZ_Q6	N 4 4 7	35	165	18	12425020
MAZ_Q6_01	MAZ	66	244	20	12425938
EGR1_04	EGR1	68	203	30	
EGR2_Q6	EGR2	114	514	19	19126756
EGR_Q6	EGR1/2	203	440	69	
SP3_Q3	SP3	140	317	57	12736330
LRF_Q2	Q2 ZBTB7A(LRF) 39		381	7	12004059; 15917220
BTEB3_Q5	KLF13 67		226	22	11477107; 12004059
MPA & new-comer motifs					
SP1_03		28	262	9	
GC_01		123	413	25	
SP1_Q2_01	SP1	131	457	26	15081116
SP1_02		129	393	31	
SP1_Q4_01		168	551	34	
CREBATF_Q6	CREB	-184	415	-38	19126756
TAXCREB_02	EB_02 CREB1 -112		-288	-71	19126756
Non-MPA & old-timer motifs					
ELF1_Q6	ELF1	38	55	154	8797822
P50_Q6	NFKB1	81	149	45	19126756
		MPA & old	l-timer motifs		
CEBP_Q3		16	5	-245	
CEBPA_Q6	CEBPA/	57	35	-273	
CEBP_Q2_01	CEBPB/	74	42	-229	19126756
CEBPB_Q6	CEBPD	93	54	-249	
CEBPD_Q6_01		190	155	-259	
AP1_02	AP1	-197	-187	398	19126756

Comparative dual eigen-analysis between human and orangutan

Human specific Alu insertions in the proximal regulatory regions

8,817 human specific Alu elements were identified recently by comparing the genomes of human and nine nonhuman primates including chimpanzee (Tang, et al. 2018). We filtered out those falling out of the proximal regulatory regions, namely, -1000bp to 500bp around TSS of the human 5'-most transcripts, mostly principal ones. This resulted in 47 genes, each of which contains a clean human specific Alu insertion. A list of the 47 genes is shown in Table S24. Each line describes one gene, including its name, the type of Alu insertions, the distance to TSS, the difference between its rank in the fourth eigenvector of human and that of chimpanzee, and its gene function. The gene ranks in the two species were based on the subset of genes whose annotations are available for both species. The gene functions are obtained from UniProt (The UniProt Consortium 2019), if not specified otherwise.

Table S23 Statistical comparisons of the occurrences of a MPA in the 47 human specific Alu insertions versus those in their neighboring regulatory DNA sequences. The comparisons were quantified by significances of statistical tests. The significances were calculated for each MPA across the 47 genes with human specific Alu insertions as follows. First, for a given MPA, we computed its frequency p_0 in the regulatory DNA sequence of one gene excluding the associated human specific Alu insertion. Then we counted its occurrences in the Alu insertion. Second, the count is assumed to be a random variable following a Binomial distribution Bin(n, p), where n is the length of the Alu insertion. We tested the hypothesis H_0 : $p = p_0$ versus H_a : $p > p_0$, and a p-value was calculated using the exact binomial test. Third, a total of 47 p-values were obtained as above, and they were combined by the Fisher's method (Fisher 1925; Fisher 1948). Shown in the table are the integrated p-values of 17 MPAs, which are all newcomers around the poles of the fourth polarized human motif eigenvector.

Motif Symbol	P value
SP1_03	6.42E-159
IK_Q5	2.61E-07
CACD_01	1.39E-88
LYF1_01	1.43E-14
GC_01	3.33E-114
SP1_02	9.87E-141
SP1_Q2_01	5.19E-202
SP1_Q4_01	3.05E-194
TAXCREB_01	9.13E-43
CREBATF_Q6	1.45E-38
TAXCREB_02	1.87E-14
ATF6_01	3.46E-18
E2F_Q2	<6.42E-159
PAX5_02	3.98E-48
E2F1_Q3_01	1.65E-179
PAX3_B	3.27E-20
ZF5_B	2.54E-141

Table S24 List of 47 genes with human specific Alu insertions in their proximal regulatory regions. These human specific Alu insertions were obtained from a recent study (Tang, et al. 2018). The third column provides the locations of

Alu insertions from the TSSs. Negative and positive values respectively correspond to Alu insertion events upstream and downstream the TSSs. For each gene, the fourth column provides the difference between its rank in the fourth gene eigenvector of human and that of chimpanzee. A negative value of difference means the gene ranks higher in human; whereas a positive value means it ranks lower (ties could occur). The fifth column provides short descriptions of the gene functions.

Cono	A.L.	Location to	Rank	Cone Function
Gene	Alu	TSS (bp)	Difference	
SPTY2D1	AluYa5	-584	-8644.5	CREB-modulated gene upon stimulus in the hippocampus (Lemberger, et al. 2008)
SEMA4F	AluYg6	-737	-7279.5	axon guidance
BSG	AluSg7	-819	-5989	neural network formation
GRK7	AluYi6	-565	-5693.5	visual perception
CDT1	AluYe5	-167	-4274.5	Meier-Gorlin syndrome 4
CEBPG	AluYa5	-427	-4233	key regulator of synaptic plasticity and memory formation (Alberini 2009)
VDAC3	AluYh3	-982	-1035	synaptic transmission; behavioral fear response; learning
TRIB3	AluY	-213	-504	programmed neuronal cell death
CTHRC1	AluY	-519	-493	cochlea morphogenesis
MKS1	AluYa5	-846	-6766.5	Meckel syndrome 1; head development
ATG7	AluYa5	-789	-1661.5	axonal homeostasis
ATXN7L3B	AluYa5	-843	-8285	mutation causes neurodevelopmental delay and cerebellar ataxia
TMSB4Y	AluYa5	-54	-8062	Sex-biased expressed in human brains (Reinius and Jazin 2009)
DHODH	AluYb8	420	-152	highly active in neocortex (Schaefer Ch, et al. 2010)
UBE2T	AluYa5	374	-7794.5	MEF2-regulated genes in human neural progenitor cell (Chan, et al. 2015)
LDAH	AluYb8	-505	-4090.5	Loss of LDAH associated with hearing loss (Currall, et al. 2018)
INITSE	AluVbo	622	11551	component of INT complex that prevents dedifferentiation of intermediate neural
10135	Alutbo	-025	-11551	progenitors (Zhang, et al. 2019)
DBNDD2	AluYb8	-629	-1088	highest expression level in C1 segment of cervical spinal cord
PDP2	AluYa5	393	-5774	A biomarker of Parkinson's Disease (Fan and Xiao 2018)
TMFM181	ΔΙυΥΡ8	-990	-795 5	enhanced RNA expression in brain
	Altibo	550	755.5	(https://www.proteinatlas.org/ENSG00000146433-TMEM181/tissue)
CEP44	AluYa5	-596	-1540	highest expression level in corpus callosum
KRTAP9-1	AluYg6	-978	-61	Keratin-associated protein in the hair cortex
UGGT2	AluYa5	-447	-8841.5	ER-associated misfolded protein catabolic process
NKTR	AluYa5	-909	-5063	NK-tumor recognition
MED31	AluY	494	-1739.5	Mediator of RNA polymerase II transcription
TSSKA	ΔΙυΥ25	-100	2784	positive regulation of CREB transcription factor activity that regulate memory
100/(1	7111111	100	2701	development (Alberini 2009)
PUM3	AluY	364	4120.5	eye development
FRS2	AluYb8	-862	1117.5	forebrain development, axon guidance
SHCBP1L	AluYk11	-708	223	spermatogenesis
GGACT	AluYa5	-293	329	catabolic process
GTF2H3	AluYa5	-776	871.5	component of TFIIH core complex
LEO1	AluSx1	-348	909.5	RNA polymerase-associated protein
OSBPL11	AluYa5	-751	1033	adipocytes differentiation

CFAP45	AluYh3	346	1084.5	cilia- and flagella-associated protein 45
RPL17	AluYa5	-975	1110	component of the large ribosomal subunit
IDNK	AluYb8	-677	1387.5	cellular modified amino acid catabolic process
HOOK2	AluYe5	-250	1387.5	endocytosis; centrosome establishment
RABEPK	AluYb8	-444	1596.5	trans-Golgi network
MGAT4C	AluY	-757	2280	protein N-linked glycosylation
TBPL2	AluSc8	-134	3106	myoblasts differentiation
PLCD3	AluYa5	-161		calcium signaling pathway (KEGG: hsa04020)
OCLM	AluYg6	-283		visual perception
OR12D2	AluYa8	-437		expressed in hypothalamus
C17orf100	AluY	-774		highest expression level in temporal lobe
WDFY4	AluYb8	-270		autophagy
OR5AC2	AluYc	-943		odorant receptor
OR11H2	AluYb8	-29		olfactory receptor activity

Table S25 Details of 6 other genes used in the main text to explain the influence of Alu elements. ADAM10 has a human specific AluJr4 insertion 700 bp upstream of its TSS, but not reported in Table S23. DRD3 has an existing Alu element downstream from the most upstream TSS in human. MYH14 has two Alu elements upstream of its most upstream TSS in human. The other three genes have human specific Alu insertions around their TSSs. The AluYa5 insertion in the case of GABRP does not show in the human reference genome, but was validated to be fixed in human by a sequencing data set (Hormozdiari, et al. 2013). The fifth column lists the appropriate references (PubMed ID) for their gene functions. The last column provides the UCSC browser URL links to these human specific Alu insertions.

Gene	Alu	Location to	Gene Function	PubMed ID	UCSC session link
		TSS (bp)			
ADAM10	AluJr4	-700	neuronal plasticity	23676497	https://genome.ucsc.edu/s/liliang/hg38-
			cochlea development	30639848	ADAM10
PAX2	AluYa5	-8278	cochlea and brain	8943028	https://genome.ucsc.edu/s/liliang/hg38-
			development		PAX2
NRXN1	AluYg6	-1600	vocal learning	18057082	https://genome.ucsc.edu/s/liliang/hg38-
			social behavior	20468056	NRXN1
MYH14	AluJo AluYm1	-830 -1250	vocalization and		https://genome.ucsc.edu/s/liliang/hg38-
			hearing	21480433	MYH14
			axon guidance		
GABRP	AluYa5	1765	GABA receptor subunit	9182563	Not available
			dopaminergic synaptic		
DRD3	AluJr	500	transmission, visual	29276054	https://genome.ucsc.edu/s/liliang/hg38-
			learning, social	16524466	DRD3
			behavior		

UCSC browser snapshots of the human specific Alu insertions around

ADAM10, DRD3 and PAX2

Fig. S6 A human specific insertion event, AluJr4, in the proximal regulatory region of the gene ADAM10.

Fig. S7. An AluJr4, located 500bp downstream of the TSS of a human specific DRD3 transcript. Human has a specific transcript extending towards the 5' end so that it contains 10 existing Alu elements in its first intron. However, no such transcript is found in chimpanzee

Fig. S8 A human specific insertion event, AluYa5, found upstream of the TSS of PAX2. The TSS in chimpanzee is predicted to be in the left CpG island, which is much closer to the Alu insertion.

Dual eigen-analysis with the option of the APPRIS principal transcripts

The proximal regulatory regions for motif searching rely on the TSS selection. When multiple annotated transcripts are available, it is expected to select the principal transcript. We calculated the CREF modules for human and chimpanzee based on the principal transcript tagged as the main functional isoform by APPRIS. The module reorganization was observed too (Fig. S9), indicated by an approximate 52° rotation between the fourth and fifth eigenvectors. The enrichment analysis as well as the change in the MPA numbers are, by and large, similar to what are reported in the main text (Fig. S10). However, the APPRIS annotation is not available for orangutan.

Fig S9. The scatter plots of human's top six motif eigenvector loadings versus chimpanzee's using the APPRIS principal transcripts.

Fig. S10 Comparative analysis of human and chimpanzee motif/gene eigenvectors. The results suggest that our inferences on MPA changes underlying module reorganization, as well as our functional interpretations for the fourth CREF module, are robust with respect to TSS selection. **(A) The relative change of MPA in percentages at each level from chimpanzee to human by choosing the APPRIS principal transcripts.** The number of MPA increases most significantly at level 4 by 39.5%, followed by 14.5% at the fifth level. **(B) Comparison of enrichments results between human and chimpanzee by choosing the APPRIS principal transcripts.** Gene subsets that are significantly enriched near

the positive pole of the human fourth polarized gene eigenvector, but are not or less significantly enriched along the fourth chimpanzee polarized gene eigenvector. The color scheme is the same as that in Fig.6.

Reference

Alberini CM. 2009. Transcription factors in long-term memory and synaptic plasticity. Physiol Rev 89:121-145. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, et al. 2000. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25:25-29.

Barbacci E, Reber M, Ott MO, Breillat C, Huetz F, Cereghini S. 1999. Variant hepatocyte nuclear factor 1 is required for visceral endoderm specification. Development 126:4795-4805.

Cand EJ, Li X, Ma Y, Wright J. 2011. Robust principal component analysis? J. ACM 58:1-37.

Carbon S, Chan J, Kishore R, Lee R, Muller H-M, Raciti D, Van Auken K, Sternberg P. 2017. Expansion of the Gene Ontology knowledgebase and resources. Nucleic Acids Res 45:D331-D338.

Cecconi F, Proetzel G, Alvarez-Bolado G, Jay D, Gruss P. 1997. Expression of Meis2, a Knotted-related murine homeobox gene, indicates a role in the differentiation of the forebrain and the somitic mesoderm. Developmental Dynamics 210:184-190.

Chan SF, Huang X, McKercher SR, Zaidi R, Okamoto SI, Nakanishi N, Lipton SA. 2015. Transcriptional profiling of MEF2-regulated genes in human neural progenitor cells derived from embryonic stem cells. Genom Data 3:24-27.

Cheng C, Fabrizio P, Ge H, Wei M, Longo VD, Li LM. 2007. Significant and Systematic Expression Differentiation in Long-Lived Yeast Strains. PLOS ONE 2:e1095.

Currall BB, Chen M, Sallari RC, Cotter M, Wong KE, Robertson NG, Penney KL, Lunardi A, Reschke M, Hickox AE, et al. 2018. Loss of LDAH associated with prostate cancer and hearing loss. Hum Mol Genet 27:4194-4203.

Elkouby YM, Elias S, Casey ES, Blythe SA, Tsabar N, Klein PS, Root H, Liu KJ, Frank D. 2010. Mesodermal Wnt signaling organizes the neural plate via Meis3. Development:dev.044750.

Fabregat A, Jupe S, Matthews L, Sidiropoulos K, Gillespie M, Garapati P, Haw R, Jassal B, Korninger F, May B, et al. 2018. The Reactome Pathway Knowledgebase. Nucleic Acids Res 46:D649-d655.

Fan Y, Xiao S. 2018. Progression Rate Associated Peripheral Blood Biomarkers of Parkinson's Disease. J Mol Neurosci 65:312-318.

Feng Y, Zhang S, Li L, Li LM. 2019. The cis-trans binding strength defined by motif frequencies facilitates statistical inference of transcriptional regulation. BMC Bioinformatics 20:201.

Fisher RA. 1948. Questions and Answers. The American Statistician 2:30-31.

Fisher RA. 1925. Statistical Methods for Research Workers. Oliver and Boyd (Edinburgh).

Golub GH, Loan CFV. 1996. Matrix computations (3rd ed.): Johns Hopkins University Press.

Holz A, Kollmus H, Ryge J, Niederkofler V, Dias J, Ericson J, Stoeckli ET, Kiehn O, Arnold HH. 2010. The transcription factors Nkx2.2 and Nkx2.9 play a novel role in floor plate development and commissural axon guidance. Development 137:4249-4260.

Horb ME, Thomsen GH. 1999. Tbx5 is essential for heart development. Development 126:1739-1751.

Hormozdiari F, Konkel MK, Prado-Martinez J, Chiatante G, Herraez IH, Walker JA, Nelson B, Alkan C, Sudmant PH, Huddleston J, et al. 2013. Rates and patterns of great ape retrotransposition. Proc Natl Acad Sci U S A 110:13457-13462.

Houtmeyers R, Souopgui J, Tejpar S, Arkell R. 2013. The ZIC gene family encodes multi-functional proteins essential for patterning and morphogenesis. Cell Mol Life Sci 70:3791-3811.

Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K. 2017. KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res 45:D353-d361.

Kanehisa M, Goto S. 2000. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27-30. Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M. 2016. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res 44:D457-462.

Lemberger T, Parkitna JR, Chai M, Schutz G, Engblom D. 2008. CREB has a context-dependent role in activityregulated transcription and maintains neuronal cholesterol homeostasis. FASEB J 22:2872-2879.

Li LM, Liu X, Wang L, Wang Y, Liu X, Tian X, Gong F, Shen L, Peng X-d. 2017. A Novel Dual Eigen-Analysis of Mouse Multi-Tissues' Expression Profiles Unveils New Perspectives into Type 2 Diabetes. Scientific Reports 7:5044.

Lin Z, Chen M, Ma Y. 2010. The augmented lagrange multiplier method for exact recovery of corrupted low-rank matrices. arXiv preprint arXiv:1009.5055.

Machon O, Masek J, Machonova O, Krauss S, Kozmik Z. (Machon2015 co-authors). 2015. Meis2 is essential for cranial and cardiac neural crest development. BMC Developmental Biology 15:40.

Reinius B, Jazin E. 2009. Prenatal sex differences in the human brain. Mol Psychiatry 14:987, 988-989. Schaefer Ch M, Schafer MK, Lofflerr M. 2010. Region-specific distribution of dihydroorotate dehydrogenase in the rat central nervous system points to pyrimidine de novo synthesis in neurons. Nucleosides Nucleotides Nucleic Acids 29:476-481.

Sheng G, dos Reis M, Stern CD. 2003. Churchill, a Zinc Finger Transcriptional Activator, Regulates the Transition between Gastrulation and Neurulation. Cell 115:603-613.

Tang W, Mun S, Joshi A, Han K, Liang P. 2018. Mobile elements contribute to the uniqueness of human genome with 15,000 human-specific insertions and 14 Mbp sequence increase. DNA Res 25:521-533. The UniProt Consortium. 2019. UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res 47:D506-D515.

Zhang W, Behringer RR, Olson EN. 1995. Inactivation of the myogenic bHLH gene MRF4 results in upregulation of myogenin and rib anomalies. Genes Dev 9:1388-1399.

Zhang Y, Koe CT, Tan YS, Ho J, Tan P, Yu F, Sung WK, Wang H. 2019. The Integrator Complex Prevents Dedifferentiation of Intermediate Neural Progenitors back into Neural Stem Cells. Cell Rep 27:987-996 e983.