#### SUPPLEMENTAL INFORMATION

### SUPPLEMENTAL FIGURE LEGENDS

# Figure S1: Distribution of single-cell RNA-seq data by embryonic and fetal age, related to Figure 12.

A: Deconvolution of Fig. 1B according to donor age.

**B**: Dotplot comparing percentage expression of selected markers in cell clusters identified in Fig. 1C. Normalized expression is plotted on a high-to-low scale (purple-grey), with dot size increasing with the percentage of cells within a cluster (0% - 75%) that express a given gene.

**C:** Deconvolution of Fig. 2A progenitor cluster according to donor age.

# Figure S2: Gonadal somatic cell lineage specification during sex determination, related to Figure 2.

**A:** Immunofluorescence staining for VASA (yellow) and NR2F2 (magenta) in fetal ovaries and testes at W7-15. Nuclei counterstained with DAPI (grey). Cortex (c) and medulla (m) or tunica albuginea (ta) and epididymis (e) labels included to show section image orientation. Scale bars 50 μm.

**B:** Immunofluorescence for selected sex-indifferent markers in fetal testes from W7-16 – LAMININ (yellow), NR2F2 (magenta), PDGFRA (cyan) and DAPI nuclear stain (grey). Tunica albuginea (ta) and epididymis (e) labels included to show section image orientation. Scale bars 50 μm.

**C:** Immunofluorescence for selected sex-specific markers FOXL2 (cyan) or SOX9 (yellow) in fetal ovaries or testes respectively from W7-12, co-stained with NR2F2 (magenta). Scale bars 50  $\mu$ m.

D: Model of testis development between W7-16.

# Figure S3: Gene expression dynamics during ovarian granulosa lineage specification, related to Figures 3 and 4.

**A:** Violin plots showing upregulated genes in bipotential (green), bipotential transitional (blue) or pre-granulosa cells (purple) compared to common progenitor cells (yellow). Cell clusters along the x-axis from left to right are in the same order as the row in the heatmap from Fig. 3B.

**B:** Expression of additional markers specific for common progenitors or bipotential cells cast on the UMAP plot from Fig. 4A. Normalized expression is plotted on a high-to-low scale (purple-grey).

**C:** Immunofluorescence staining for KRT19 (yellow) and FOXL2 (magenta) in fetal ovary samples at W7-15 with DAPI counterstain in gray. Cortex (c) and medulla (m) labels included to show section image orientation. Scale bars 20  $\mu$ m.

**D:** Immunofluorescence staining for KRT19 (yellow) and FOXL2 (magenta) in fetal ovary samples at W6-7 with DAPI counterstain in gray. Cortex (c) and medulla (m) labels included to show section image orientation. Scale bars 15  $\mu$ m.

**E:** Violin plots showing upregulated genes in PG1 (red), PG2 (green) or epithelial (blue) pre-granulosa cells.

# Figure S4: Gene expression dynamics as ovarian PGCs differentiate, related to Figure 5.

**A:** UMAP showing the developmental progression of combined fetal ovary and testis germ cells over time. Testis PGCs go from PGCs to state f0 cells; ovary PGCs generally progress into RA-responsive meiotic germ cells (MGCs), MGCs and on to primordial oocytes, but a small arm branches off into state f0 alongside testis germ cells.

**B:** UMAP plot from Fig. S4A with cells colored by Seurat analysis-designated cell groups (labelled 1 - 6). Genes enriched in the broader clusters (outlined in dashed lines) are indicated.

**C**: Expression of selected markers cast on the UMAP plot from Figure S4A identifying PGCs, RA-responsive MGCs, MGCs, primordial oocytes and state f0 cells. Normalized expression is plotted on a high-to-low scale (purple-grey).

**D**: Bar graph showing the proportion of each germ cell stage in each fetal sample analyzed.

**E:** Violin plots showing expression of DEGs in either ovary or testis PGCs at the early stage (cluster 0 in Fig. S4A). Most DEGs are on the sex chromosomes.

**F**, **G**: Violin plots showing expression of genes downregulated (**E**) or upregulated (**F**) in PGCs during development. Cell clusters along the x-axis from left to right are PGC clusters (0-2 in Fig. 4A) with RA-responsive MGCs (cluster 3 in Fig. 4A) as a control.

### Figure S5: Characterizing germline cells and ovarian State f0, related to Figure 5.

**A:** Distribution of germ cells from W10 and W13 ovaries on the pseudotime trajectory, showing a small proportion cluster in the state f0 group.

**B**: Dotplot comparing percentage expression of selected markers in PGCs, RA-responsive MGCs, MGCs, primordial oocytes and state f0 cells. Normalized expression is plotted on a high-to-low scale (purple-grey), with dot size increasing with the percentage of cells within a cluster (0% - 75%) that express a given gene.

**C**: Top panel: UMAP plot of reanalyzed data of combined germ cells from fetal ovaries (16 cells) and testes (346 cells) from a previously published dataset <sup>1</sup>. Left: Cells are colored by donor origins, either ovary or testis. Bottom panel: PIWIL4 and DDX4 expression cast on the UMAP plot in Figure S5D. Normalized expression is plotted on a high-to-low scale (purple-grey).

**D:** Immunofluorescence staining for state f0 marker PIWIL4 (magenta) and germ cell marker VASA (cyan) in fetal ovaries at W10-15. Nuclei are counterstained with DAPI (grey).

#### Fig.S1





### B









FOXL2 / NR2F2 / DAPI

SOX9 / NR2F2 / DAPI

Fig.S2

Fig.S3











### SUPPLEMENTAL TABLES

Supplemental Table 1: Red blood cell marker genes excluded from cell cluster analysis, related to Figures 1 and 2.

| HBE1     | EPB42        | CAT           | MYT1        | NPL              |
|----------|--------------|---------------|-------------|------------------|
| HBZ      | NUDT4        | RGCC          | KRT1        | TMEM56           |
| HBG2     | SLC39A8      | LXN           | TUBA4A      | SLC38A5          |
| HBA1     | UCP2         | SMIM1         | PIM1        | TUBB6            |
| HBA2     | KLF1         | UBAC1         | SOD3        | HIST1H1C         |
| HBG1     | SLC2A1       | CREG1         | YWHAH       | TFR2             |
| HBB      | FAM210B      | GATA1         | TRIM58      | SLC29A1          |
| HBM      | SELENBP1     | GLRX5         | FAM46C      | RP11-386G11.10   |
| AHSP     | DCAF12       | EIF2AK1       | GDF15       | GPR146           |
| SLC25A37 | ADIPOR1      | CHPT1         | KEL         | TANGO2           |
| ALAS2    | RGS10        | GSTO1         | SIAH2       | FAXDC2           |
| MT1G     | TMCC2        | ANKRD9        | ANK1        | GABARAPL2        |
| BLVRB    | S100A6       | BNIP3L        | HSF1        | MAP2K3           |
| MT1H     | STRADB       | R3HDM4        | HK1         | GRAP2            |
| GYPA     | MT1M         | ICAM4         | PPP1R14C    | LMO2             |
| GYPC     | OAZ1         | RP11-20B24.2  | TAL1        | PKLR             |
| GYPB     | LYL1         | GMPR          | PITX1       | ALAD             |
| MT2A     | FTH1         | PHOSPHO1      | NARF        | RAP1GAP          |
| BPGM     | LINC00152    | TALDO1        | FAM104A     | CORO1C           |
| MT1E     | DMTN         | RHCE          | TUBB1       | MAP1LC3B         |
| SNCA     | CCNDBP1      | FKBP8         | FBXO7       | ACKR1            |
| MT1X     | RHAG         | UROD          | ESPN        | TF               |
| HEMGN    | NFE2         | RFESD         | ST8SIA1     | CDKN2D           |
| HMBS     | AC104389.1   | RP11-470P21.2 | MARCH2      | NR1H2            |
| SLC4A1   | S100A4       | HAGH          | GADD45A     | HPS1             |
| HBQ1     | CTSE         | MKRN1         | YPEL4       | FAM83A           |
| MYL4     | TMOD1        | ARL4A         | PLEK2       | SNX22            |
| SLC25A39 | PCGF5        | MTURN         | YBX3        | XXbac-BPG252P9.9 |
| FECH     | BCL2L1       | TESC          | RILP        | USP15            |
| MT1F     | RP11-797H7.5 | CR1L          | TSPAN32     | OPTN             |
| FTL      | SMIM5        | CD36          | RUNDC3A     |                  |
| MPP1     | GYPE         | RAD23A        | MIR4435-2HG |                  |
| NCOA4    | C17orf99     | RNF10         | EPOR        |                  |
| PRDX2    | CPOX         | GFI1B         | CTA-363E6.6 |                  |

Supplemental Table 2: Differential gene expression analysis of common progenitor cells, related to Figure 2.

| Parameters: log2fc=1; p_adjust<0.05   |                  |                        |  |  |  |  |
|---------------------------------------|------------------|------------------------|--|--|--|--|
| DEGs upregulated in ovarian common    | DEGs upregulated | in testicular common   |  |  |  |  |
| progenitors                           | progenitors      |                        |  |  |  |  |
| None                                  | RPS4Y1           |                        |  |  |  |  |
|                                       |                  |                        |  |  |  |  |
| Parameters: log2fc=0.3; p_adjust<0.05 |                  |                        |  |  |  |  |
| DEGs upregulated in ovarian common    | DEGs upregulated | d in testicular common |  |  |  |  |
| progenitors                           | progenitors      |                        |  |  |  |  |
| XIST                                  | RPS4Y1           | CTGF                   |  |  |  |  |
| RPS10                                 | RPS26            | MIF                    |  |  |  |  |
| LAPTM4B                               | JUN              | GNAS                   |  |  |  |  |
|                                       | ID3              | TPM2                   |  |  |  |  |
|                                       | ACTA2            | PART1                  |  |  |  |  |
|                                       | FOS              | NDUFA4L2               |  |  |  |  |
|                                       | TAGLN            | MYL9                   |  |  |  |  |
|                                       | TPM1             | HIST1H4C               |  |  |  |  |
|                                       | MALAT1           | DNAJC15                |  |  |  |  |
|                                       | CNN2             |                        |  |  |  |  |

Supplemental Table 3: Differential gene expression analysis of bipotential cells, related to Figure 2.

| Parameters: log2fc=1; p_adjust<0.05   |                     |                                            |                           |  |  |  |  |
|---------------------------------------|---------------------|--------------------------------------------|---------------------------|--|--|--|--|
| DEGs upregulated in                   | ovarian bipotential | DEGs upregulated in testicular bipotential |                           |  |  |  |  |
| cells                                 |                     | cells                                      |                           |  |  |  |  |
| None                                  |                     | RPS4Y1                                     |                           |  |  |  |  |
|                                       |                     |                                            |                           |  |  |  |  |
| Parameters: log2fc=0.3; p_adjust<0.05 |                     |                                            |                           |  |  |  |  |
| DEGs upregulated in                   | ovarian bipotential | DEGs upregulated                           | in testicular bipotential |  |  |  |  |
| cells                                 |                     | cells                                      |                           |  |  |  |  |
| SULT1E1                               | CD24                | RPS4Y1                                     | TXNDC17                   |  |  |  |  |
| XIST                                  | FBLN5               | RPS26                                      | MEG3                      |  |  |  |  |
| IGFBP3                                | PRSS23              | RNASE1                                     | RPS27                     |  |  |  |  |
| IFI6                                  | TOP2A               | BEX1                                       | EMX2                      |  |  |  |  |
| PTN                                   | NR2F1               | DLK1                                       | RPS28                     |  |  |  |  |
| CPE                                   | CDH2                | JUNB                                       | ATP5I                     |  |  |  |  |
| SHISA3                                | POSTN               | DCN                                        | NR0B1                     |  |  |  |  |
| SFRP2                                 | CLDN11              | MIF                                        | PKM                       |  |  |  |  |
| PLAT                                  | TYMS                | FOS                                        | LHX9                      |  |  |  |  |
| RPS10                                 | CSRP2               | IER2                                       | ELK1                      |  |  |  |  |
| AKAP12                                | H2AFX               | LDHA                                       | MT-ND3                    |  |  |  |  |
| DHRS3                                 | TAGLN               | RPS29                                      | MT-CO3                    |  |  |  |  |
| ANXA2                                 | TUBB2B              | ENO1                                       | GATA4                     |  |  |  |  |
| CDK1                                  | TUBB4B              | JUN                                        | LRRN3                     |  |  |  |  |
| ISG15                                 | TGFBI               | GSTA1                                      | IL17B                     |  |  |  |  |
| ALCAM                                 | PCSK1N              | NSG1                                       |                           |  |  |  |  |
| MXRA8                                 | PCOLCE              | SOX4                                       |                           |  |  |  |  |
|                                       |                     |                                            |                           |  |  |  |  |

#### REFERENCES

1. Li, L., Dong, J., Yan, L., Yong, J., Liu, X., Hu, Y., Fan, X., Wu, X., Guo, H., Wang, X., et al. (2017). Single-Cell RNA-Seq Analysis Maps Development of Human Germline Cells and Gonadal Niche Interactions. Cell Stem Cell *20*, 858-873.e854. 10.1016/j.stem.2017.03.007.